#include #include #include #include "DNA_scene_types.h" #include "DNA_object_types.h" #include "DNA_meshdata_types.h" #include "DNA_mesh_types.h" #include "DNA_image_types.h" #include "DNA_material_types.h" #include "DNA_texture_types.h" #include "DNA_camera_types.h" #include "DNA_lamp_types.h" #include "DNA_anim_types.h" #include "DNA_action_types.h" #include "DNA_curve_types.h" #include "DNA_armature_types.h" #include "DNA_modifier_types.h" extern "C" { #include "BKE_DerivedMesh.h" #include "BKE_fcurve.h" #include "BLI_util.h" #include "BLI_fileops.h" #include "ED_keyframing.h" } #include "MEM_guardedalloc.h" #include "BKE_scene.h" #include "BKE_global.h" #include "BKE_main.h" #include "BKE_material.h" #include "BKE_action.h" // pose functions #include "BKE_armature.h" #include "BKE_image.h" #include "BKE_utildefines.h" #include "BLI_math.h" #include "BLI_string.h" #include "BLI_listbase.h" #include "COLLADASWAsset.h" #include "COLLADASWLibraryVisualScenes.h" #include "COLLADASWNode.h" #include "COLLADASWLibraryGeometries.h" #include "COLLADASWSource.h" #include "COLLADASWInstanceGeometry.h" #include "COLLADASWInputList.h" #include "COLLADASWPrimitves.h" #include "COLLADASWVertices.h" #include "COLLADASWLibraryAnimations.h" #include "COLLADASWLibraryImages.h" #include "COLLADASWLibraryEffects.h" #include "COLLADASWImage.h" #include "COLLADASWEffectProfile.h" #include "COLLADASWColorOrTexture.h" #include "COLLADASWParamTemplate.h" #include "COLLADASWParamBase.h" #include "COLLADASWSurfaceInitOption.h" #include "COLLADASWSampler.h" #include "COLLADASWScene.h" //#include "COLLADASWSurface.h" #include "COLLADASWTechnique.h" #include "COLLADASWTexture.h" #include "COLLADASWLibraryMaterials.h" #include "COLLADASWBindMaterial.h" #include "COLLADASWLibraryCameras.h" #include "COLLADASWLibraryLights.h" #include "COLLADASWInstanceCamera.h" #include "COLLADASWInstanceLight.h" #include "COLLADASWCameraOptic.h" #include "COLLADASWConstants.h" #include "COLLADASWLibraryControllers.h" #include "COLLADASWInstanceController.h" #include "COLLADASWBaseInputElement.h" #include "collada_internal.h" #include "DocumentExporter.h" #include #include // std::find // arithb.c now has QuatToAxisAngle too #if 0 // This function assumes that quat is normalized. // The following document was used as reference: // http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm void quat_to_axis_angle( float *axis, float *angle,float *q) { // quat to axis angle *angle = 2 * acos(q[0]); float divisor = sqrt(1 - q[0] * q[0]); // test to avoid divide by zero, divisor is always positive if (divisor < 0.001f ) { axis[0] = 1.0f; axis[1] = 0.0f; axis[2] = 0.0f; } else { axis[0] = q[1] / divisor; axis[1] = q[2] / divisor; axis[2] = q[3] / divisor; } } #endif char *CustomData_get_layer_name(const struct CustomData *data, int type, int n) { int layer_index = CustomData_get_layer_index(data, type); if(layer_index < 0) return NULL; return data->layers[layer_index+n].name; } char *CustomData_get_active_layer_name(const CustomData *data, int type) { /* get the layer index of the active layer of type */ int layer_index = CustomData_get_active_layer_index(data, type); if(layer_index < 0) return NULL; return data->layers[layer_index].name; } /** Translation map. Used to translate every COLLADA id to a valid id, no matter what "wrong" letters may be included. Look at the IDREF XSD declaration for more. Follows strictly the COLLADA XSD declaration which explicitly allows non-english chars, like special chars (e.g. micro sign), umlauts and so on. The COLLADA spec also allows additional chars for member access ('.'), these must obviously be removed too, otherwise they would be heavily misinterpreted. */ const unsigned char translate_map[256] = { 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 45, 95, 95, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 95, 95, 95, 95, 95, 95, 95, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 95, 95, 95, 95, 95, 95, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 95, 183, 95, 95, 95, 95, 95, 95, 95, 95, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 95, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 95, 248, 249, 250, 251, 252, 253, 254, 255}; /** Look at documentation of translate_map */ static std::string translate_id(const std::string &id) { std::string id_translated = id; for (int i=0; i < id_translated.size(); i++) { id_translated[i] = translate_map[id_translated[i]]; } return id_translated; } static std::string id_name(void *id) { return ((ID*)id)->name + 2; } static std::string get_geometry_id(Object *ob) { return translate_id(id_name(ob)) + "-mesh"; } static std::string get_light_id(Object *ob) { return translate_id(id_name(ob)) + "-light"; } static std::string get_camera_id(Object *ob) { return translate_id(id_name(ob)) + "-camera"; } /* Utilities to avoid code duplication. Definition can take some time to understand, but they should be useful. */ // f should have // void operator()(Object* ob) template void forEachMeshObjectInScene(Scene *sce, Functor &f) { Base *base= (Base*) sce->base.first; while(base) { Object *ob = base->object; if (ob->type == OB_MESH && ob->data) { f(ob); } base= base->next; } } template void forEachObjectInScene(Scene *sce, Functor &f) { Base *base= (Base*) sce->base.first; while(base) { Object *ob = base->object; f(ob); base= base->next; } } template void forEachCameraObjectInScene(Scene *sce, Functor &f) { Base *base= (Base*) sce->base.first; while(base) { Object *ob = base->object; if (ob->type == OB_CAMERA && ob->data) { f(ob, sce); } base= base->next; } } template void forEachLampObjectInScene(Scene *sce, Functor &f) { Base *base= (Base*) sce->base.first; while(base) { Object *ob = base->object; if (ob->type == OB_LAMP && ob->data) { f(ob); } base= base->next; } } // used in forEachMaterialInScene template class ForEachMaterialFunctor { std::vector mMat; // contains list of material names, to avoid duplicate calling of f MaterialFunctor *f; public: ForEachMaterialFunctor(MaterialFunctor *f) : f(f) { } void operator ()(Object *ob) { int a; for(a = 0; a < ob->totcol; a++) { Material *ma = give_current_material(ob, a+1); if (!ma) continue; std::string translated_id = translate_id(id_name(ma)); if (find(mMat.begin(), mMat.end(), translated_id) == mMat.end()) { (*this->f)(ma, ob); mMat.push_back(translated_id); } } } }; // calls f for each