// TODO: // * name imported objects // * import object rotation as euler #include "COLLADAFWRoot.h" #include "COLLADAFWIWriter.h" #include "COLLADAFWStableHeaders.h" #include "COLLADAFWAnimationCurve.h" #include "COLLADAFWAnimationList.h" #include "COLLADAFWCamera.h" #include "COLLADAFWColorOrTexture.h" #include "COLLADAFWEffect.h" #include "COLLADAFWFloatOrDoubleArray.h" #include "COLLADAFWGeometry.h" #include "COLLADAFWImage.h" #include "COLLADAFWIndexList.h" #include "COLLADAFWInstanceGeometry.h" #include "COLLADAFWLight.h" #include "COLLADAFWMaterial.h" #include "COLLADAFWMesh.h" #include "COLLADAFWMeshPrimitiveWithFaceVertexCount.h" #include "COLLADAFWNode.h" #include "COLLADAFWPolygons.h" #include "COLLADAFWSampler.h" #include "COLLADAFWSkinController.h" #include "COLLADAFWSkinControllerData.h" #include "COLLADAFWTransformation.h" #include "COLLADAFWTranslate.h" #include "COLLADAFWRotate.h" #include "COLLADAFWScale.h" #include "COLLADAFWMatrix.h" #include "COLLADAFWTypes.h" #include "COLLADAFWVisualScene.h" #include "COLLADAFWFileInfo.h" #include "COLLADAFWArrayPrimitiveType.h" #include "COLLADASaxFWLLoader.h" // TODO move "extern C" into header files extern "C" { #include "ED_keyframing.h" #include "ED_armature.h" #include "ED_mesh.h" // ED_vgroup_vert_add, ... #include "ED_anim_api.h" #include "ED_object.h" #include "WM_types.h" #include "WM_api.h" #include "BKE_main.h" #include "BKE_customdata.h" #include "BKE_library.h" #include "BKE_texture.h" #include "BKE_fcurve.h" #include "BKE_depsgraph.h" #include "BLI_path_util.h" #include "BKE_displist.h" #include "BLI_math.h" #include "BKE_scene.h" } #include "BKE_armature.h" #include "BKE_mesh.h" #include "BKE_global.h" #include "BKE_context.h" #include "BKE_object.h" #include "BKE_image.h" #include "BKE_material.h" #include "BKE_utildefines.h" #include "BKE_action.h" #include "BLI_math.h" #include "BLI_listbase.h" #include "BLI_string.h" #include "DNA_lamp_types.h" #include "DNA_armature_types.h" #include "DNA_anim_types.h" #include "DNA_curve_types.h" #include "DNA_texture_types.h" #include "DNA_camera_types.h" #include "DNA_object_types.h" #include "DNA_meshdata_types.h" #include "DNA_mesh_types.h" #include "DNA_material_types.h" #include "DNA_scene_types.h" #include "DNA_modifier_types.h" #include "MEM_guardedalloc.h" #include "DocumentImporter.h" #include "collada_internal.h" #include #include #include // sort() #include #include // #define COLLADA_DEBUG // creates empties for each imported bone on layer 2, for debugging // #define ARMATURE_TEST char *CustomData_get_layer_name(const struct CustomData *data, int type, int n); static const char *primTypeToStr(COLLADAFW::MeshPrimitive::PrimitiveType type) { using namespace COLLADAFW; switch (type) { case MeshPrimitive::LINES: return "LINES"; case MeshPrimitive::LINE_STRIPS: return "LINESTRIPS"; case MeshPrimitive::POLYGONS: return "POLYGONS"; case MeshPrimitive::POLYLIST: return "POLYLIST"; case MeshPrimitive::TRIANGLES: return "TRIANGLES"; case MeshPrimitive::TRIANGLE_FANS: return "TRIANGLE_FANS"; case MeshPrimitive::TRIANGLE_STRIPS: return "TRIANGLE_FANS"; case MeshPrimitive::POINTS: return "POINTS"; case MeshPrimitive::UNDEFINED_PRIMITIVE_TYPE: return "UNDEFINED_PRIMITIVE_TYPE"; } return "UNKNOWN"; } static const char *geomTypeToStr(COLLADAFW::Geometry::GeometryType type) { switch (type) { case COLLADAFW::Geometry::GEO_TYPE_MESH: return "MESH"; case COLLADAFW::Geometry::GEO_TYPE_SPLINE: return "SPLINE"; case COLLADAFW::Geometry::GEO_TYPE_CONVEX_MESH: return "CONVEX_MESH"; case COLLADAFW::Geometry::GEO_TYPE_UNKNOWN: default: return "UNKNOWN"; } } // works for COLLADAFW::Node, COLLADAFW::Geometry template static const char *get_dae_name(T *node) { const std::string& name = node->getName(); return name.size() ? name.c_str() : node->getOriginalId().c_str(); } // use this for retrieving bone names, since these must be unique template static const char *get_joint_name(T *node) { const std::string& id = node->getOriginalId(); return id.size() ? id.c_str() : node->getName().c_str(); } static float get_float_value(const COLLADAFW::FloatOrDoubleArray& array, unsigned int index) { if (index >= array.getValuesCount()) return 0.0f; if (array.getType() == COLLADAFW::MeshVertexData::DATA_TYPE_FLOAT) return array.getFloatValues()->getData()[index]; else return array.getDoubleValues()->getData()[index]; } typedef std::map > TexIndexTextureArrayMap; class TransformReader : public TransformBase { protected: UnitConverter *unit_converter; struct Animation { Object *ob; COLLADAFW::Node *node; COLLADAFW::Transformation *tm; // which transform is animated by an AnimationList->id }; public: TransformReader(UnitConverter* conv) : unit_converter(conv) {} void get_node_mat(float mat[][4], COLLADAFW::Node *node, std::map *animation_map, Object *ob) { float cur[4][4]; float copy[4][4]; unit_m4(mat); for (unsigned int i = 0; i < node->getTransformations().getCount(); i++) { COLLADAFW::Transformation *tm = node->getTransformations()[i]; COLLADAFW::Transformation::TransformationType type = tm->getTransformationType(); switch(type) { case COLLADAFW::Transformation::TRANSLATE: dae_translate_to_mat4(tm, cur); break; case COLLADAFW::Transformation::ROTATE: dae_rotate_to_mat4(tm, cur); break; case COLLADAFW::Transformation::SCALE: dae_scale_to_mat4(tm, cur); break; case COLLADAFW::Transformation::MATRIX: dae_matrix_to_mat4(tm, cur); break; case COLLADAFW::Transformation::LOOKAT: case COLLADAFW::Transformation::SKEW: fprintf(stderr, "LOOKAT and SKEW transformations are not supported yet.\n"); break; } copy_m4_m4(copy, mat); mul_m4_m4m4(mat, cur, copy); if (animation_map) { // AnimationList that drives this Transformation const COLLADAFW::UniqueId& anim_list_id = tm->getAnimationList(); // store this so later we can link animation data with ob Animation anim = {ob, node, tm}; (*animation_map)[anim_list_id] = anim; } } } void dae_rotate_to_mat4(COLLADAFW::Transformation *tm, float m[][4]) { COLLADAFW::Rotate *ro = (COLLADAFW::Rotate*)tm; COLLADABU::Math::Vector3& axis = ro->getRotationAxis(); float angle = (float)(ro->getRotationAngle() * M_PI / 180.0f); float ax[] = {axis[0], axis[1], axis[2]}; // float quat[4]; // axis_angle_to_quat(quat, axis, angle); // quat_to_mat4(m, quat); axis_angle_to_mat4(m, ax, angle); } void dae_translate_to_mat4(COLLADAFW::Transformation *tm, float m[][4]) { COLLADAFW::Translate *tra = (COLLADAFW::Translate*)tm; COLLADABU::Math::Vector3& t = tra->getTranslation(); unit_m4(m); m[3][0] = (float)t[0]; m[3][1] = (float)t[1]; m[3][2] = (float)t[2]; } void dae_scale_to_mat4(COLLADAFW::Transformation *tm, float m[][4]) { COLLADABU::Math::Vector3& s = ((COLLADAFW::Scale*)tm)->getScale(); float size[3] = {(float)s[0], (float)s[1], (float)s[2]}; size_to_mat4(m, size); } void dae_matrix_to_mat4(COLLADAFW::Transformation *tm, float m[][4]) { unit_converter->dae_matrix_to_mat4(m, ((COLLADAFW::Matrix*)tm)->getMatrix()); } void dae_translate_to_v3(COLLADAFW::Transformation *tm, float v[3]) { dae_vector3_to_v3(((COLLADAFW::Translate*)tm)->getTranslation(), v); } void dae_scale_to_v3(COLLADAFW::Transformation *tm, float v[3]) { dae_vector3_to_v3(((COLLADAFW::Scale*)tm)->getScale(), v); } void dae_vector3_to_v3(const COLLADABU::Math::Vector3 &v3, float v[3]) { v[0] = v3.x; v[1] = v3.y; v[2] = v3.z; } }; // only for ArmatureImporter to "see" MeshImporter::get_object_by_geom_uid class MeshImporterBase { public: virtual Object *get_object_by_geom_uid(const COLLADAFW::UniqueId& geom_uid) = 0; }; // ditto as above class AnimationImporterBase { public: // virtual void change_eul_to_quat(Object *ob, bAction *act) = 0; }; class ArmatureImporter : private TransformReader { private: Scene *scene; UnitConverter *unit_converter; // std::map joint_index_to_joint_info_map; // std::map joint_id_to_joint_index_map; struct LeafBone { // COLLADAFW::Node *node; EditBone *bone; char name[32]; float mat[4][4]; // bone matrix, derived from inv_bind_mat }; std::vector leaf_bones; // int bone_direction_row; // XXX not used float leaf_bone_length; int totbone; // XXX not used // float min_angle; // minimum angle between bone head-tail and a row of bone matrix #if 0 struct ArmatureJoints { Object *ob_arm; std::vector root_joints; }; std::vector armature_joints; #endif Object *empty; // empty for leaf bones std::map geom_uid_by_controller_uid; std::map joint_by_uid; // contains all joints std::vector root_joints; std::vector armature_objects; MeshImporterBase *mesh_importer; AnimationImporterBase *anim_importer; // This is used to store data passed in write_controller_data. // Arrays from COLLADAFW::SkinControllerData lose ownership, so do this class members // so that arrays don't get freed until we free them explicitly. class SkinInfo { private: // to build armature bones from inverse bind matrices struct JointData { float inv_bind_mat[4][4]; // joint inverse bind matrix COLLADAFW::UniqueId joint_uid; // joint node UID // Object *ob_arm; // armature object }; float bind_shape_matrix[4][4]; // data from COLLADAFW::SkinControllerData, each array should be freed COLLADAFW::UIntValuesArray joints_per_vertex; COLLADAFW::UIntValuesArray weight_indices; COLLADAFW::IntValuesArray joint_indices; // COLLADAFW::FloatOrDoubleArray weights; std::vector weights; std::vector joint_data; // index to this vector is joint index UnitConverter *unit_converter; Object *ob_arm; COLLADAFW::UniqueId controller_uid; public: SkinInfo() {} SkinInfo(const SkinInfo& skin) : weights(skin.weights), joint_data(skin.joint_data), unit_converter(skin.unit_converter), ob_arm(skin.ob_arm), controller_uid(skin.controller_uid) { copy_m4_m4(bind_shape_matrix, (float (*)[4])skin.bind_shape_matrix); transfer_uint_array_data_const(skin.joints_per_vertex, joints_per_vertex); transfer_uint_array_data_const(skin.weight_indices, weight_indices); transfer_int_array_data_const(skin.joint_indices, joint_indices); } SkinInfo(UnitConverter *conv) : unit_converter(conv), ob_arm(NULL) {} // nobody owns the data after this, so it should be freed manually with releaseMemory template void transfer_array_data(T& src, T& dest) { dest.setData(src.getData(), src.getCount()); src.yieldOwnerShip(); dest.yieldOwnerShip(); } // when src is const we cannot src.yieldOwnerShip, this is used by copy constructor void transfer_int_array_data_const(const COLLADAFW::IntValuesArray& src, COLLADAFW::IntValuesArray& dest) { dest.setData((int*)src.getData(), src.getCount()); dest.yieldOwnerShip(); } void transfer_uint_array_data_const(const COLLADAFW::UIntValuesArray& src, COLLADAFW::UIntValuesArray& dest) { dest.setData((unsigned int*)src.getData(), src.getCount()); dest.yieldOwnerShip(); } void borrow_skin_controller_data(const COLLADAFW::SkinControllerData* skin) { transfer_array_data((COLLADAFW::UIntValuesArray&)skin->getJointsPerVertex(), joints_per_vertex); transfer_array_data((COLLADAFW::UIntValuesArray&)skin->getWeightIndices(), weight_indices); transfer_array_data((COLLADAFW::IntValuesArray&)skin->getJointIndices(), joint_indices); // transfer_array_data(skin->getWeights(), weights); // cannot transfer data for FloatOrDoubleArray, copy values manually const COLLADAFW::FloatOrDoubleArray& weight = skin->getWeights(); for (unsigned int i = 0; i < weight.getValuesCount(); i++) weights.push_back(get_float_value(weight, i)); unit_converter->dae_matrix_to_mat4(bind_shape_matrix, skin->getBindShapeMatrix()); } void free() { joints_per_vertex.releaseMemory(); weight_indices.releaseMemory(); joint_indices.releaseMemory(); // weights.releaseMemory(); } // using inverse bind matrices to construct armature // it is safe to invert them to get the original matrices // because if they are inverse matrices, they can be inverted void add_joint(const COLLADABU::Math::Matrix4& matrix) { JointData jd; unit_converter->dae_matrix_to_mat4(jd.inv_bind_mat, matrix); joint_data.push_back(jd); } // called from write_controller Object *create_armature(const COLLADAFW::SkinController* co, Scene *scene) { ob_arm = add_object(scene, OB_ARMATURE); controller_uid = co->getUniqueId(); const COLLADAFW::UniqueIdArray& joint_uids = co->getJoints(); for (unsigned int i = 0; i < joint_uids.getCount(); i++) { joint_data[i].joint_uid = joint_uids[i]; // // store armature pointer // JointData& jd = joint_index_to_joint_info_map[i]; // jd.ob_arm = ob_arm; // now we'll be able to get inv bind matrix from joint id // joint_id_to_joint_index_map[joint_ids[i]] = i; } return ob_arm; } bool get_joint_inv_bind_matrix(float inv_bind_mat[][4], COLLADAFW::Node *node) { const COLLADAFW::UniqueId& uid = node->getUniqueId(); std::vector::iterator it; for (it = joint_data.begin(); it != joint_data.end(); it++) { if ((*it).joint_uid == uid) { copy_m4_m4(inv_bind_mat, (*it).inv_bind_mat); return true; } } return false; } Object *get_armature() { return ob_arm; } const COLLADAFW::UniqueId& get_controller_uid() { return controller_uid; } // some nodes may not be referenced by SkinController, // in this case to determine if the node belongs to this armature, // we need to search down the tree bool uses_joint(COLLADAFW::Node *node) { const COLLADAFW::UniqueId& uid = node->getUniqueId(); std::vector::iterator it; for (it = joint_data.begin(); it != joint_data.end(); it++) { if ((*it).joint_uid == uid) return true; } COLLADAFW::NodePointerArray& children = node->getChildNodes(); for (unsigned int i = 0; i < children.getCount(); i++) { if (this->uses_joint(children[i])) return true; } return false; } void link_armature(bContext *C, Object *ob, std::map& joint_by_uid, TransformReader *tm) { Object workob; Scene *scene = CTX_data_scene(C); ModifierData *md = ED_object_modifier_add(NULL, scene, ob, NULL, eModifierType_Armature); ((ArmatureModifierData *)md)->object = ob_arm; tm->decompose(bind_shape_matrix, ob->loc, ob->rot, NULL, ob->size); ob->parent = ob_arm; ob->partype = PAROBJECT; what_does_parent(scene, ob, &workob); invert_m4_m4(ob->parentinv, workob.obmat); ob->recalc |= OB_RECALC_OB|OB_RECALC_DATA; ((bArmature*)ob_arm->data)->deformflag = ARM_DEF_VGROUP; // create all vertex groups std::vector::iterator it; int joint_index; for (it = joint_data.begin(), joint_index = 0; it != joint_data.end(); it++, joint_index++) { const char *name = "Group"; // name group by joint node name if (joint_by_uid.find((*it).joint_uid) != joint_by_uid.end()) { name = get_joint_name(joint_by_uid[(*it).joint_uid]); } ED_vgroup_add_name(ob, (char*)name); } // - number