/** * $Id$ * * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * Contributor(s): Chingiz Dyussenov, Arystanbek Dyussenov, Nathan Letwory. * * ***** END GPL LICENSE BLOCK ***** */ #include "DNA_armature_types.h" #include "ED_keyframing.h" #include "BLI_listbase.h" #include "BLI_math.h" #include "BLI_path_util.h" #include "BLI_string.h" #include "BKE_action.h" #include "BKE_armature.h" #include "BKE_fcurve.h" #include "BKE_object.h" #include "MEM_guardedalloc.h" #include "collada_utils.h" #include "AnimationImporter.h" #include "ArmatureImporter.h" #include // use this for retrieving bone names, since these must be unique template static const char *bc_get_joint_name(T *node) { const std::string& id = node->getOriginalId(); return id.size() ? id.c_str() : node->getName().c_str(); } FCurve *AnimationImporter::create_fcurve(int array_index, const char *rna_path) { FCurve *fcu = (FCurve*)MEM_callocN(sizeof(FCurve), "FCurve"); fcu->flag = (FCURVE_VISIBLE|FCURVE_AUTO_HANDLES|FCURVE_SELECTED); fcu->rna_path = BLI_strdupn(rna_path, strlen(rna_path)); fcu->array_index = array_index; return fcu; } void AnimationImporter::create_bezt(FCurve *fcu, float frame, float output) { BezTriple bez; memset(&bez, 0, sizeof(BezTriple)); bez.vec[1][0] = frame; bez.vec[1][1] = output; bez.ipo = U.ipo_new; /* use default interpolation mode here... */ bez.f1 = bez.f2 = bez.f3 = SELECT; bez.h1 = bez.h2 = HD_AUTO; insert_bezt_fcurve(fcu, &bez, 0); calchandles_fcurve(fcu); } // create one or several fcurves depending on the number of parameters being animated void AnimationImporter::animation_to_fcurves(COLLADAFW::AnimationCurve *curve) { COLLADAFW::FloatOrDoubleArray& input = curve->getInputValues(); COLLADAFW::FloatOrDoubleArray& output = curve->getOutputValues(); // COLLADAFW::FloatOrDoubleArray& intan = curve->getInTangentValues(); // COLLADAFW::FloatOrDoubleArray& outtan = curve->getOutTangentValues(); float fps = (float)FPS; size_t dim = curve->getOutDimension(); unsigned int i; std::vector& fcurves = curve_map[curve->getUniqueId()]; switch (dim) { case 1: // X, Y, Z or angle case 3: // XYZ case 16: // matrix { for (i = 0; i < dim; i++ ) { FCurve *fcu = (FCurve*)MEM_callocN(sizeof(FCurve), "FCurve"); fcu->flag = (FCURVE_VISIBLE|FCURVE_AUTO_HANDLES|FCURVE_SELECTED); // fcu->rna_path = BLI_strdupn(path, strlen(path)); fcu->array_index = 0; //fcu->totvert = curve->getKeyCount(); // create beztriple for each key for (unsigned int j = 0; j < curve->getKeyCount(); j++) { BezTriple bez; memset(&bez, 0, sizeof(BezTriple)); // intangent // bez.vec[0][0] = get_float_value(intan, j * 6 + i + i) * fps; // bez.vec[0][1] = get_float_value(intan, j * 6 + i + i + 1); // input, output bez.vec[1][0] = bc_get_float_value(input, j) * fps; bez.vec[1][1] = bc_get_float_value(output, j * dim + i); // outtangent // bez.vec[2][0] = get_float_value(outtan, j * 6 + i + i) * fps; // bez.vec[2][1] = get_float_value(outtan, j * 6 + i + i + 1); bez.ipo = U.ipo_new; /* use default interpolation mode here... */ bez.f1 = bez.f2 = bez.f3 = SELECT; bez.h1 = bez.h2 = HD_AUTO; insert_bezt_fcurve(fcu, &bez, 0); } calchandles_fcurve(fcu); fcurves.push_back(fcu); } } break; default: fprintf(stderr, "Output dimension of %d is not yet supported (animation id = %s)\n", dim, curve->getOriginalId().c_str()); } for (std::vector::iterator it = fcurves.begin(); it != fcurves.end(); it++) unused_curves.push_back(*it); } void AnimationImporter::fcurve_deg_to_rad(FCurve *cu) { for (unsigned int i = 0; i < cu->totvert; i++) { // TODO convert handles too cu->bezt[i].vec[1][1] *= M_PI / 180.0f; } } void AnimationImporter::add_fcurves_to_object(Object *ob, std::vector& curves, char *rna_path, int array_index, Animation *animated) { bAction *act; if (!ob->adt || !ob->adt->action) act = verify_adt_action((ID*)&ob->id, 1); else act = ob->adt->action; std::vector::iterator it; int i; #if 0 char *p = strstr(rna_path, "rotation_euler"); bool is_rotation = p && *(p + strlen("rotation_euler")) == '\0'; // convert degrees to radians for rotation if (is_rotation) fcurve_deg_to_rad(fcu); #endif for (it = curves.begin(), i = 0; it != curves.end(); it++, i++) { FCurve *fcu = *it; fcu->rna_path = BLI_strdupn(rna_path, strlen(rna_path)); if (array_index == -1) fcu->array_index = i; else fcu->array_index = array_index; if (ob->type == OB_ARMATURE) { bActionGroup *grp = NULL; const char *bone_name = bc_get_joint_name(animated->node); if (bone_name) { /* try to find group */ grp = action_groups_find_named(act, bone_name); /* no matching groups, so add one */ if (grp == NULL) { /* Add a new group, and make it active */ grp = (bActionGroup*)MEM_callocN(sizeof(bActionGroup), "bActionGroup"); grp->flag = AGRP_SELECTED; BLI_strncpy(grp->name, bone_name, sizeof(grp->name)); BLI_addtail(&act->groups, grp); BLI_uniquename(&act->groups, grp, "Group", '.', offsetof(bActionGroup, name), 64); } /* add F-Curve to group */ action_groups_add_channel(act, grp, fcu); } #if 0 if (is_rotation) { fcurves_actionGroup_map[grp].push_back(fcu); } #endif } else { BLI_addtail(&act->curves, fcu); } // curve is used, so remove it from unused_curves unused_curves.erase(std::remove(unused_curves.begin(), unused_curves.end(), fcu), unused_curves.end()); } } AnimationImporter::AnimationImporter(UnitConverter *conv, ArmatureImporter *arm, Scene *scene) : TransformReader(conv), armature_importer(arm), scene(scene) { } AnimationImporter::~AnimationImporter() { // free unused FCurves for (std::vector::iterator it = unused_curves.begin(); it != unused_curves.end(); it++) free_fcurve(*it); if (unused_curves.size()) fprintf(stderr, "removed %u unused curves\n", unused_curves.size()); } bool AnimationImporter::write_animation(const COLLADAFW::Animation* anim) { if (anim->getAnimationType() == COLLADAFW::Animation::ANIMATION_CURVE) { COLLADAFW::AnimationCurve *curve = (COLLADAFW::AnimationCurve*)anim; // XXX Don't know if it's necessary // Should we check outPhysicalDimension? if (curve->getInPhysicalDimension() != COLLADAFW::PHYSICAL_DIMENSION_TIME) { fprintf(stderr, "Inputs physical dimension is not time. \n"); return true; } // a curve can have mixed interpolation type, // in this case curve->getInterpolationTypes returns a list of interpolation types per key COLLADAFW::AnimationCurve::InterpolationType interp = curve->getInterpolationType(); if (interp != COLLADAFW::AnimationCurve::INTERPOLATION_MIXED) { switch (interp) { case COLLADAFW::AnimationCurve::INTERPOLATION_LINEAR: case COLLADAFW::AnimationCurve::INTERPOLATION_BEZIER: animation_to_fcurves(curve); break; default: // TODO there're also CARDINAL, HERMITE, BSPLINE and STEP types fprintf(stderr, "CARDINAL, HERMITE, BSPLINE and STEP anim interpolation types not supported yet.\n"); break; } } else { // not supported yet fprintf(stderr, "MIXED anim interpolation type is not supported yet.\n"); } } else { fprintf(stderr, "FORMULA animation type is not supported yet.