unique material linked to each object in sce // f should have // void operator()(Material* ma) template void forEachMaterialInScene(Scene *sce, Functor &f) { ForEachMaterialFunctor matfunc(&f); forEachMeshObjectInScene(sce, matfunc); } // OB_MESH is assumed std::string getActiveUVLayerName(Object *ob) { Mesh *me = (Mesh*)ob->data; int num_layers = CustomData_number_of_layers(&me->fdata, CD_MTFACE); if (num_layers) return std::string(CustomData_get_active_layer_name(&me->fdata, CD_MTFACE)); return ""; } // TODO: optimize UV sets by making indexed list with duplicates removed class GeometryExporter : COLLADASW::LibraryGeometries { Scene *mScene; public: GeometryExporter(COLLADASW::StreamWriter *sw) : COLLADASW::LibraryGeometries(sw) {} void exportGeom(Scene *sce) { openLibrary(); mScene = sce; forEachMeshObjectInScene(sce, *this); closeLibrary(); } void operator()(Object *ob) { // XXX don't use DerivedMesh, Mesh instead? #if 0 DerivedMesh *dm = mesh_get_derived_final(mScene, ob, CD_MASK_BAREMESH); #endif Mesh *me = (Mesh*)ob->data; std::string geom_id = get_geometry_id(ob); // openMesh(geoId, geoName, meshId) openMesh(geom_id); // writes for vertex coords createVertsSource(geom_id, me); // writes for normal coords createNormalsSource(geom_id, me); int has_uvs = CustomData_has_layer(&me->fdata, CD_MTFACE); // writes for uv coords if mesh has uv coords if (has_uvs) { createTexcoordsSource(geom_id, (Mesh*)ob->data); } // COLLADASW::Vertices verts(mSW); verts.setId(getIdBySemantics(geom_id, COLLADASW::VERTEX)); COLLADASW::InputList &input_list = verts.getInputList(); COLLADASW::Input input(COLLADASW::POSITION, getUrlBySemantics(geom_id, COLLADASW::POSITION)); input_list.push_back(input); verts.add(); // XXX slow if (ob->totcol) { for(int a = 0; a < ob->totcol; a++) { // account for NULL materials, this should not normally happen? Material *ma = give_current_material(ob, a + 1); createPolylist(ma != NULL, a, has_uvs, ob, geom_id); } } else { createPolylist(false, 0, has_uvs, ob, geom_id); } closeMesh(); closeGeometry(); #if 0 dm->release(dm); #endif } // powerful because it handles both cases when there is material and when there's not void createPolylist(bool has_material, int material_index, bool has_uvs, Object *ob, std::string& geom_id) { #if 0 MFace *mfaces = dm->getFaceArray(dm); int totfaces = dm->getNumFaces(dm); #endif Mesh *me = (Mesh*)ob->data; MFace *mfaces = me->mface; int totfaces = me->totface; // int i; int faces_in_polylist = 0; std::vector vcount_list; // count faces with this material for (i = 0; i < totfaces; i++) { MFace *f = &mfaces[i]; if ((has_material && f->mat_nr == material_index) || !has_material) { faces_in_polylist++; if (f->v4 == 0) { vcount_list.push_back(3); } else { vcount_list.push_back(4); } } } // no faces using this material if (faces_in_polylist == 0) { return; } Material *ma = has_material ? give_current_material(ob, material_index + 1) : NULL; COLLADASW::Polylist polylist(mSW); // sets count attribute in polylist.setCount(faces_in_polylist); // sets material name if (has_material) { polylist.setMaterial(translate_id(id_name(ma))); } COLLADASW::InputList &til = polylist.getInputList(); // creates in for vertices COLLADASW::Input input1(COLLADASW::VERTEX, getUrlBySemantics (geom_id, COLLADASW::VERTEX), 0); // creates in for normals COLLADASW::Input input2(COLLADASW::NORMAL, getUrlBySemantics (geom_id, COLLADASW::NORMAL), 0); til.push_back(input1); til.push_back(input2); // if mesh has uv coords writes for TEXCOORD int num_layers = CustomData_number_of_layers(&me->fdata, CD_MTFACE); for (i = 0; i < num_layers; i++) { char *name = CustomData_get_layer_name(&me->fdata, CD_MTFACE, i); COLLADASW::Input input3(COLLADASW::TEXCOORD, makeUrl(makeTexcoordSourceId(geom_id, i)), 1, // offset always 1, this is only until we have optimized UV sets i // set number equals UV layer index ); til.push_back(input3); } // sets polylist.setVCountList(vcount_list); // performs the actual writing polylist.prepareToAppendValues(); //

int texindex = 0; for (i = 0; i < totfaces; i++) { MFace *f = &mfaces[i]; if ((has_material && f->mat_nr == material_index) || !has_material) { unsigned int *v = &f->v1; for (int j = 0; j < (f->v4 == 0 ? 3 : 4); j++) { polylist.appendValues(v[j]); if (has_uvs) polylist.appendValues(texindex + j); } } texindex += 3; if (f->v4 != 0) texindex++; } polylist.finish(); } // creates for positions void createVertsSource(std::string geom_id, Mesh *me) { #if 0 int totverts = dm->getNumVerts(dm); MVert *verts = dm->getVertArray(dm); #endif int totverts = me->totvert; MVert *verts = me->mvert; COLLADASW::FloatSourceF source(mSW); source.setId(getIdBySemantics(geom_id, COLLADASW::POSITION)); source.setArrayId(getIdBySemantics(geom_id, COLLADASW::POSITION) + ARRAY_ID_SUFFIX); source.setAccessorCount(totverts); source.setAccessorStride(3); COLLADASW::SourceBase::ParameterNameList ¶m = source.getParameterNameList(); param.push_back("X"); param.push_back("Y"); param.push_back("Z"); /*main function, it creates , */ source.prepareToAppendValues(); //appends data to int i = 0; for (i = 0; i < totverts; i++) { source.appendValues(verts[i].co[0], verts[i].co[1], verts[i].co[2]); } source.finish(); } std::string makeTexcoordSourceId(std::string& geom_id, int layer_index) { char suffix[20]; sprintf(suffix, "-%d", layer_index); return getIdBySemantics(geom_id, COLLADASW::TEXCOORD) + suffix; } //creates for texcoords void createTexcoordsSource(std::string geom_id, Mesh *me) { #if 0 int totfaces = dm->getNumFaces(dm); MFace *mfaces = dm->getFaceArray(dm); #endif int totfaces = me->totface; MFace *mfaces = me->mface; int totuv = 0; int i; // count totuv for (i = 0; i < totfaces; i++) { MFace *f = &mfaces[i]; if (f->v4 == 0) { totuv+=3; } else { totuv+=4; } } int num_layers = CustomData_number_of_layers(&me->fdata, CD_MTFACE); // write for each layer // each will get id like meshName + "map-channel-1" for (int a = 0; a < num_layers; a++) { MTFace *tface = (MTFace*)CustomData_get_layer_n(&me->fdata, CD_MTFACE, a); char *name = CustomData_get_layer_name(&me->fdata, CD_MTFACE, a); COLLADASW::FloatSourceF source(mSW); std::string layer_id = makeTexcoordSourceId(geom_id, a); source.setId(layer_id); source.setArrayId(layer_id + ARRAY_ID_SUFFIX); source.setAccessorCount(totuv); source.setAccessorStride(2); COLLADASW::SourceBase::ParameterNameList ¶m = source.getParameterNameList(); param.push_back("X"); param.push_back("Y"); source.prepareToAppendValues(); for (i = 0; i < totfaces; i++) { MFace *f = &mfaces[i]; for (int j = 0; j < (f->v4 == 0 ? 