of joints per vertex - joints_per_vertex // - [[bone index, weight index] * joints per vertex] * vertices - weight indices // ^ bone index can be -1 meaning weight toward bind shape, how to express this in Blender? // for each vertex in weight indices // for each bone index in vertex // add vertex to group at group index // treat group index -1 specially // get def group by index with BLI_findlink for (unsigned int vertex = 0, weight = 0; vertex < joints_per_vertex.getCount(); vertex++) { unsigned int limit = weight + joints_per_vertex[vertex]; for ( ; weight < limit; weight++) { int joint = joint_indices[weight], joint_weight = weight_indices[weight]; // -1 means "weight towards the bind shape", we just don't assign it to any group if (joint != -1) { bDeformGroup *def = (bDeformGroup*)BLI_findlink(&ob->defbase, joint); ED_vgroup_vert_add(ob, def, vertex, weights[joint_weight], WEIGHT_REPLACE); } } } DAG_scene_sort(scene); DAG_ids_flush_update(0); WM_event_add_notifier(C, NC_OBJECT|ND_TRANSFORM, NULL); } bPoseChannel *get_pose_channel_from_node(COLLADAFW::Node *node) { return get_pose_channel(ob_arm->pose, get_joint_name(node)); } }; std::map skin_by_data_uid; // data UID = skin controller data UID #if 0 JointData *get_joint_data(COLLADAFW::Node *node) { const COLLADAFW::UniqueId& joint_id = node->getUniqueId(); if (joint_id_to_joint_index_map.find(joint_id) == joint_id_to_joint_index_map.end()) { fprintf(stderr, "Cannot find a joint index by joint id for %s.\n", node->getOriginalId().c_str()); return NULL; } int joint_index = joint_id_to_joint_index_map[joint_id]; return &joint_index_to_joint_info_map[joint_index]; } #endif void create_bone(SkinInfo& skin, COLLADAFW::Node *node, EditBone *parent, int totchild, float parent_mat[][4], bArmature *arm) { float joint_inv_bind_mat[4][4]; // JointData* jd = get_joint_data(node); float mat[4][4]; if (skin.get_joint_inv_bind_matrix(joint_inv_bind_mat, node)) { // get original world-space matrix invert_m4_m4(mat, joint_inv_bind_mat); } // create a bone even if there's no joint data for it (i.e. it has no influence) else { float obmat[4][4]; // object-space get_node_mat(obmat, node, NULL, NULL); // get world-space if (parent) mul_m4_m4m4(mat, obmat, parent_mat); else copy_m4_m4(mat, obmat); } // TODO rename from Node "name" attrs later EditBone *bone = ED_armature_edit_bone_add(arm, (char*)get_joint_name(node)); totbone++; if (parent) bone->parent = parent; // set head copy_v3_v3(bone->head, mat[3]); // set tail, don't set it to head because 0-length bones are not allowed float vec[3] = {0.0f, 0.5f, 0.0f}; add_v3_v3v3(bone->tail, bone->head, vec); // set parent tail if (parent && totchild == 1) { copy_v3_v3(parent->tail, bone->head); // not setting BONE_CONNECTED because this would lock child bone location with respect to parent // bone->flag |= BONE_CONNECTED; // XXX increase this to prevent "very" small bones? const float epsilon = 0.000001f; // derive leaf bone length float length = len_v3v3(parent->head, parent->tail); if ((length < leaf_bone_length || totbone == 0) && length > epsilon) { leaf_bone_length = length; } // treat zero-sized bone like a leaf bone if (length <= epsilon) { add_leaf_bone(parent_mat, parent); } /* #if 0 // and which row in mat is bone direction float vec[3]; sub_v3_v3v3(vec, parent->tail, parent->head); #ifdef COLLADA_DEBUG print_v3("tail - head", vec); print_m4("matrix", parent_mat); #endif for (int i = 0; i < 3; i++) { #ifdef COLLADA_DEBUG char *axis_names[] = {"X", "Y", "Z"}; printf("%s-axis length is %f\n", axis_names[i], len_v3(parent_mat[i])); #endif float angle = angle_v2v2(vec, parent_mat[i]); if (angle < min_angle) { #ifdef COLLADA_DEBUG print_v3("picking", parent_mat[i]); printf("^ %s axis of %s's matrix\n", axis_names[i], get_dae_name(node)); #endif bone_direction_row = i; min_angle = angle; } } #endif */ } COLLADAFW::NodePointerArray& children = node->getChildNodes(); for (unsigned int i = 0; i < children.getCount(); i++) { create_bone(skin, children[i], bone, children.getCount(), mat, arm); } // in second case it's not a leaf bone, but we handle it the same way if (!children.getCount() || children.getCount() > 1) { add_leaf_bone(mat, bone); } } void add_leaf_bone(float mat[][4], EditBone *bone) { LeafBone leaf; leaf.bone = bone; copy_m4_m4(leaf.mat, mat); BLI_strncpy(leaf.name, bone->name, sizeof(leaf.name)); leaf_bones.push_back(leaf); } void fix_leaf_bones() { // just setting tail for leaf bones here std::vector::iterator it; for (it = leaf_bones.begin(); it != leaf_bones.end(); it++) { LeafBone& leaf = *it; // pointing up float vec[3] = {0.0f, 0.0f, 1.0f}; mul_v3_fl(vec, leaf_bone_length); copy_v3_v3(leaf.bone->tail, leaf.bone->head); add_v3_v3v3(leaf.bone->tail, leaf.bone->head, vec); } } void set_leaf_bone_shapes(Object *ob_arm) { bPose *pose = ob_arm->pose; std::vector::iterator it; for (it = leaf_bones.begin(); it != leaf_bones.end(); it++) { LeafBone& leaf = *it; bPoseChannel *pchan = get_pose_channel(pose, leaf.name); if (pchan) { pchan->custom = get_empty_for_leaves(); } else { fprintf(stderr, "Cannot find a pose channel for leaf bone %s\n", leaf.name); } } } #if 0 void set_euler_rotmode() { // just set rotmode = ROT_MODE_EUL on pose channel for each joint std::map::iterator it; for (it = joint_by_uid.begin(); it != joint_by_uid.end(); it++) { COLLADAFW::Node *joint = it->second; std::map::iterator sit; for (sit = skin_by_data_uid.begin(); sit != skin_by_data_uid.end(); sit++) { SkinInfo& skin = sit->second; if (skin.uses_joint(joint)) { bPoseChannel *pchan = skin.get_pose_channel_from_node(joint); if (pchan) { pchan->rotmode = ROT_MODE_EUL; } else { fprintf(stderr, "Cannot find pose channel for %s.\n", get_joint_name(joint)); } break; } } } } #endif Object *get_empty_for_leaves() { if (empty) return empty; empty = add_object(scene, OB_EMPTY); empty->empty_drawtype = OB_EMPTY_SPHERE; return empty; } #if 0 Object *find_armature(COLLADAFW::Node *node) { JointData* jd = get_joint_data(node); if (jd) return jd->ob_arm; COLLADAFW::NodePointerArray& children = node->getChildNodes(); for (int i = 0; i < children.getCount(); i++) { Object *ob_arm = find_armature(children[i]); if (ob_arm) return ob_arm; } return NULL; } ArmatureJoints& get_armature_joints(Object *ob_arm) { // try finding it std::vector::iterator it; for (it = armature_joints.begin(); it != armature_joints.end(); it++) { if ((*it).ob_arm == ob_arm) return *it; } // not found, create one ArmatureJoints aj; aj.ob_arm = ob_arm; armature_joints.push_back(aj); return armature_joints.back(); } #endif void create_armature_bones(SkinInfo& skin) { // just do like so: // - get armature // - enter editmode // - add edit bones and head/tail properties using matrices and parent-child info // - exit edit mode // - set a sphere shape to leaf bones Object *ob_arm = skin.get_armature(); // enter armature edit mode ED_armature_to_edit(ob_arm); leaf_bones.clear(); totbone = 0; // bone_direction_row = 1; // TODO: don't default to Y but use asset and based on it decide on default row leaf_bone_length = 0.1f; // min_angle = 360.0f; // minimum angle between bone head-tail and a row of bone matrix // create bones std::vector::iterator it; for (it = root_joints.begin(); it != root_joints.end(); it++) { // since root_joints may contain joints for multiple controllers, we need to filter if (skin.uses_joint(*it)) { create_bone(skin, *it, NULL, (*it)->getChildNodes().getCount(), NULL, (bArmature*)ob_arm->data); } } fix_leaf_bones(); // exit armature edit mode ED_armature_from_edit(ob_arm); ED_armature_edit_free(ob_arm); DAG_id_flush_update(&ob_arm->id, OB_RECALC_OB|OB_RECALC_DATA); set_leaf_bone_shapes(ob_arm); // set_euler_rotmode(); } public: ArmatureImporter(UnitConverter *conv, MeshImporterBase *mesh, AnimationImporterBase *anim, Scene *sce) : TransformReader(conv), scene(sce), empty(NULL), mesh_importer(mesh), anim_importer(anim) {} ~ArmatureImporter() { // free skin controller data if we forget to do this earlier std::map::iterator it; for (it = skin_by_data_uid.begin(); it != skin_by_data_uid.end(); it++) { it->second.free(); } } // root - if this joint is the top joint in hierarchy, if a joint // is a child of a node (not joint), root should be true since // this is where we build armature bones from void add_joint(COLLADAFW::Node *node, bool root) { joint_by_uid[node->getUniqueId()] = node; if (root) root_joints.push_back(node); } #if 0 void add_root_joint(COLLADAFW::Node *node) { // root_joints.push_back(node); Object *ob_arm = find_armature(node); if (ob_arm) { get_armature_joints(ob_arm).root_joints.push_back(node); } #ifdef COLLADA_DEBUG else { fprintf(stderr, "%s cannot be added to armature.\n", get_joint_name(node)); } #endif } #endif // here we add bones to armatures, having armatures previously created in write_controller void make_armatures(bContext *C) { std::map::iterator it; for (it = skin_by_data_uid.begin(); it != skin_by_data_uid.end(); it++) { SkinInfo& skin = it->second; create_armature_bones(skin); // link armature with an object Object *ob = mesh_importer->get_object_by_geom_uid(*get_geometry_uid(skin.get_controller_uid())); if (ob) { skin.link_armature(C, ob, joint_by_uid, this); } else { fprintf(stderr, "Cannot find object to link armature with.\n"); } // free memory stolen from SkinControllerData skin.free(); } } #if 0 // link with meshes, create vertex groups, assign weights void link_armature(Object *ob_arm, const COLLADAFW::UniqueId& geom_id, const COLLADAFW::UniqueId& controller_data_id) { Object *ob = mesh_importer->get_object_by_geom_uid(geom_id); if (!ob) { fprintf(stderr, "Cannot find object by geometry UID.