\n"); } return true; } // called on post-process stage after writeVisualScenes bool AnimationImporter::write_animation_list(const COLLADAFW::AnimationList* animlist) { const COLLADAFW::UniqueId& animlist_id = animlist->getUniqueId(); animlist_map[animlist_id] = animlist; #if 0 // should not happen if (uid_animated_map.find(animlist_id) == uid_animated_map.end()) { return true; } // for bones rna_path is like: pose.bones["bone-name"].rotation // what does this AnimationList animate? Animation& animated = uid_animated_map[animlist_id]; Object *ob = animated.ob; char rna_path[100]; char joint_path[100]; bool is_joint = false; // if ob is NULL, it should be a JOINT if (!ob) { ob = armature_importer->get_armature_for_joint(animated.node); if (!ob) { fprintf(stderr, "Cannot find armature for node %s\n", get_joint_name(animated.node)); return true; } armature_importer->get_rna_path_for_joint(animated.node, joint_path, sizeof(joint_path)); is_joint = true; } const COLLADAFW::AnimationList::AnimationBindings& bindings = animlist->getAnimationBindings(); switch (animated.tm->getTransformationType()) { case COLLADAFW::Transformation::TRANSLATE: case COLLADAFW::Transformation::SCALE: { bool loc = animated.tm->getTransformationType() == COLLADAFW::Transformation::TRANSLATE; if (is_joint) BLI_snprintf(rna_path, sizeof(rna_path), "%s.%s", joint_path, loc ? "location" : "scale"); else BLI_strncpy(rna_path, loc ? "location" : "scale", sizeof(rna_path)); for (int i = 0; i < bindings.getCount(); i++) { const COLLADAFW::AnimationList::AnimationBinding& binding = bindings[i]; COLLADAFW::UniqueId anim_uid = binding.animation; if (curve_map.find(anim_uid) == curve_map.end()) { fprintf(stderr, "Cannot find FCurve by animation UID.\n"); continue; } std::vector& fcurves = curve_map[anim_uid]; switch (binding.animationClass) { case COLLADAFW::AnimationList::POSITION_X: add_fcurves_to_object(ob, fcurves, rna_path, 0, &animated); break; case COLLADAFW::AnimationList::POSITION_Y: add_fcurves_to_object(ob, fcurves, rna_path, 1, &animated); break; case COLLADAFW::AnimationList::POSITION_Z: add_fcurves_to_object(ob, fcurves, rna_path, 2, &animated); break; case COLLADAFW::AnimationList::POSITION_XYZ: add_fcurves_to_object(ob, fcurves, rna_path, -1, &animated); break; default: fprintf(stderr, "AnimationClass %d is not supported for %s.\n", binding.animationClass, loc ? "TRANSLATE" : "SCALE"); } } } break; case COLLADAFW::Transformation::ROTATE: { if (is_joint) BLI_snprintf(rna_path, sizeof(rna_path), "%s.rotation_euler", joint_path); else BLI_strncpy(rna_path, "rotation_euler", sizeof(rna_path)); COLLADAFW::Rotate* rot = (COLLADAFW::Rotate*)animated.tm; COLLADABU::Math::Vector3& axis = rot->getRotationAxis(); for (int i = 0; i < bindings.getCount(); i++) { const COLLADAFW::AnimationList::AnimationBinding& binding = bindings[i]; COLLADAFW::UniqueId anim_uid = binding.animation; if (curve_map.find(anim_uid) == curve_map.end()) { fprintf(stderr, "Cannot find FCurve by animation UID.\n"); continue; } std::vector& fcurves = curve_map[anim_uid]; switch (binding.animationClass) { case COLLADAFW::AnimationList::ANGLE: if (COLLADABU::Math::Vector3::UNIT_X == axis) { add_fcurves_to_object(ob, fcurves, rna_path, 0, &animated); } else if (COLLADABU::Math::Vector3::UNIT_Y == axis) { add_fcurves_to_object(ob, fcurves, rna_path, 1, &animated); } else if (COLLADABU::Math::Vector3::UNIT_Z == axis) { add_fcurves_to_object(ob, fcurves, rna_path, 2, &animated); } break; case COLLADAFW::AnimationList::AXISANGLE: // TODO convert axis-angle to quat? or XYZ? default: fprintf(stderr, "AnimationClass %d is not supported for ROTATE transformation.\n", binding.animationClass); } } } break; case COLLADAFW::Transformation::MATRIX: case COLLADAFW::Transformation::SKEW: case COLLADAFW::Transformation::LOOKAT: fprintf(stderr, "Animation of MATRIX, SKEW and LOOKAT transformations is not supported yet.