3 : 4); j++) { source.appendValues(tface[i].uv[j][0], tface[i].uv[j][1]); } } source.finish(); } } //creates for normals void createNormalsSource(std::string geom_id, Mesh *me) { #if 0 int totverts = dm->getNumVerts(dm); MVert *verts = dm->getVertArray(dm); #endif int totverts = me->totvert; MVert *verts = me->mvert; COLLADASW::FloatSourceF source(mSW); source.setId(getIdBySemantics(geom_id, COLLADASW::NORMAL)); source.setArrayId(getIdBySemantics(geom_id, COLLADASW::NORMAL) + ARRAY_ID_SUFFIX); source.setAccessorCount(totverts); source.setAccessorStride(3); COLLADASW::SourceBase::ParameterNameList ¶m = source.getParameterNameList(); param.push_back("X"); param.push_back("Y"); param.push_back("Z"); source.prepareToAppendValues(); int i = 0; for( i = 0; i < totverts; ++i ){ source.appendValues(float(verts[i].no[0]/32767.0), float(verts[i].no[1]/32767.0), float(verts[i].no[2]/32767.0)); } source.finish(); } std::string getIdBySemantics(std::string geom_id, COLLADASW::Semantics type, std::string other_suffix = "") { return geom_id + getSuffixBySemantic(type) + other_suffix; } COLLADASW::URI getUrlBySemantics(std::string geom_id, COLLADASW::Semantics type, std::string other_suffix = "") { std::string id(getIdBySemantics(geom_id, type, other_suffix)); return COLLADASW::URI(COLLADABU::Utils::EMPTY_STRING, id); } COLLADASW::URI makeUrl(std::string id) { return COLLADASW::URI(COLLADABU::Utils::EMPTY_STRING, id); } /* int getTriCount(MFace *faces, int totface) { int i; int tris = 0; for (i = 0; i < totface; i++) { // if quad if (faces[i].v4 != 0) tris += 2; else tris++; } return tris; }*/ }; class TransformWriter : protected TransformBase { protected: void add_node_transform(COLLADASW::Node& node, float mat[][4], float parent_mat[][4]) { float loc[3], rot[3], size[3]; float local[4][4]; if (parent_mat) { float invpar[4][4]; invert_m4_m4(invpar, parent_mat); mul_m4_m4m4(local, mat, invpar); } else { copy_m4_m4(local, mat); } TransformBase::decompose(local, loc, rot, size); /* // this code used to create a single representing object rotation float quat[4]; float axis[3]; float angle; double angle_deg; eul_to_quat( quat,rot); normalize_qt(quat); quat_to_axis_angle( axis, &angle,quat); angle_deg = angle * 180.0f / M_PI; node.addRotate(axis[0], axis[1], axis[2], angle_deg); */ node.addTranslate("location", loc[0], loc[1], loc[2]); node.addRotateZ("rotationZ", COLLADABU::Math::Utils::radToDegF(rot[2])); node.addRotateY("rotationY", COLLADABU::Math::Utils::radToDegF(rot[1])); node.addRotateX("rotationX", COLLADABU::Math::Utils::radToDegF(rot[0])); node.addScale("scale", size[0], size[1], size[2]); } }; class InstanceWriter { protected: void add_material_bindings(COLLADASW::BindMaterial& bind_material, Object *ob) { for(int a = 0; a < ob->totcol; a++) { Material *ma = give_current_material(ob, a+1); COLLADASW::InstanceMaterialList& iml = bind_material.getInstanceMaterialList(); if (ma) { std::string matid(id_name(ma)); matid = translate_id(matid); COLLADASW::InstanceMaterial im(matid, COLLADASW::URI(COLLADABU::Utils::EMPTY_STRING, matid)); // create for each uv layer Mesh *me = (Mesh*)ob->data; int totlayer = CustomData_number_of_layers(&me->fdata, CD_MTFACE); for (int b = 0; b < totlayer; b++) { char *name = CustomData_get_layer_name(&me->fdata, CD_MTFACE, b); im.push_back(COLLADASW::BindVertexInput(name, "TEXCOORD", b)); } iml.push_back(im); } } } }; // XXX exporter writes wrong data for shared armatures. A separate // controller should be written for each armature-mesh binding how do // we make controller ids then? class ArmatureExporter: public COLLADASW::LibraryControllers, protected TransformWriter, protected InstanceWriter { private: Scene *scene; public: ArmatureExporter(COLLADASW::StreamWriter *sw) : COLLADASW::LibraryControllers(sw) {} // write bone nodes void add_armature_bones(Object *ob_arm, Scene *sce) { // write bone nodes bArmature *arm = (bArmature*)ob_arm->data; for (Bone *bone = (Bone*)arm->bonebase.first; bone; bone = bone->next) { // start from root bones if (!bone->parent) add_bone_node(bone, ob_arm); } } bool is_skinned_mesh(Object *ob) { return get_assigned_armature(ob) != NULL; } void add_instance_controller(Object *ob) { Object *ob_arm = get_assigned_armature(ob); bArmature *arm = (bArmature*)ob_arm->data; const std::string& controller_id = get_controller_id(ob_arm); COLLADASW::InstanceController ins(mSW); ins.setUrl(COLLADASW::URI(COLLADABU::Utils::EMPTY_STRING, controller_id)); // write root bone URLs Bone *bone; for (bone = (Bone*)arm->bonebase.first; bone; bone = bone->next) { if (!bone->parent) ins.addSkeleton(COLLADABU::URI(COLLADABU::Utils::EMPTY_STRING, get_joint_id(bone, ob_arm))); } InstanceWriter::add_material_bindings(ins.getBindMaterial(), ob); ins.add(); } void export_controllers(Scene *sce) { scene = sce; openLibrary(); forEachMeshObjectInScene(sce, *this); closeLibrary(); } void operator()(Object *ob) { Object *ob_arm = get_assigned_armature(ob); if (ob_arm /*&& !already_written(ob_arm)*/) export_controller(ob, ob_arm); } private: UnitConverter converter; #if 0 std::vector written_armatures; bool already_written(Object *ob_arm) { return std::find(written_armatures.begin(), written_armatures.end(), ob_arm) != written_armatures.end(); } void wrote(Object *ob_arm) { written_armatures.push_back(ob_arm); } void find_objects_using_armature(Object *ob_arm, std::vector& objects, Scene *sce) { objects.clear(); Base *base= (Base*) sce->base.first; while(base) { Object *ob = base->object; if (ob->type == OB_MESH && get_assigned_armature(ob) == ob_arm) { objects.push_back(ob); } base= base->next; } } #endif Object *get_assigned_armature(Object *ob) { Object *ob_arm = NULL; if (ob->parent && ob->partype == PARSKEL && ob->parent->type == OB_ARMATURE) { ob_arm = ob->parent; } else { ModifierData *mod = (ModifierData*)ob->modifiers.first; while (mod) { if (mod->type == eModifierType_Armature) { ob_arm = ((ArmatureModifierData*)mod)->object; } mod = mod->next; } } return ob_arm; } std::string get_joint_id(Bone *bone, Object *ob_arm) { return translate_id(id_name(ob_arm) + "_" + bone->name); } std::string get_joint_sid(Bone *bone) { char name[100]; BLI_strncpy(name, bone->name, sizeof(name)); return