\n"); return; } if (skin_by_data_uid.find(controller_data_id) == skin_by_data_uid.end()) { fprintf(stderr, "Cannot find skin info by controller data UID.\n"); return; } SkinInfo& skin = skin_by_data_uid[conroller_data_id]; // create vertex groups } #endif bool write_skin_controller_data(const COLLADAFW::SkinControllerData* data) { // at this stage we get vertex influence info that should go into me->verts and ob->defbase // there's no info to which object this should be long so we associate it with skin controller data UID // don't forget to call defgroup_unique_name before we copy // controller data uid -> [armature] -> joint data, // [mesh object] // SkinInfo skin(unit_converter); skin.borrow_skin_controller_data(data); // store join inv bind matrix to use it later in armature construction const COLLADAFW::Matrix4Array& inv_bind_mats = data->getInverseBindMatrices(); for (unsigned int i = 0; i < data->getJointsCount(); i++) { skin.add_joint(inv_bind_mats[i]); } skin_by_data_uid[data->getUniqueId()] = skin; return true; } bool write_controller(const COLLADAFW::Controller* controller) { // - create and store armature object const COLLADAFW::UniqueId& skin_id = controller->getUniqueId(); if (controller->getControllerType() == COLLADAFW::Controller::CONTROLLER_TYPE_SKIN) { COLLADAFW::SkinController *co = (COLLADAFW::SkinController*)controller; // to find geom id by controller id geom_uid_by_controller_uid[skin_id] = co->getSource(); const COLLADAFW::UniqueId& data_uid = co->getSkinControllerData(); if (skin_by_data_uid.find(data_uid) == skin_by_data_uid.end()) { fprintf(stderr, "Cannot find skin by controller data UID.\n"); return true; } Object *ob_arm = skin_by_data_uid[data_uid].create_armature(co, scene); armature_objects.push_back(ob_arm); } // morph controller else { // shape keys? :) fprintf(stderr, "Morph controller is not supported yet.\n"); } return true; } COLLADAFW::UniqueId *get_geometry_uid(const COLLADAFW::UniqueId& controller_uid) { if (geom_uid_by_controller_uid.find(controller_uid) == geom_uid_by_controller_uid.end()) return NULL; return &geom_uid_by_controller_uid[controller_uid]; } Object *get_armature_for_joint(COLLADAFW::Node *node) { std::map::iterator it; for (it = skin_by_data_uid.begin(); it != skin_by_data_uid.end(); it++) { SkinInfo& skin = it->second; if (skin.uses_joint(node)) return skin.get_armature(); } return NULL; } void get_rna_path_for_joint(COLLADAFW::Node *node, char *joint_path, size_t count) { BLI_snprintf(joint_path, count, "pose.bones[\"%s\"]", get_joint_name(node)); } #if 0 void fix_animation() { /* Change Euler rotation to Quaternion for bone animation */ std::vector::iterator it; for (it = armature_objects.begin(); it != armature_objects.end(); it++) { Object *ob = *it; if (!ob || !ob->adt || !ob->adt->action) continue; anim_importer->change_eul_to_quat(ob, ob->adt->action); } } #endif // gives a world-space mat bool get_joint_bind_mat(float m[][4], COLLADAFW::Node *joint) { std::map::iterator it; bool found = false; for (it = skin_by_data_uid.begin(); it != skin_by_data_uid.end(); it++) { SkinInfo& skin = it->second; if ((found = skin.get_joint_inv_bind_matrix(m, joint))) { invert_m4(m); break; } } return found; } }; class MeshImporter : public MeshImporterBase { private: Scene *scene; ArmatureImporter *armature_importer; std::map uid_mesh_map; // geometry unique id-to-mesh map std::map uid_object_map; // geom uid-to-object // this structure is used to assign material indices to faces // it holds a portion of Mesh faces and corresponds to a DAE primitive list (, , etc.) struct Primitive { MFace *mface; unsigned int totface; }; typedef std::map > MaterialIdPrimitiveArrayMap; std::map geom_uid_mat_mapping_map; // crazy name! class UVDataWrapper { COLLADAFW::MeshVertexData *mVData; public: UVDataWrapper(COLLADAFW::MeshVertexData& vdata) : mVData(&vdata) {} #ifdef COLLADA_DEBUG void print() { fprintf(stderr, "UVs:\n"); switch(mVData->getType()) { case COLLADAFW::MeshVertexData::DATA_TYPE_FLOAT: { COLLADAFW::ArrayPrimitiveType* values = mVData->getFloatValues(); if (values->getCount()) { for (int i = 0; i < values->getCount(); i += 2) { fprintf(stderr, "%.1f, %.1f\n", (*values)[i], (*values)[i+1]); } } } break; case COLLADAFW::MeshVertexData::DATA_TYPE_DOUBLE: { COLLADAFW::ArrayPrimitiveType* values = mVData->getDoubleValues(); if (values->getCount()) { for (int i = 0; i < values->getCount(); i += 2) { fprintf(stderr, "%.1f, %.1f\n", (float)(*values)[i], (float)(*values)[i+1]); } } } break; } fprintf(stderr, "\n"); } #endif void getUV(int uv_set_index, int uv_index[2], float *uv) { switch(mVData->getType()) { case COLLADAFW::MeshVertexData::DATA_TYPE_FLOAT: { COLLADAFW::ArrayPrimitiveType* values = mVData->getFloatValues(); if (values->empty()) return; uv[0] = (*values)[uv_index[0]]; uv[1] = (*values)[uv_index[1]]; } break; case COLLADAFW::MeshVertexData::DATA_TYPE_DOUBLE: { COLLADAFW::ArrayPrimitiveType* values = mVData->getDoubleValues(); if (values->empty()) return; uv[0] = (float)(*values)[uv_index[0]]; uv[1] = (float)(*values)[uv_index[1]]; } break; case COLLADAFW::MeshVertexData::DATA_TYPE_UNKNOWN: default: fprintf(stderr, "MeshImporter.getUV(): unknown data type\n"); } } }; void set_face_indices(MFace *mface, unsigned int *indices, bool quad) { mface->v1 = indices[0]; mface->v2 = indices[1]; mface->v3 = indices[2]; if (quad) mface->v4 = indices[3]; else mface->v4 = 0; #ifdef COLLADA_DEBUG // fprintf(stderr, "%u, %u, %u \n", indices[0], indices[1], indices[2]); #endif } // not used anymore, test_index_face from blenkernel is better #if 0 // change face indices order so that v4 is not 0 void rotate_face_indices(MFace *mface) { mface->v4 = mface->v1; mface->v1 = mface->v2; mface->v2 = mface->v3; mface->v3 = 0; } #endif void set_face_uv(MTFace *mtface, UVDataWrapper &uvs, int uv_set_index, COLLADAFW::IndexList& index_list, unsigned int *tris_indices) { int uv_indices[4][2]; // per face vertex indices, this means for quad we have 4 indices, not 8 COLLADAFW::UIntValuesArray& indices = index_list.getIndices(); // make indices into FloatOrDoubleArray for (int i = 0; i < 3; i++) { int uv_index = indices[tris_indices[i]]; uv_indices[i][0] = uv_index * 2; uv_indices[i][1] = uv_index * 2 + 1; } uvs.getUV(uv_set_index, uv_indices[0], mtface->uv[0]); uvs.getUV(uv_set_index, uv_indices[1], mtface->uv[1]); uvs.getUV(uv_set_index, uv_indices[2], mtface->uv[2]); } void set_face_uv(MTFace *mtface, UVDataWrapper &uvs, int uv_set_index, COLLADAFW::IndexList& index_list, int index, bool quad) { int uv_indices[4][2]; // per face vertex indices, this means for quad we have 4 indices, not 8 COLLADAFW::UIntValuesArray& indices = index_list.getIndices(); // make indices into FloatOrDoubleArray for (int i = 0; i < (quad ? 4 : 3); i++) { int uv_index = indices[index + i]; uv_indices[i][0] = uv_index * 2; uv_indices[i][1] = uv_index * 2 + 1; } uvs.getUV(uv_set_index, uv_indices[0], mtface->uv[0]); uvs.getUV(uv_set_index, uv_indices[1], mtface->uv[1]); uvs.getUV(uv_set_index, uv_indices[2], mtface->uv[2]); if (quad) uvs.getUV(uv_set_index, uv_indices[3], mtface->uv[3]); #ifdef COLLADA_DEBUG /*if (quad) { fprintf(stderr, "face uv:\n" "((%d, %d), (%d, %d), (%d, %d), (%d, %d))\n" "((%.1f, %.1f), (%.1f, %.1f), (%.1f, %.1f), (%.1f, %.1f))\n", uv_indices[0][0], uv_indices[0][1], uv_indices[1][0], uv_indices[1][1], uv_indices[2][0], uv_indices[2][1], uv_indices[3][0], uv_indices[3][1], mtface->uv[0][0], mtface->uv[0][1], mtface->uv[1][0], mtface->uv[1][1], mtface->uv[2][0], mtface->uv[2][1], mtface->uv[3][0], mtface->uv[3][1]); } else { fprintf(stderr, "face uv:\n" "((%d, %d), (%d, %d), (%d, %d))\n" "((%.1f, %.1f), (%.1f, %.1f), (%.1f, %.1f))\n", uv_indices[0][0], uv_indices[0][1], uv_indices[1][0], uv_indices[1][1], uv_indices[2][0], uv_indices[2][1], mtface->uv[0][0], mtface->uv[0][1], mtface->uv[1][0], mtface->uv[1][1], mtface->uv[2][0], mtface->uv[2][1]); }*/ #endif } #ifdef COLLADA_DEBUG void print_index_list(COLLADAFW::IndexList& index_list) { fprintf(stderr, "Index list for \"%s\":\n", index_list.getName().c_str()); for (int i = 0; i < index_list.getIndicesCount(); i += 2) { fprintf(stderr, "%u, %u\n", index_list.getIndex(i), index_list.getIndex(i + 1)); } fprintf(stderr, "\n"); } #endif bool is_nice_mesh(COLLADAFW::Mesh *mesh) { COLLADAFW::MeshPrimitiveArray& prim_arr = mesh->getMeshPrimitives(); const char *name = get_dae_name(mesh); for (unsigned i = 0; i < prim_arr.getCount(); i++) { COLLADAFW::MeshPrimitive *mp = prim_arr[i]; COLLADAFW::MeshPrimitive::PrimitiveType type = mp->getPrimitiveType(); const char *type_str = primTypeToStr(type); // OpenCollada passes POLYGONS type for if (type == COLLADAFW::MeshPrimitive::POLYLIST || type == COLLADAFW::MeshPrimitive::POLYGONS) { COLLADAFW::Polygons *mpvc = (COLLADAFW::Polygons*)mp; COLLADAFW::Polygons::VertexCountArray& vca = mpvc->getGroupedVerticesVertexCountArray(); for(unsigned int j = 0; j < vca.getCount(); j++){ int count = vca[j]; if (count < 3) { fprintf(stderr, "Primitive %s in %s has at least one face with vertex count < 3\n", type_str, name); return false; } } } else if(type != COLLADAFW::MeshPrimitive::TRIANGLES) { fprintf(stderr, "Primitive type %s is not supported.\n", type_str); return false; } } if (mesh->getPositions().empty()) { fprintf(stderr, "Mesh %s has no vertices.