\n"); break; } #endif return true; } void AnimationImporter::read_node_transform(COLLADAFW::Node *node, Object *ob) { float mat[4][4]; TransformReader::get_node_mat(mat, node, &uid_animated_map, ob); if (ob) { copy_m4_m4(ob->obmat, mat); object_apply_mat4(ob, ob->obmat); } } #if 0 virtual void AnimationImporter::change_eul_to_quat(Object *ob, bAction *act) { bActionGroup *grp; int i; for (grp = (bActionGroup*)act->groups.first; grp; grp = grp->next) { FCurve *eulcu[3] = {NULL, NULL, NULL}; if (fcurves_actionGroup_map.find(grp) == fcurves_actionGroup_map.end()) continue; std::vector &rot_fcurves = fcurves_actionGroup_map[grp]; if (rot_fcurves.size() > 3) continue; for (i = 0; i < rot_fcurves.size(); i++) eulcu[rot_fcurves[i]->array_index] = rot_fcurves[i]; char joint_path[100]; char rna_path[100]; BLI_snprintf(joint_path, sizeof(joint_path), "pose.bones[\"%s\"]", grp->name); BLI_snprintf(rna_path, sizeof(rna_path), "%s.rotation_quaternion", joint_path); FCurve *quatcu[4] = { create_fcurve(0, rna_path), create_fcurve(1, rna_path), create_fcurve(2, rna_path), create_fcurve(3, rna_path) }; bPoseChannel *chan = get_pose_channel(ob->pose, grp->name); float m4[4][4], irest[3][3]; invert_m4_m4(m4, chan->bone->arm_mat); copy_m3_m4(irest, m4); for (i = 0; i < 3; i++) { FCurve *cu = eulcu[i]; if (!cu) continue; for (int j = 0; j < cu->totvert; j++) { float frame = cu->bezt[j].vec[1][0]; float eul[3] = { eulcu[0] ? evaluate_fcurve(eulcu[0], frame) : 0.0f, eulcu[1] ? evaluate_fcurve(eulcu[1], frame) : 0.0f, eulcu[2] ? evaluate_fcurve(eulcu[2], frame) : 0.0f }; // make eul relative to bone rest pose float rot[3][3], rel[3][3], quat[4]; /*eul_to_mat3(rot, eul); mul_m3_m3m3(rel, irest, rot); mat3_to_quat(quat, rel); */ eul_to_quat(quat, eul); for (int k = 0; k < 4; k++) create_bezt(quatcu[k], frame, quat[k]); } } // now replace old Euler curves for (i = 0; i < 3; i++) { if (!eulcu[i]) continue; action_groups_remove_channel(act, eulcu[i]); free_fcurve(eulcu[i]); } chan->rotmode = ROT_MODE_QUAT; for (i = 0; i < 4; i++) action_groups_add_channel(act, grp, quatcu[i]); } bPoseChannel *pchan; for (pchan = (bPoseChannel*)ob->pose->chanbase.first; pchan; pchan = pchan->next) { pchan->rotmode = ROT_MODE_QUAT; } } #endif // prerequisites: // animlist_map - map animlist id -> animlist // curve_map - map anim id -> curve(s) Object *AnimationImporter::translate_animation(COLLADAFW::Node *node, std::map& object_map, std::map& root_map, COLLADAFW::Transformation::TransformationType tm_type, Object *par_job) { bool is_rotation = tm_type == COLLADAFW::Transformation::ROTATE; bool is_matrix = tm_type == COLLADAFW::Transformation::MATRIX; bool is_joint = node->getType() == COLLADAFW::Node::JOINT; COLLADAFW::Node *root = root_map.find(node->getUniqueId()) == root_map.end() ? node : root_map[node->getUniqueId()]; Object *ob = is_joint ? armature_importer->get_armature_for_joint(node) : object_map[node->getUniqueId()]; const char *bone_name = is_joint ? bc_get_joint_name(node) : NULL; if (!ob) { fprintf(stderr, "cannot find Object for Node with id=\"%s\"\n", node->getOriginalId().c_str()); return NULL; } // frames at which to sample std::vector frames; // for each , , etc. there is a separate Transformation const COLLADAFW::TransformationPointerArray& tms = node->getTransformations(); unsigned int i; // find frames at which to sample plus convert all rotation keys to radians for (i = 0; i < tms.getCount(); i++) { COLLADAFW::Transformation *tm = tms[i]; COLLADAFW::Transformation::TransformationType type = tm->getTransformationType(); if (type == tm_type) { const COLLADAFW::UniqueId& listid = tm->getAnimationList(); if (animlist_map.find(listid) != animlist_map.end()) { const COLLADAFW::AnimationList *animlist = animlist_map[listid]; const