translate_id(name); } // parent_mat is armature-space void add_bone_node(Bone *bone, Object *ob_arm) { std::string node_id = get_joint_id(bone, ob_arm); std::string node_name = std::string(bone->name); std::string node_sid = get_joint_sid(bone); COLLADASW::Node node(mSW); node.setType(COLLADASW::Node::JOINT); node.setNodeId(node_id); node.setNodeName(node_name); node.setNodeSid(node_sid); node.start(); add_bone_transform(ob_arm, bone, node); for (Bone *child = (Bone*)bone->childbase.first; child; child = child->next) { add_bone_node(child, ob_arm); } node.end(); } void add_bone_transform(Object *ob_arm, Bone *bone, COLLADASW::Node& node) { bPose *pose = ob_arm->pose; bPoseChannel *pchan = get_pose_channel(ob_arm->pose, bone->name); float mat[4][4]; if (bone->parent) { // get bone-space matrix from armature-space bPoseChannel *parchan = get_pose_channel(ob_arm->pose, bone->parent->name); float invpar[4][4]; invert_m4_m4(invpar, parchan->pose_mat); mul_m4_m4m4(mat, pchan->pose_mat, invpar); } else { // get world-space from armature-space mul_m4_m4m4(mat, pchan->pose_mat, ob_arm->obmat); } TransformWriter::add_node_transform(node, mat, NULL); } std::string get_controller_id(Object *ob_arm) { return translate_id(id_name(ob_arm)) + SKIN_CONTROLLER_ID_SUFFIX; } // ob should be of type OB_MESH // both args are required void export_controller(Object* ob, Object *ob_arm) { // joint names // joint inverse bind matrices // vertex weights // input: // joint names: ob -> vertex group names // vertex group weights: me->dvert -> groups -> index, weight /* me->dvert: typedef struct MDeformVert { struct MDeformWeight *dw; int totweight; int flag; // flag only in use for weightpaint now } MDeformVert; typedef struct MDeformWeight { int def_nr; float weight; } MDeformWeight; */ Mesh *me = (Mesh*)ob->data; if (!me->dvert) return; std::string controller_name = id_name(ob_arm); std::string controller_id = get_controller_id(ob_arm); openSkin(controller_id, controller_name, COLLADABU::URI(COLLADABU::Utils::EMPTY_STRING, get_geometry_id(ob))); add_bind_shape_mat(ob); std::string joints_source_id = add_joints_source(ob_arm, &ob->defbase, controller_id); std::string inv_bind_mat_source_id = add_inv_bind_mats_source(ob_arm, &ob->defbase, controller_id); std::string weights_source_id = add_weights_source(me, controller_id); add_joints_element(&ob->defbase, joints_source_id, inv_bind_mat_source_id); add_vertex_weights_element(weights_source_id, joints_source_id, me, ob_arm, &ob->defbase); closeSkin(); closeController(); } void add_joints_element(ListBase *defbase, const std::string& joints_source_id, const std::string& inv_bind_mat_source_id) { COLLADASW::JointsElement joints(mSW); COLLADASW::InputList &input = joints.getInputList(); int offset = 0; input.push_back(COLLADASW::Input(COLLADASW::JOINT, // constant declared in COLLADASWInputList.h COLLADASW::URI(COLLADABU::Utils::EMPTY_STRING, joints_source_id))); input.push_back(COLLADASW::Input(COLLADASW::BINDMATRIX, COLLADASW::URI(COLLADABU::Utils::EMPTY_STRING, inv_bind_mat_source_id))); joints.add(); } void add_bind_shape_mat(Object *ob) { double bind_mat[4][4]; converter.mat4_to_dae_double(bind_mat, ob->obmat); addBindShapeTransform(bind_mat); } std::string add_joints_source(Object *ob_arm, ListBase *defbase, const std::string& controller_id) { std::string source_id = controller_id + JOINTS_SOURCE_ID_SUFFIX; int totjoint = 0; bDeformGroup *def; for (def = (bDeformGroup*)defbase->first; def; def = def->next) { if (is_bone_defgroup(ob_arm, def)) totjoint++; } COLLADASW::NameSource source(mSW); source.setId(source_id); source.setArrayId(source_id + ARRAY_ID_SUFFIX); source.setAccessorCount(totjoint); source.setAccessorStride(1); COLLADASW::SourceBase::ParameterNameList ¶m = source.getParameterNameList(); param.push_back("JOINT"); source.prepareToAppendValues(); for (def = (bDeformGroup*)defbase->first; def; def = def->next) { Bone *bone = get_bone_from_defgroup(ob_arm, def); if (bone) source.appendValues(get_joint_sid(bone)); } source.finish(); return source_id; } std::string add_inv_bind_mats_source(Object *ob_arm, ListBase *defbase, const std::string& controller_id) { std::string source_id = controller_id + BIND_POSES_SOURCE_ID_SUFFIX; COLLADASW::FloatSourceF source(mSW); source.setId(source_id); source.setArrayId(source_id + ARRAY_ID_SUFFIX); source.setAccessorCount(BLI_countlist(defbase)); source.setAccessorStride(16); source.setParameterTypeName(&COLLADASW::CSWC::CSW_VALUE_TYPE_FLOAT4x4); COLLADASW::SourceBase::ParameterNameList ¶m = source.getParameterNameList(); param.push_back("TRANSFORM"); source.prepareToAppendValues(); bPose *pose = ob_arm->pose; bArmature *arm = (bArmature*)ob_arm->data; int flag = arm->flag; // put armature in rest position if (!(arm->flag & ARM_RESTPOS)) { arm->flag |= ARM_RESTPOS; where_is_pose(scene, ob_arm); } for (bDeformGroup *def = (bDeformGroup*)defbase->first; def; def = def->next) { if (is_bone_defgroup(ob_arm, def)) { bPoseChannel *pchan = get_pose_channel(pose, def->name); float mat[4][4]; float world[4][4]; float inv_bind_mat[4][4]; // make world-space matrix, pose_mat is armature-space mul_m4_m4m4(world, pchan->pose_mat, ob_arm->obmat); invert_m4_m4(mat, world); converter.mat4_to_dae(inv_bind_mat, mat); source.appendValues(inv_bind_mat); } } // back from rest positon if (!(flag & ARM_RESTPOS)) { arm->flag = flag; where_is_pose(scene, ob_arm); } source.finish(); return source_id; } Bone *get_bone_from_defgroup(Object *ob_arm, bDeformGroup* def) { bPoseChannel *pchan = get_pose_channel(ob_arm->pose, def->name); return pchan ? pchan->bone : NULL; } bool is_bone_defgroup(Object *ob_arm, bDeformGroup* def) { return get_bone_from_defgroup(ob_arm, def) != NULL; } std::string add_weights_source(Mesh *me, const std::string& controller_id) { std::string source_id = controller_id + WEIGHTS_SOURCE_ID_SUFFIX; int i; int totweight = 0; for (i = 0; i < me->totvert; i++) { totweight += me->dvert[i].totweight; } COLLADASW::FloatSourceF source(mSW); source.setId(source_id); source.setArrayId(source_id + ARRAY_ID_SUFFIX); source.setAccessorCount(totweight); source.setAccessorStride(1); COLLADASW::SourceBase::ParameterNameList ¶m = source.getParameterNameList(); param.push_back("WEIGHT"); source.prepareToAppendValues(); // NOTE: COLLADA spec says weights should be normalized for (i = 0; i < me->totvert; i++) { MDeformVert *vert = &me->dvert[i]; for (int