/* * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2008 Blender Foundation. * All rights reserved. */ #include "BCSampleData.h" #include "collada_utils.h" BCSample::~BCSample() { BCBoneMatrixMap::iterator it; for (it = bonemats.begin(); it != bonemats.end(); ++it) { delete it->second; } } void BCSample::add_bone_matrix(Bone *bone, Matrix &mat) { BCMatrix *matrix; BCBoneMatrixMap::const_iterator it = bonemats.find(bone); if (it != bonemats.end()) { throw std::invalid_argument("bone " + std::string(bone->name) + " already defined before"); } matrix = new BCMatrix(mat); bonemats[bone] = matrix; } BCMatrix::BCMatrix(const BCMatrix &mat) { set_transform(mat.matrix); } BCMatrix::BCMatrix(Matrix &mat) { set_transform(mat); } BCMatrix::BCMatrix(Object *ob) { set_transform(ob); } BCMatrix::BCMatrix() { unit(); } BCMatrix::BCMatrix(BC_global_forward_axis global_forward_axis, BC_global_up_axis global_up_axis) { float mrot[3][3]; float mat[4][4]; mat3_from_axis_conversion( BC_DEFAULT_FORWARD, BC_DEFAULT_UP, global_forward_axis, global_up_axis, mrot); transpose_m3(mrot); // TODO: Verify that mat3_from_axis_conversion() returns a transposed matrix copy_m4_m3(mat, mrot); set_transform(mat); } void BCMatrix::add_transform(const Matrix &mat, bool inverse) { add_transform(this->matrix, mat, this->matrix, inverse); } void BCMatrix::add_transform(const BCMatrix &mat, bool inverse) { add_transform(this->matrix, mat.matrix, this->matrix, inverse); } void BCMatrix::apply_transform(const BCMatrix &mat, bool inverse) { apply_transform(this->matrix, mat.matrix, this->matrix, inverse); } void BCMatrix::add_transform(Matrix &to, const Matrix &transform, const Matrix &from, bool inverse) { if (inverse) { Matrix globinv; invert_m4_m4(globinv, transform); add_transform(to, globinv, from, /*inverse=*/false); } else { mul_m4_m4m4(to, transform, from); } } void BCMatrix::apply_transform(Matrix &to, const Matrix &transform, const Matrix &from, bool inverse) { Matrix globinv; invert_m4_m4(globinv, transform); if (inverse) { add_transform(to, globinv, from, /*inverse=*/false); } else { mul_m4_m4m4(to, transform, from); mul_m4_m4m4(to, to, globinv); } } void BCMatrix::add_inverted_transform(Matrix &to, const Matrix &transform, const Matrix &from) { Matrix workmat; invert_m4_m4(workmat, transform); mul_m4_m4m4(to, workmat, from); } void BCMatrix::set_transform(Object *ob) { Matrix lmat; BKE_object_matrix_local_get(ob, lmat); copy_m4_m4(matrix, lmat); mat4_decompose(this->loc, this->q, this->size, lmat); quat_to_compatible_eul(this->rot, ob->rot, this->q); } void BCMatrix::set_transform(Matrix &mat) { copy_m4_m4(matrix, mat); mat4_decompose(this->loc, this->q, this->size, mat); quat_to_eul(this->rot, this->q); } const BCMatrix *BCSample::get_matrix(Bone *bone) const { BCBoneMatrixMap::const_iterator it = bonemats.find(bone); if (it == bonemats.end()) { return NULL; } return it->second; } const BCMatrix &BCSample::get_matrix() const { return obmat; } /* Get channel value */ const bool BCSample::get_value(std::string channel_target, const int array_index, float *val) const { if (channel_target == "location") { *val = obmat.location()[array_index]; } else if (channel_target == "scale") { *val = obmat.scale()[array_index]; } else if (channel_target == "rotation" || channel_target == "rotation_euler") { *val = obmat.rotation()[array_index]; } else if (channel_target == "rotation_quat") { *val = obmat.quat()[array_index]; } else { *val = 0; return false; } return true; } void BCMatrix::copy(Matrix &out, Matrix &in) { /* destination comes first: */ memcpy(out, in, sizeof(Matrix)); } void BCMatrix::transpose(Matrix &mat) { transpose_m4(mat); } void BCMatrix::sanitize(Matrix &mat, int precision) { bc_sanitize_mat(mat, precision); } void BCMatrix::unit() { unit_m4(this->matrix); mat4_decompose(this->loc, this->q, this->size, this->matrix); quat_to_eul(this->rot, this->q); } /* We need double here because the OpenCollada API needs it. * precision = -1 indicates to not limit the precision. */ void BCMatrix::get_matrix(DMatrix &mat, const bool transposed, const int precision) const { for (int i = 0; i < 4; i++) for (int j = 0; j < 4; j++) { float val = (transposed) ? matrix[j][i] : matrix[i][j]; if (precision >= 0) val = floor((val * pow(10, precision) + 0.5)) / pow(10, precision); mat[i][j] = val; } } void BCMatrix::get_matrix(Matrix &mat, const bool transposed, const int precision, const bool inverted) const { for (int i = 0; i < 4; i++) for (int j = 0; j < 4; j++) { float val = (transposed) ? matrix[j][i] : matrix[i][j]; if (precision >= 0) val = floor((val * pow(10, precision) + 0.5)) / pow(10, precision); mat[i][j] = val; } if (inverted) { invert_m4(mat); } } const bool BCMatrix::in_range(const BCMatrix &other, float distance) const { for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { if (fabs(other.matrix[i][j] - matrix[i][j]) > distance) { return false; } } } return true; } float (&BCMatrix::location() const)[3] { return loc; } float (&BCMatrix::rotation() const)[3] { return rot; } float (&BCMatrix::scale() const)[3] { return size; } float (&BCMatrix::quat() const)[4] { return q; }