COLLADAFW::AnimationList::AnimationBindings& bindings = animlist->getAnimationBindings(); if (bindings.getCount()) { for (unsigned int j = 0; j < bindings.getCount(); j++) { std::vector& curves = curve_map[bindings[j].animation]; bool xyz = ((type == COLLADAFW::Transformation::TRANSLATE || type == COLLADAFW::Transformation::SCALE) && bindings[j].animationClass == COLLADAFW::AnimationList::POSITION_XYZ); if ((!xyz && curves.size() == 1) || (xyz && curves.size() == 3) || is_matrix) { std::vector::iterator iter; for (iter = curves.begin(); iter != curves.end(); iter++) { FCurve *fcu = *iter; if (is_rotation) fcurve_deg_to_rad(fcu); for (unsigned int k = 0; k < fcu->totvert; k++) { float fra = fcu->bezt[k].vec[1][0]; if (std::find(frames.begin(), frames.end(), fra) == frames.end()) frames.push_back(fra); } } } else { fprintf(stderr, "expected %d curves, got %u\n", xyz ? 3 : 1, curves.size()); } } } } } } float irest_dae[4][4]; float rest[4][4], irest[4][4]; if (is_joint) { get_joint_rest_mat(irest_dae, root, node); invert_m4(irest_dae); Bone *bone = get_named_bone((bArmature*)ob->data, bone_name); if (!bone) { fprintf(stderr, "cannot find bone \"%s\"\n", bone_name); return NULL; } unit_m4(rest); copy_m4_m4(rest, bone->arm_mat); invert_m4_m4(irest, rest); } Object *job = NULL; #ifdef ARMATURE_TEST FCurve *job_curves[10]; job = get_joint_object(root, node, par_job); #endif if (frames.size() == 0) return job; std::sort(frames.begin(), frames.end()); const char *tm_str = NULL; switch (tm_type) { case COLLADAFW::Transformation::ROTATE: tm_str = "rotation_quaternion"; break; case COLLADAFW::Transformation::SCALE: tm_str = "scale"; break; case COLLADAFW::Transformation::TRANSLATE: tm_str = "location"; break; case COLLADAFW::Transformation::MATRIX: break; default: return job; } char rna_path[200]; char joint_path[200]; if (is_joint) armature_importer->get_rna_path_for_joint(node, joint_path, sizeof(joint_path)); // new curves FCurve *newcu[10]; // if tm_type is matrix, then create 10 curves: 4 rot, 3 loc, 3 scale unsigned int totcu = is_matrix ? 10 : (is_rotation ? 4 : 3); for (i = 0; i < totcu; i++) { int axis = i; if (is_matrix) { if (i < 4) { tm_str = "rotation_quaternion"; axis = i; } else if (i < 7) { tm_str = "location"; axis = i - 4; } else { tm_str = "scale"; axis = i - 7; } } if (is_joint) BLI_snprintf(rna_path, sizeof(rna_path), "%s.%s", joint_path, tm_str); else strcpy(rna_path, tm_str); newcu[i] = create_fcurve(axis, rna_path); #ifdef ARMATURE_TEST if (is_joint) job_curves[i] = create_fcurve(axis, tm_str); #endif } std::vector::iterator it; // sample values at each frame for (it = frames.begin(); it != frames.end(); it++) { float fra = *it; float mat[4][4]; float matfra[4][4]; unit_m4(matfra); // calc object-space mat evaluate_transform_at_frame(matfra, node, fra); // for joints, we need a special matrix if (is_joint) { // special matrix: iR * M * iR_dae * R // where R, iR are bone rest and inverse rest mats in world space (Blender bones), // iR_dae is joint inverse rest matrix (DAE) and M is an evaluated joint world-space matrix (DAE) float temp[4][4], par[4][4]; // calc M calc_joint_parent_mat_rest(par, NULL, root, node); mul_m4_m4m4(temp, matfra, par); // evaluate_joint_world_transform_at_frame(temp, NULL, , node, fra); // calc special matrix mul_serie_m4(mat, irest, temp, irest_dae, rest, NULL, NULL, NULL, NULL); } else { copy_m4_m4(mat, matfra); } float val[4], rot[4], loc[3], scale[3]; switch (tm_type) { case COLLADAFW::Transformation::ROTATE: mat4_to_quat(val, mat); break; case COLLADAFW::Transformation::SCALE: mat4_to_size(val, mat); break; case COLLADAFW::Transformation::TRANSLATE: copy_v3_v3(val, mat[3]); break; case COLLADAFW::Transformation::MATRIX: mat4_to_quat(rot, mat); copy_v3_v3(loc, mat[3]); mat4_to_size(scale, mat); break; default: break; } // add keys for (i = 0; i < totcu; i++) { if (is_matrix) { if (i < 4) add_bezt(newcu[i], fra, rot[i]); else if (i < 7) add_bezt(newcu[i], fra, loc[i - 4]); else add_bezt(newcu[i], fra, scale[i - 7]); } else { add_bezt(newcu[i], fra, val[i]); } } #ifdef ARMATURE_TEST if (is_joint) { switch (tm_type) { case COLLADAFW::Transformation::ROTATE: mat4_to_quat(val, matfra); break; case COLLADAFW::Transformation::SCALE: mat4_to_size(val, matfra); break; case COLLADAFW::Transformation::TRANSLATE: copy_v3_v3(val, matfra[3]); break; case MATRIX: mat4_to_quat(rot, matfra); copy_v3_v3(loc, matfra[3]); mat4_to_size(scale, matfra); break; default: break; } for (i = 0; i < totcu; i++) { if (is_matrix) { if (i < 4) add_bezt(job_curves[i], fra, rot[i]); else if (i < 7) add_bezt(job_curves[i], fra, loc[i - 4]); else add_bezt(job_curves[i], fra, scale[i - 7]); } else { add_bezt(job_curves[i], fra, val[i]); } } } #endif } verify_adt_action((ID*)&ob->id, 1); ListBase *curves = &ob->adt->action->curves; // add curves for (i = 0; i < totcu; i++) { if (is_joint) add_bone_fcurve(ob, node, newcu[i]); else BLI_addtail(curves, newcu[i]); #ifdef ARMATURE_TEST if (is_joint) BLI_addtail(&job->adt->action->curves, job_curves[i]); #endif } if (is_rotation || is_matrix) { if (is_joint) { bPoseChannel *chan = get_pose_channel(ob->pose, bone_name); chan->rotmode = ROT_MODE_QUAT; } else { ob->rotmode = ROT_MODE_QUAT; } } return job; } // internal, better make it private // warning: evaluates only rotation // prerequisites: animlist_map, curve_map void AnimationImporter::evaluate_transform_at_frame(float mat[4][4], COLLADAFW::Node *node, float fra) { const COLLADAFW::TransformationPointerArray& tms = node->getTransformations(); unit_m4(mat); for (unsigned int i = 0; i < tms.getCount(); i++) { COLLADAFW::Transformation *tm = tms[i]; COLLADAFW::Transformation::TransformationType type = tm->getTransformationType(); float m[4][4]; unit_m4(m); if (!evaluate_animation(tm, m, fra, node->getOriginalId().c_str())) { switch (type) { case COLLADAFW::Transformation::ROTATE: dae_rotate_to_mat4(tm, m); break; case COLLADAFW::Transformation::TRANSLATE: dae_translate_to_mat4(tm, m); break; case COLLADAFW::Transformation::SCALE: dae_scale_to_mat4(tm, m); break; case COLLADAFW::Transformation::MATRIX: dae_matrix_to_mat4(tm, m); break; default: fprintf(stderr, "unsupported transformation type %d\n", type); } } float temp[4][4]; copy_m4_m4(temp, mat); mul_m4_m4m4(mat, m, temp); } } // return true to indicate that mat contains a sane value bool AnimationImporter::evaluate_animation(COLLADAFW::Transformation *tm, float mat[4][4], float fra, const char *node_id) { const COLLADAFW::UniqueId& listid = tm->getAnimationList(); COLLADAFW::Transformation::TransformationType type = tm->getTransformationType(); if (type != COLLADAFW::Transformation::ROTATE && type != COLLADAFW::Transformation::SCALE && type != COLLADAFW::Transformation::TRANSLATE && type != COLLADAFW::Transformation::MATRIX) { fprintf(stderr, "animation of transformation %d is not supported yet\n", type); return false; } if (animlist_map.find(listid) == animlist_map.end()) return false; const COLLADAFW::AnimationList *animlist = animlist_map[listid]; const COLLADAFW::AnimationList::AnimationBindings& bindings = animlist->getAnimationBindings(); if (bindings.getCount()) { float vec[3]; bool is_scale = (type == COLLADAFW::Transformation::SCALE); bool is_translate = (type == COLLADAFW::Transformation::TRANSLATE); if (type == COLLADAFW::Transformation::SCALE) dae_scale_to_v3(tm, vec); else if (type == COLLADAFW::Transformation::TRANSLATE) dae_translate_to_v3(tm, vec); for (unsigned int j = 0; j < bindings.getCount(); j++) { const COLLADAFW::AnimationList::AnimationBinding& binding = bindings[j]; std::vector& curves = curve_map[binding.animation]; COLLADAFW::AnimationList::AnimationClass animclass = binding.animationClass; char path[100]; switch (type) { case COLLADAFW::Transformation::ROTATE: BLI_snprintf(path, sizeof(path), "%s.rotate (binding %u)", node_id, j); break; case COLLADAFW::Transformation::SCALE: BLI_snprintf(path, sizeof(path), "%s.scale (binding %u)", node_id, j); break; case COLLADAFW::Transformation::TRANSLATE: BLI_snprintf(path, sizeof(path), "%s.translate (binding %u)", node_id, j); break; case COLLADAFW::Transformation::MATRIX: BLI_snprintf(path, sizeof(path), "%s.matrix (binding %u)", node_id, j); break; default: break; } if (animclass == COLLADAFW::AnimationList::UNKNOWN_CLASS) { fprintf(stderr, "%s: UNKNOWN animation class\n", path); continue; } if (type == COLLADAFW::Transformation::ROTATE) { if (curves.size() != 1) { fprintf(stderr, "expected 1 curve, got %u\n", curves.size()); return false; } // TODO support other animclasses if (animclass != COLLADAFW::AnimationList::ANGLE) { fprintf(stderr, "%s: animation class %d is not supported yet\n", path, animclass); return false; } COLLADABU::Math::Vector3& axis = ((COLLADAFW::Rotate*)tm)->getRotationAxis(); float ax[3] = {axis[0], axis[1], axis[2]}; float angle = evaluate_fcurve(curves[0], fra); axis_angle_to_mat4(mat, ax, angle); return true; } else if (is_scale || is_translate) { bool is_xyz = animclass == COLLADAFW::AnimationList::POSITION_XYZ; if ((!is_xyz && curves.size() != 1) || (is_xyz && curves.size() != 3)) { if (is_xyz) fprintf(stderr, "%s: expected 3 curves, got %u\n", path, curves.size()); else fprintf(stderr, "%s: expected 1 curve, got %u\n", path, curves.size()); return false; } switch (animclass) { case COLLADAFW::AnimationList::POSITION_X: vec[0] = evaluate_fcurve(curves[0], fra); break; case COLLADAFW::AnimationList::POSITION_Y: vec[1] = evaluate_fcurve(curves[0], fra); break; case COLLADAFW::AnimationList::POSITION_Z: vec[2] = evaluate_fcurve(curves[0], fra); break; case COLLADAFW::AnimationList::POSITION_XYZ: vec[0] = evaluate_fcurve(curves[0], fra); vec[1] = evaluate_fcurve(curves[1], fra); vec[2] = evaluate_fcurve(curves[2], fra); break; default: fprintf(stderr, "%s: animation class %d is not supported yet\n", path, animclass); break; } } else if (type == COLLADAFW::Transformation::MATRIX) { // for now, of matrix animation, support only the case when all values are packed into one animation if (curves.size() != 16) { fprintf(stderr, "%s: expected 16 curves, got %u\n", path, curves.size()); return false; } COLLADABU::Math::Matrix4 matrix; int i = 0, j = 0; for (std::vector::iterator it = curves.begin(); it != curves.end(); it++) { matrix.setElement(i, j, evaluate_fcurve(*it, fra)); j++; if (j == 4) { i++; j = 0; } } COLLADAFW::Matrix tm(matrix); dae_matrix_to_mat4(&tm, mat); return true; } } if (is_scale) size_to_mat4(mat, vec); else copy_v3_v3(mat[3], vec); return is_scale || is_translate; } return false; } // gives a world-space mat of joint at rest position void AnimationImporter::get_joint_rest_mat(float mat[4][4], COLLADAFW::Node *root, COLLADAFW::Node *node) { // if bind mat is not available, // use "current" node transform, i.e. all those tms listed inside if (!armature_importer->get_joint_bind_mat(mat, node)) { float par[4][4], m[4][4]; calc_joint_parent_mat_rest(par, NULL, root, node); get_node_mat(m, node, NULL, NULL); mul_m4_m4m4(mat, m, par); } } // gives