j = 0; j < vert->totweight; j++) { source.appendValues(vert->dw[j].weight); } } source.finish(); return source_id; } void add_vertex_weights_element(const std::string& weights_source_id, const std::string& joints_source_id, Mesh *me, Object *ob_arm, ListBase *defbase) { COLLADASW::VertexWeightsElement weights(mSW); COLLADASW::InputList &input = weights.getInputList(); int offset = 0; input.push_back(COLLADASW::Input(COLLADASW::JOINT, // constant declared in COLLADASWInputList.h COLLADASW::URI(COLLADABU::Utils::EMPTY_STRING, joints_source_id), offset++)); input.push_back(COLLADASW::Input(COLLADASW::WEIGHT, COLLADASW::URI(COLLADABU::Utils::EMPTY_STRING, weights_source_id), offset++)); weights.setCount(me->totvert); // write number of deformers per vertex COLLADASW::PrimitivesBase::VCountList vcount; int i; for (i = 0; i < me->totvert; i++) { vcount.push_back(me->dvert[i].totweight); } weights.prepareToAppendVCountValues(); weights.appendVertexCount(vcount); // def group index -> joint index std::map joint_index_by_def_index; bDeformGroup *def; int j; for (def = (bDeformGroup*)defbase->first, i = 0, j = 0; def; def = def->next, i++) { if (is_bone_defgroup(ob_arm, def)) joint_index_by_def_index[i] = j++; else joint_index_by_def_index[i] = -1; } weights.CloseVCountAndOpenVElement(); // write deformer index - weight index pairs int weight_index = 0; for (i = 0; i < me->totvert; i++) { MDeformVert *dvert = &me->dvert[i]; for (int j = 0; j < dvert->totweight; j++) { weights.appendValues(joint_index_by_def_index[dvert->dw[j].def_nr]); weights.appendValues(weight_index++); } } weights.finish(); } }; class SceneExporter: COLLADASW::LibraryVisualScenes, protected TransformWriter, protected InstanceWriter { ArmatureExporter *arm_exporter; public: SceneExporter(COLLADASW::StreamWriter *sw, ArmatureExporter *arm) : COLLADASW::LibraryVisualScenes(sw), arm_exporter(arm) {} void exportScene(Scene *sce) { // std::string id_naming = id_name(sce); openVisualScene(translate_id(id_naming), id_naming); // write s //forEachMeshObjectInScene(sce, *this); //forEachCameraObjectInScene(sce, *this); //forEachLampObjectInScene(sce, *this); exportHierarchy(sce); // closeVisualScene(); closeLibrary(); } void exportHierarchy(Scene *sce) { Base *base= (Base*) sce->base.first; while(base) { Object *ob = base->object; if (!ob->parent) { switch(ob->type) { case OB_MESH: case OB_CAMERA: case OB_LAMP: case OB_EMPTY: case OB_ARMATURE: // write nodes.... writeNodes(ob, sce); break; } } base= base->next; } } // called for each object //void operator()(Object *ob) { void writeNodes(Object *ob, Scene *sce) { COLLADASW::Node node(mSW); node.setNodeId(translate_id(id_name(ob))); node.setType(COLLADASW::Node::NODE); node.start(); bool is_skinned_mesh = arm_exporter->is_skinned_mesh(ob); float mat[4][4]; if (ob->type == OB_MESH && is_skinned_mesh) // for skinned mesh we write obmat in unit_m4(mat); else copy_m4_m4(mat, ob->obmat); TransformWriter::add_node_transform(node, mat, ob->parent ? ob->parent->obmat : NULL); // if (ob->type == OB_MESH) { if (is_skinned_mesh) { arm_exporter->add_instance_controller(ob); } else { COLLADASW::InstanceGeometry instGeom(mSW); instGeom.setUrl(COLLADASW::URI(COLLADABU::Utils::EMPTY_STRING, get_geometry_id(ob))); InstanceWriter::add_material_bindings(instGeom.getBindMaterial(), ob); instGeom.add(); } } // else if (ob->type == OB_ARMATURE) { arm_exporter->add_armature_bones(ob, sce); // XXX this looks unstable... node.end(); } // else if (ob->type == OB_CAMERA) { COLLADASW::InstanceCamera instCam(mSW, COLLADASW::URI(COLLADABU::Utils::EMPTY_STRING, get_camera_id(ob))); instCam.add(); } // else if (ob->type == OB_LAMP) { COLLADASW::InstanceLight instLa(mSW, COLLADASW::URI(COLLADABU::Utils::EMPTY_STRING, get_light_id(ob))); instLa.add(); } // empty object else if (ob->type == OB_EMPTY) { } // write nodes for child objects Base *b = (Base*) sce->base.first; while(b) { // cob - child object Object *cob = b->object; if (cob->parent == ob) { switch(cob->type) { case OB_MESH: case OB_CAMERA: case OB_LAMP: case OB_EMPTY: case OB_ARMATURE: // write node... writeNodes(cob, sce); break; } } b = b->next; } if (ob->type != OB_ARMATURE) node.end(); } }; class ImagesExporter: COLLADASW::LibraryImages { const char *mfilename; std::vector mImages; // contains list of written images, to avoid duplicates public: ImagesExporter(COLLADASW::StreamWriter *sw, const char* filename) : COLLADASW::LibraryImages(sw), mfilename(filename) {} void exportImages(Scene *sce) { openLibrary(); forEachMaterialInScene(sce, *this); closeLibrary(); } void operator()(Material *ma, Object *ob) { int a; for (a = 0; a < MAX_MTEX; a++) { MTex *mtex = ma->mtex[a]; if (mtex && mtex->tex && mtex->tex->ima) { Image *image = mtex->tex->ima; std::string name(id_name(image)); name = translate_id(name); char rel[FILE_MAX]; char abs[FILE_MAX]; char src[FILE_MAX]; char dir[FILE_MAX]; BLI_split_dirfile_basic(mfilename, dir, NULL); BKE_get_image_export_path(image, dir, abs, sizeof(abs), rel, sizeof(rel)); if (strlen(abs)) { // make absolute source path BLI_strncpy(src, image->name, sizeof(src)); BLI_convertstringcode(src, G.sce); // make dest directory if it doesn't exist BLI_make_existing_file(abs); if (BLI_copy_fileops(src, abs) != 0) { fprintf(stderr, "Cannot copy image to file's directory. \n"); } } if (find(mImages.begin(), mImages.end(), name) == mImages.end()) { COLLADASW::Image img(COLLADABU::URI(COLLADABU::URI::nativePathToUri(rel)), name); img.add(mSW); mImages.push_back(name); } } } } }; class EffectsExporter: COLLADASW::LibraryEffects { public: EffectsExporter(COLLADASW::StreamWriter *sw) : COLLADASW::LibraryEffects(sw){} void exportEffects(Scene *sce) { openLibrary(); forEachMaterialInScene(sce, *this); closeLibrary(); } void operator()(Material *ma, Object *ob) { // create a list of indices to textures of type TEX_IMAGE std::vector tex_indices; createTextureIndices(ma, tex_indices); openEffect(translate_id(id_name(ma)) + "-effect"); COLLADASW::EffectProfile ep(mSW); ep.setProfileType(COLLADASW::EffectProfile::COMMON); ep.openProfile(); // set shader type - one of three blinn, phong or lambert if (ma->spec_shader == MA_SPEC_BLINN) { ep.setShaderType(COLLADASW::EffectProfile::BLINN); // shininess ep.setShininess(ma->spec); } else if (ma->spec_shader == MA_SPEC_PHONG) { ep.setShaderType(COLLADASW::EffectProfile::PHONG); // shininess // XXX not sure, stolen this from previous Collada plugin ep.setShininess(ma->har / 4); } else { // XXX write warning "Current shader type is not supported" ep.setShaderType(COLLADASW::EffectProfile::LAMBERT); } // index of refraction if (ma->mode & MA_RAYTRANSP) { ep.setIndexOfRefraction(ma->ang); } else { ep.setIndexOfRefraction(1.0f); } // transparency ep.setTransparency(ma->alpha); // emission COLLADASW::ColorOrTexture cot = getcol(0.0f, 0.0f, 0.0f, 1.0f); ep.setEmission(cot); ep.setTransparent(cot); // diffuse cot = getcol(ma->r, ma->g, ma->b, 1.0f); ep.setDiffuse(cot); // ambient cot = getcol(ma->ambr, ma->ambg, ma->ambb, 1.0f); ep.setAmbient(cot); // reflective, reflectivity if (ma->mode & MA_RAYMIRROR) { cot = getcol(ma->mirr, ma->mirg, ma->mirb, 1.0f); ep.setReflective(cot); ep.setReflectivity(ma->ray_mirror); } else { cot = getcol(0.0f, 0.0f, 0.0f, 1.0f); ep.setReflective(cot); ep.setReflectivity(0.0f); } // specular if (ep.getShaderType() != COLLADASW::EffectProfile::LAMBERT) { cot = getcol(ma->specr, ma->specg, ma->specb, 1.0f); ep.setSpecular(cot); } // XXX make this more readable if possible // create and for each image COLLADASW::Sampler samplers[MAX_MTEX]; //COLLADASW::Surface surfaces[MAX_MTEX]; //void *samp_surf[MAX_MTEX][2]; void *samp_surf[MAX_MTEX][1]; // image to index to samp_surf map // samp_surf[index] stores 2 pointers, sampler and surface std::map im_samp_map; unsigned int a, b; for (a = 0, b = 0; a < tex_indices.size(); a++) { MTex *t = ma->mtex[tex_indices[a]]; Image *ima = t->tex->ima; std::string key(id_name(ima)); key = translate_id(key); // create only one / pair for each unique image if (im_samp_map.find(key) == im_samp_map.end()) { // // COLLADASW::Surface surface(COLLADASW::Surface::SURFACE_TYPE_2D, // key + COLLADASW::Surface::SURFACE_SID_SUFFIX); // COLLADASW::SurfaceInitOption sio(COLLADASW::SurfaceInitOption::INIT_FROM); // sio.setImageReference(key); // surface.setInitOption(sio); // COLLADASW::Sampler sampler(COLLADASW::Sampler::SAMPLER_TYPE_2D, key + COLLADASW::Sampler::SAMPLER_SID_SUFFIX, key + COLLADASW::Sampler::SURFACE_SID_SUFFIX); sampler.setImageId(key); // copy values to arrays since they will live longer samplers[a] = sampler; //surfaces[a] = surface; // store pointers so they can be used later when we create s samp_surf[b][0] = &samplers[a]; //samp_surf[b][1] = &surfaces[a]; im_samp_map[key] = b; b++; } } // used as fallback when MTex->uvname is "" (this is pretty common) // it is indeed the correct value to use in that case std::string active_uv(getActiveUVLayerName(ob)); // write textures // XXX very slow for (a = 0; a < tex_indices.size(); a++) { MTex *t = ma->mtex[tex_indices[a]]; Image *ima = t->tex->ima; // we assume map input is always TEXCO_UV std::string key(id_name(ima)); key = translate_id(key); int i = im_samp_map[key]; COLLADASW::Sampler *sampler = (COLLADASW::Sampler*)samp_surf[i][0]; //COLLADASW::Surface *surface = (COLLADASW::Surface*)samp_surf[i][1]; std::string uvname = strlen(t->uvname) ? t->uvname : active_uv; // color if (t->mapto & MAP_COL) { ep.setDiffuse(createTexture(ima, uvname, sampler)); } // ambient if (t->mapto & MAP_AMB) { ep.setAmbient(createTexture(ima, uvname, sampler)); } // specular if (t->mapto & MAP_SPEC) { ep.setSpecular(createTexture(ima, uvname, sampler)); } // emission if (t->mapto & MAP_EMIT) { ep.setEmission(createTexture(ima, uvname, sampler)); } // reflective if (t->mapto & MAP_REF) { ep.setReflective(createTexture(ima, uvname, sampler)); } if (t->mapto & MAP_ALPHA) { ep.setTransparent(createTexture(ima, uvname, sampler)); } } // performs the actual writing ep.addProfileElements(); ep.closeProfile(); closeEffect(); } COLLADASW::ColorOrTexture createTexture(Image *ima, std::string& uv_layer_name, COLLADASW::Sampler *sampler /*COLLADASW::Surface *surface*/) { COLLADASW::Texture texture(translate_id(id_name(ima))); texture.setTexcoord(uv_layer_name); //texture.setSurface(*surface); texture.setSampler(*sampler); COLLADASW::ColorOrTexture cot(texture); return cot; } COLLADASW::ColorOrTexture getcol(float r, float g, float b, float a) { COLLADASW::Color color(r,g,b,a); COLLADASW::ColorOrTexture cot(color); return cot; } //returns the array of mtex indices which have image //need this for exporting textures void createTextureIndices(Material *ma, std::vector &indices) { indices.clear(); for (int a = 0; a < MAX_MTEX; a++) { if (ma->mtex[a] && ma->mtex[a]->tex->type == TEX_IMAGE && ma->mtex[a]->texco == TEXCO_UV){ indices.push_back(a); } } } }; class MaterialsExporter: COLLADASW::LibraryMaterials { public: MaterialsExporter(COLLADASW::StreamWriter *sw): COLLADASW::LibraryMaterials(sw){} void exportMaterials(Scene *sce) { openLibrary(); forEachMaterialInScene(sce, *this); closeLibrary(); } void operator()(Material *ma, Object *ob) { std::string name(id_name(ma)); openMaterial(translate_id(name), name); std::string efid = translate_id(name) + "-effect"; addInstanceEffect(COLLADASW::URI(COLLADABU::Utils::EMPTY_STRING, efid)); closeMaterial(); } }; class CamerasExporter: COLLADASW::LibraryCameras { public: CamerasExporter(COLLADASW::StreamWriter *sw): COLLADASW::LibraryCameras(sw){} void exportCameras(Scene *sce) { openLibrary(); forEachCameraObjectInScene(sce, *this); closeLibrary(); } void operator()(Object *ob, Scene *sce) { // XXX add other params later Camera *cam = (Camera*)ob->data; std::string cam_id(get_camera_id(ob)); std::string cam_name(id_name(cam)); if (cam->type == CAM_PERSP) { COLLADASW::PerspectiveOptic persp(mSW); persp.setXFov(1.0); persp.setAspectRatio(0.1); persp.setZFar(cam->clipend); persp.setZNear(cam->clipsta); COLLADASW::Camera ccam(mSW, &persp, cam_id, cam_name); addCamera(ccam); } else { COLLADASW::OrthographicOptic ortho(mSW); ortho.setXMag(1.0); ortho.setAspectRatio(0.1); ortho.setZFar(cam->clipend); ortho.setZNear(cam->clipsta); COLLADASW::Camera ccam(mSW, &ortho, cam_id, cam_name); addCamera(ccam); } } }; class LightsExporter: COLLADASW::LibraryLights { public: LightsExporter(COLLADASW::StreamWriter *sw): COLLADASW::LibraryLights(sw){} void exportLights(Scene *sce) { openLibrary(); forEachLampObjectInScene(sce, *this); closeLibrary(); } void operator()(Object *ob) { Lamp *la = (Lamp*)ob->data; std::string la_id(get_light_id(ob)); std::string la_name(id_name(la)); COLLADASW::Color col(la->r, la->g, la->b); float e = la->energy; // sun if (la->type == LA_SUN) { COLLADASW::DirectionalLight