a world-space mat, end's mat not included bool AnimationImporter::calc_joint_parent_mat_rest(float mat[4][4], float par[4][4], COLLADAFW::Node *node, COLLADAFW::Node *end) { float m[4][4]; if (node == end) { par ? copy_m4_m4(mat, par) : unit_m4(mat); return true; } // use bind matrix if available or calc "current" world mat if (!armature_importer->get_joint_bind_mat(m, node)) { if (par) { float temp[4][4]; get_node_mat(temp, node, NULL, NULL); mul_m4_m4m4(m, temp, par); } else { get_node_mat(m, node, NULL, NULL); } } COLLADAFW::NodePointerArray& children = node->getChildNodes(); for (unsigned int i = 0; i < children.getCount(); i++) { if (calc_joint_parent_mat_rest(mat, m, children[i], end)) return true; } return false; } #ifdef ARMATURE_TEST Object *AnimationImporter::get_joint_object(COLLADAFW::Node *root, COLLADAFW::Node *node, Object *par_job) { if (joint_objects.find(node->getUniqueId()) == joint_objects.end()) { Object *job = add_object(scene, OB_EMPTY); rename_id((ID*)&job->id, (char*)get_joint_name(node)); job->lay = object_in_scene(job, scene)->lay = 2; mul_v3_fl(job->size, 0.5f); job->recalc |= OB_RECALC_OB; verify_adt_action((ID*)&job->id, 1); job->rotmode = ROT_MODE_QUAT; float mat[4][4]; get_joint_rest_mat(mat, root, node); if (par_job) { float temp[4][4], ipar[4][4]; invert_m4_m4(ipar, par_job->obmat); copy_m4_m4(temp, mat); mul_m4_m4m4(mat, temp, ipar); } TransformBase::decompose(mat, job->loc, NULL, job->quat, job->size); if (par_job) { job->parent = par_job; par_job->recalc |= OB_RECALC_OB; job->parsubstr[0] = 0; } where_is_object(scene, job); // after parenting and layer change DAG_scene_sort(CTX_data_main(C), scene); joint_objects[node->getUniqueId()] = job; } return joint_objects[node->getUniqueId()]; } #endif #if 0 // recursively evaluates joint tree until end is found, mat then is world-space matrix of end // mat must be identity on enter, node must be root bool AnimationImporter::evaluate_joint_world_transform_at_frame(float mat[4][4], float par[4][4], COLLADAFW::Node *node, COLLADAFW::Node *end, float fra) { float m[4][4]; if (par) { float temp[4][4]; evaluate_transform_at_frame(temp, node, node == end ? fra : 0.0f); mul_m4_m4m4(m, temp, par); } else { evaluate_transform_at_frame(m, node, node == end ? fra : 0.0f); } if (node == end) { copy_m4_m4(mat, m); return true; } else { COLLADAFW::NodePointerArray& children = node->getChildNodes(); for (int i = 0; i < children.getCount(); i++) { if (evaluate_joint_world_transform_at_frame(mat, m, children[i], end, fra)) return true; } } return false; } #endif void AnimationImporter::add_bone_fcurve(Object *ob, COLLADAFW::Node *node, FCurve *fcu) { const char *bone_name = bc_get_joint_name(node); bAction *act = ob->adt->action; /* try to find group */ bActionGroup *grp = action_groups_find_named(act, bone_name); /* no matching groups, so add one */ if (grp == NULL) { /* Add a new group, and make it active */ grp = (bActionGroup*)MEM_callocN(sizeof(bActionGroup), "bActionGroup"); grp->flag = AGRP_SELECTED; BLI_strncpy(grp->name, bone_name, sizeof(grp->name)); BLI_addtail(&act->groups, grp); BLI_uniquename(&act->groups, grp, "Group", '.', offsetof(bActionGroup, name), 64); } /* add F-Curve to group */ action_groups_add_channel(act, grp, fcu); } void AnimationImporter::add_bezt(FCurve *fcu, float fra, float value) { BezTriple bez; memset(&bez, 0, sizeof(BezTriple)); bez.vec[1][0] = fra; bez.vec[1][1] = value; bez.ipo = U.ipo_new; /* use default interpolation mode here... */ bez.f1 = bez.f2 = bez.f3 = SELECT; bez.h1 = bez.h2 = HD_AUTO; insert_bezt_fcurve(fcu, &bez, 0); calchandles_fcurve(fcu); }