cla(mSW, la_id, la_name, e); cla.setColor(col); addLight(cla); } // hemi else if (la->type == LA_HEMI) { COLLADASW::AmbientLight cla(mSW, la_id, la_name, e); cla.setColor(col); addLight(cla); } // spot else if (la->type == LA_SPOT) { COLLADASW::SpotLight cla(mSW, la_id, la_name, e); cla.setColor(col); cla.setFallOffAngle(la->spotsize); cla.setFallOffExponent(la->spotblend); cla.setLinearAttenuation(la->att1); cla.setQuadraticAttenuation(la->att2); addLight(cla); } // lamp else if (la->type == LA_LOCAL) { COLLADASW::PointLight cla(mSW, la_id, la_name, e); cla.setColor(col); cla.setLinearAttenuation(la->att1); cla.setQuadraticAttenuation(la->att2); addLight(cla); } // area lamp is not supported // it will be exported as a local lamp else { COLLADASW::PointLight cla(mSW, la_id, la_name, e); cla.setColor(col); cla.setLinearAttenuation(la->att1); cla.setQuadraticAttenuation(la->att2); addLight(cla); } } }; // TODO: it would be better to instantiate animations rather than create a new one per object // COLLADA allows this through multiple s in . // For this to work, we need to know objects that use a certain action. class AnimationExporter: COLLADASW::LibraryAnimations { Scene *scene; std::map > fcurves_actionGroup_map; std::map > rotfcurves_actionGroup_map; public: AnimationExporter(COLLADASW::StreamWriter *sw): COLLADASW::LibraryAnimations(sw) {} void exportAnimations(Scene *sce) { this->scene = sce; openLibrary(); forEachObjectInScene(sce, *this); closeLibrary(); } // create for each transform axis float convert_time(float frame) { return FRA2TIME(frame); } float convert_angle(float angle) { return COLLADABU::Math::Utils::radToDegF(angle); } std::string get_semantic_suffix(Sampler::Semantic semantic) { switch(semantic) { case Sampler::INPUT: return INPUT_SOURCE_ID_SUFFIX; case Sampler::OUTPUT: return OUTPUT_SOURCE_ID_SUFFIX; case Sampler::INTERPOLATION: return INTERPOLATION_SOURCE_ID_SUFFIX; case Sampler::IN_TANGENT: return INTANGENT_SOURCE_ID_SUFFIX; case Sampler::OUT_TANGENT: return OUTTANGENT_SOURCE_ID_SUFFIX; } return ""; } void add_source_parameters(COLLADASW::SourceBase::ParameterNameList& param, Sampler::Semantic semantic, bool rotation, const char *axis) { switch(semantic) { case Sampler::INPUT: param.push_back("TIME"); break; case Sampler::OUTPUT: if (rotation) { param.push_back("ANGLE"); } else { param.push_back(axis); } break; case Sampler::IN_TANGENT: case Sampler::OUT_TANGENT: param.push_back("X"); param.push_back("Y"); break; } } void get_source_values(BezTriple *bezt, Sampler::Semantic semantic, bool rotation, float *values, int *length) { switch (semantic) { case Sampler::INPUT: *length = 1; values[0] = convert_time(bezt->vec[1][0]); break; case Sampler::OUTPUT: *length = 1; if (rotation) { values[0] = convert_angle(bezt->vec[1][1]); } else { values[0] = bezt->vec[1][1]; } break; case Sampler::IN_TANGENT: case Sampler::OUT_TANGENT: // XXX *length = 2; break; } } std::string create_source(Sampler::Semantic semantic, FCurve *fcu, std::string& anim_id, const char *axis_name) { std::string source_id = anim_id + get_semantic_suffix(semantic); //bool is_rotation = !strcmp(fcu->rna_path, "rotation"); bool is_rotation = false; if (strstr(fcu->rna_path, "rotation")) is_rotation = true; COLLADASW::FloatSourceF source(mSW); source.setId(source_id); source.setArrayId(source_id + ARRAY_ID_SUFFIX); source.setAccessorCount(fcu->totvert); source.setAccessorStride(1); COLLADASW::SourceBase::ParameterNameList ¶m = source.getParameterNameList(); add_source_parameters(param, semantic, is_rotation, axis_name); source.prepareToAppendValues(); for (int i = 0; i < fcu->totvert; i++) { float values[3]; // be careful! int length; get_source_values(&fcu->bezt[i], semantic, is_rotation, values, &length); for (int j = 0; j < length; j++) source.appendValues(values[j]); } source.finish(); return source_id; } std::string create_interpolation_source(FCurve *fcu, std::string& anim_id, const char *axis_name) { std::string source_id = anim_id + get_semantic_suffix(Sampler::INTERPOLATION); //bool is_rotation = !strcmp(fcu->rna_path, "rotation"); COLLADASW::NameSource source(mSW); source.setId(source_id); source.setArrayId(source_id + ARRAY_ID_SUFFIX); source.setAccessorCount(fcu->totvert); source.setAccessorStride(1); COLLADASW::SourceBase::ParameterNameList ¶m = source.getParameterNameList(); param.push_back("INTERPOLATION"); source.prepareToAppendValues(); for (int i = 0; i < fcu->totvert; i++) { // XXX source.appendValues(LINEAR_NAME); } source.finish(); return source_id; } std::string get_transform_sid(char *rna_path, const char *axis_name) { // if (!strcmp(rna_path, "rotation")) // return std::string(rna_path) + axis_name; // return std::string(rna_path) + "." + axis_name; std::string new_rna_path; if (strstr(rna_path, "rotation")) { new_rna_path = "rotation"; return new_rna_path + axis_name; } else if (strstr(rna_path, "location")) { new_rna_path = strstr(rna_path, "location"); return new_rna_path + "." + axis_name; } else if (strstr(rna_path, "scale")) { new_rna_path = strstr(rna_path, "scale"); return new_rna_path + "." + axis_name; } return NULL; } void add_animation(FCurve *fcu, std::string ob_name) { const char *axis_names[] = {"X", "Y", "Z"}; const char *axis_name = NULL; char c_anim_id[100]; // careful! char c_anim_name[100]; // careful! if (fcu->array_index < 3) axis_name = axis_names[fcu->array_index]; BLI_snprintf(c_anim_id, sizeof(c_anim_id), "%s.%s.%s", (char*)translate_id(ob_name).c_str(), fcu->rna_path, axis_names[fcu->array_index]); std::string anim_id(c_anim_id); BLI_snprintf(c_anim_name, sizeof(c_anim_name), "%s.%s.%s", (char*)ob_name.c_str(), fcu->rna_path, axis_names[fcu->array_index]); std::string anim_name = c_anim_name; // check rna_path is one of: rotation, scale, location openAnimation(anim_id, anim_name); // create input source std::string input_id = create_source(Sampler::INPUT, fcu, anim_id, axis_name); // create output source std::string output_id = create_source(Sampler::OUTPUT, fcu, anim_id, axis_name); // create interpolations source std::string interpolation_id = create_interpolation_source(fcu, anim_id, axis_name); std::string sampler_id = anim_id + SAMPLER_ID_SUFFIX; COLLADASW::LibraryAnimations::Sampler sampler(sampler_id); std::string empty; sampler.addInput(Sampler::INPUT, COLLADABU::URI(empty, input_id)); sampler.addInput(Sampler::OUTPUT, COLLADABU::URI(empty, output_id)); // this input is required sampler.addInput(Sampler::INTERPOLATION, COLLADABU::URI(empty, interpolation_id)); addSampler(sampler); std::string target = translate_id(ob_name) + "/" + get_transform_sid(fcu->rna_path, axis_name); addChannel(COLLADABU::URI(empty, sampler_id), target); closeAnimation(); } void add_bone_animation(FCurve *fcu, std::string ob_name, std::string bone_name) { const char *axis_names[] = {"X", "Y", "Z"}; const char *axis_name = NULL; char c_anim_id[100]; // careful! char c_anim_name[100]; // careful! if (fcu->array_index < 3) axis_name = axis_names[fcu->array_index]; std::string transform_sid = get_transform_sid(fcu->rna_path, axis_name); BLI_snprintf(c_anim_id, sizeof(c_anim_id), "%s.%s.%s", (char*)translate_id(ob_name).c_str(), (char*)translate_id(bone_name).c_str(), (char*)transform_sid.c_str()); std::string anim_id(c_anim_id); BLI_snprintf(c_anim_name, sizeof(c_anim_name), "%s.%s.%s", (char*)ob_name.c_str(), (char*)bone_name.c_str(), (char*)transform_sid.c_str()); std::string anim_name(c_anim_name); // check rna_path is one of: rotation, scale, location openAnimation(anim_id, anim_name); // create input source std::string input_id = create_source(Sampler::INPUT, fcu, anim_id, axis_name); // create output source std::string output_id = create_source(Sampler::OUTPUT, fcu, anim_id, axis_name); // create interpolations source std::string interpolation_id = create_interpolation_source(fcu, anim_id, axis_name); std::string sampler_id = anim_id + SAMPLER_ID_SUFFIX; COLLADASW::LibraryAnimations::Sampler sampler(sampler_id); std::string empty; sampler.addInput(Sampler::INPUT, COLLADABU::URI(empty, input_id)); sampler.addInput(Sampler::OUTPUT, COLLADABU::URI(empty, output_id)); // this input is required sampler.addInput(Sampler::INTERPOLATION, COLLADABU::URI(empty, interpolation_id)); addSampler(sampler); std::string target = translate_id(ob_name + "_" + bone_name) + "/" + transform_sid; addChannel(COLLADABU::URI(empty, sampler_id), target); closeAnimation(); } FCurve *create_fcurve(int array_index, char *rna_path) { FCurve *fcu = (FCurve*)MEM_callocN(sizeof(FCurve), "FCurve"); fcu->flag = (FCURVE_VISIBLE|FCURVE_AUTO_HANDLES|FCURVE_SELECTED); fcu->rna_path = BLI_strdupn(rna_path, strlen(rna_path)); fcu->array_index = array_index; return fcu; } void create_bezt(FCurve *fcu, float frame, float output) { BezTriple bez; memset(&bez, 0, sizeof(BezTriple)); bez.vec[1][0] = frame; bez.vec[1][1] = output; bez.ipo = U.ipo_new; /* use default interpolation mode here... */ bez.f1 = bez.f2 = bez.f3 = SELECT; bez.h1 = bez.h2 = HD_AUTO; insert_bezt_fcurve(fcu, &bez, 0); calchandles_fcurve(fcu); } void change_quat_to_eul(Object *ob, bActionGroup *grp, char *grpname) { std::vector &rot_fcurves = rotfcurves_actionGroup_map[grp]; FCurve *quatcu[4] = {NULL, NULL, NULL, NULL}; int i; for (i = 0; i < rot_fcurves.size(); i++) quatcu[rot_fcurves[i]->array_index] = rot_fcurves[i]; char *rna_path = rot_fcurves[0]->rna_path; FCurve *eulcu[3] = { create_fcurve(0, rna_path), create_fcurve(1, rna_path), create_fcurve(2, rna_path) }; for (i = 0; i < 4; i++) { FCurve *cu = quatcu[i]; if (!cu) continue; for (int j = 0; j < cu->totvert; j++) { float frame = cu->bezt[j].vec[1][0]; float quat[4] = { quatcu[0] ? evaluate_fcurve(quatcu[0], frame) : 0.0f, quatcu[1] ? evaluate_fcurve(quatcu[1], frame) : 0.0f, quatcu[2] ? evaluate_fcurve(quatcu[2], frame) : 0.0f, quatcu[3] ? evaluate_fcurve(quatcu[3], frame) : 0.0f }; float eul[3]; quat_to_eul( eul,quat); for (int k = 0; k < 3; k++) create_bezt(eulcu[k], frame, eul[k]); } } for (i = 0; i < 3; i++) { add_bone_animation(eulcu[i], id_name(ob), std::string(grpname)); free_fcurve(eulcu[i]); } } // called for each exported object void operator() (Object *ob) { if (!ob->adt || !ob->adt->action) return; FCurve *fcu = (FCurve*)ob->adt->action->curves.first; if (ob->type == OB_ARMATURE) { while (fcu) { if (strstr(fcu->rna_path, ".rotation")) rotfcurves_actionGroup_map[fcu->grp].push_back(fcu); else fcurves_actionGroup_map[fcu->grp].push_back(fcu); fcu = fcu->next; } for (bPoseChannel *pchan = (bPoseChannel*)ob->pose->chanbase.first; pchan; pchan = pchan->next) { int i; char *grpname = pchan->name; bActionGroup *grp = action_groups_find_named(ob->adt->action, grpname); if (!grp) continue; // write animation for location & scaling if (fcurves_actionGroup_map.find(grp) == fcurves_actionGroup_map.end()) continue; std::vector &fcurves = fcurves_actionGroup_map[grp]; for (i = 0; i < fcurves.size(); i++) add_bone_animation(fcurves[i], id_name(ob), std::string(grpname)); // ... for rotation if (rotfcurves_actionGroup_map.find(grp) == rotfcurves_actionGroup_map.end()) continue; // if rotation mode is euler - no need to convert it if (pchan->rotmode == ROT_MODE_EUL) { std::vector &rotfcurves = rotfcurves_actionGroup_map[grp]; for (i = 0; i < rotfcurves.size(); i++) add_bone_animation(rotfcurves[i], id_name(ob), std::string(grpname)); } // convert rotation to euler & write animation else change_quat_to_eul(ob, grp, grpname); } } else { while (fcu) { if (!strcmp(fcu->rna_path, "location") || !strcmp(fcu->rna_path, "scale") || !strcmp(fcu->rna_path, "rotation_euler")) { add_animation(fcu, id_name(ob)); } fcu = fcu->next; } } } }; void DocumentExporter::exportCurrentScene(Scene *sce, const char* filename) { COLLADABU::NativeString native_filename = COLLADABU::NativeString(std::string(filename)); COLLADASW::StreamWriter sw(native_filename); // open sw.startDocument(); // COLLADASW::Asset asset(&sw); // XXX ask blender devs about this? asset.setUnit("decimetre", 0.1); asset.setUpAxisType(COLLADASW::Asset::Z_UP); asset.add(); // CamerasExporter ce(&sw); ce.exportCameras(sce); // LightsExporter le(&sw); le.exportLights(sce); // ImagesExporter ie(&sw, filename); ie.exportImages(sce); // EffectsExporter ee(&sw); ee.exportEffects(sce); // MaterialsExporter me(&sw); me.exportMaterials(sce); // GeometryExporter ge(&sw); ge.exportGeom(sce); // AnimationExporter ae(&sw); ae.exportAnimations(sce); // ArmatureExporter arm_exporter(&sw); arm_exporter.export_controllers(sce); // SceneExporter se(&sw, &arm_exporter); se.exportScene(sce); // std::string scene_name(translate_id(id_name(sce))); COLLADASW::Scene scene(&sw, COLLADASW::URI(COLLADABU::Utils::EMPTY_STRING, scene_name)); scene.add(); // close sw.endDocument(); } void DocumentExporter::exportScenes(const char* filename) { }