\n", name); return false; } return true; } void read_vertices(COLLADAFW::Mesh *mesh, Mesh *me) { // vertices me->totvert = mesh->getPositions().getFloatValues()->getCount() / 3; me->mvert = (MVert*)CustomData_add_layer(&me->vdata, CD_MVERT, CD_CALLOC, NULL, me->totvert); COLLADAFW::MeshVertexData& pos = mesh->getPositions(); MVert *mvert; int i; for (i = 0, mvert = me->mvert; i < me->totvert; i++, mvert++) get_vector(mvert->co, pos, i); } int triangulate_poly(unsigned int *indices, int totvert, MVert *verts, std::vector& tri) { ListBase dispbase; DispList *dl; float *vert; int i = 0; dispbase.first = dispbase.last = NULL; dl = (DispList*)MEM_callocN(sizeof(DispList), "poly disp"); dl->nr = totvert; dl->type = DL_POLY; dl->parts = 1; dl->verts = vert = (float*)MEM_callocN(totvert * 3 * sizeof(float), "poly verts"); dl->index = (int*)MEM_callocN(sizeof(int) * 3 * totvert, "dl index"); BLI_addtail(&dispbase, dl); for (i = 0; i < totvert; i++) { copy_v3_v3(vert, verts[indices[i]].co); vert += 3; } filldisplist(&dispbase, &dispbase); int tottri = 0; dl= (DispList*)dispbase.first; if (dl->type == DL_INDEX3) { tottri = dl->parts; int *index = dl->index; for (i= 0; i < tottri; i++) { int t[3]= {*index, *(index + 1), *(index + 2)}; std::sort(t, t + 3); tri.push_back(t[0]); tri.push_back(t[1]); tri.push_back(t[2]); index += 3; } } freedisplist(&dispbase); return tottri; } int count_new_tris(COLLADAFW::Mesh *mesh, Mesh *me) { COLLADAFW::MeshPrimitiveArray& prim_arr = mesh->getMeshPrimitives(); unsigned int i; int tottri = 0; for (i = 0; i < prim_arr.getCount(); i++) { COLLADAFW::MeshPrimitive *mp = prim_arr[i]; int type = mp->getPrimitiveType(); size_t prim_totface = mp->getFaceCount(); unsigned int *indices = mp->getPositionIndices().getData(); if (type == COLLADAFW::MeshPrimitive::POLYLIST || type == COLLADAFW::MeshPrimitive::POLYGONS) { COLLADAFW::Polygons *mpvc = (COLLADAFW::Polygons*)mp; COLLADAFW::Polygons::VertexCountArray& vcounta = mpvc->getGroupedVerticesVertexCountArray(); for (unsigned int j = 0; j < prim_totface; j++) { int vcount = vcounta[j]; if (vcount > 4) { std::vector tri; // tottri += triangulate_poly(indices, vcount, me->mvert, tri) - 1; // XXX why - 1?! tottri += triangulate_poly(indices, vcount, me->mvert, tri); } indices += vcount; } } } return tottri; } // TODO: import uv set names void read_faces(COLLADAFW::Mesh *mesh, Mesh *me, int new_tris) { unsigned int i; // allocate faces me->totface = mesh->getFacesCount() + new_tris; me->mface = (MFace*)CustomData_add_layer(&me->fdata, CD_MFACE, CD_CALLOC, NULL, me->totface); // allocate UV layers unsigned int totuvset = mesh->getUVCoords().getInputInfosArray().getCount(); for (i = 0; i < totuvset; i++) { CustomData_add_layer(&me->fdata, CD_MTFACE, CD_CALLOC, NULL, me->totface); //this->set_layername_map[i] = CustomData_get_layer_name(&me->fdata, CD_MTFACE, i); } // activate the first uv layer if (totuvset) me->mtface = (MTFace*)CustomData_get_layer_n(&me->fdata, CD_MTFACE, 0); UVDataWrapper uvs(mesh->getUVCoords()); #ifdef COLLADA_DEBUG // uvs.print(); #endif MFace *mface = me->mface; MaterialIdPrimitiveArrayMap mat_prim_map; int face_index = 0; COLLADAFW::MeshPrimitiveArray& prim_arr = mesh->getMeshPrimitives(); bool has_normals = mesh->hasNormals(); COLLADAFW::MeshVertexData& nor = mesh->getNormals(); for (i = 0; i < prim_arr.getCount(); i++) { COLLADAFW::MeshPrimitive *mp = prim_arr[i]; // faces size_t prim_totface = mp->getFaceCount(); unsigned int *indices = mp->getPositionIndices().getData(); unsigned int *nind = mp->getNormalIndices().getData(); unsigned int j, k; int type = mp->getPrimitiveType(); int index = 0; // since we cannot set mface->mat_nr here, we store a portion of me->mface in Primitive Primitive prim = {mface, 0}; COLLADAFW::IndexListArray& index_list_array = mp->getUVCoordIndicesArray(); #ifdef COLLADA_DEBUG /* fprintf(stderr, "Primitive %d:\n", i); for (int j = 0; j < totuvset; j++) { print_index_list(*index_list_array[j]); } */ #endif if (type == COLLADAFW::MeshPrimitive::TRIANGLES) { for (j = 0; j < prim_totface; j++){ set_face_indices(mface, indices, false); indices += 3; for (k = 0; k < totuvset; k++) { // get mtface by face index and uv set index MTFace *mtface = (MTFace*)CustomData_get_layer_n(&me->fdata, CD_MTFACE, k); set_face_uv(&mtface[face_index], uvs, k, *index_list_array[k], index, false); } test_index_face(mface, &me->fdata, face_index, 3); if (has_normals) { if (!flat_face(nind, nor, 3)) mface->flag |= ME_SMOOTH; nind += 3; } index += 3; mface++; face_index++; prim.totface++; } } else if (type == COLLADAFW::MeshPrimitive::POLYLIST || type == COLLADAFW::MeshPrimitive::POLYGONS) { COLLADAFW::Polygons *mpvc = (COLLADAFW::Polygons*)mp; COLLADAFW::Polygons::VertexCountArray& vcounta = mpvc->getGroupedVerticesVertexCountArray(); for (j = 0; j < prim_totface; j++) { // face int vcount = vcounta[j]; if (vcount == 3 || vcount == 4) { set_face_indices(mface, indices, vcount == 4); // set mtface for each uv set // it is assumed that all primitives have equal number of UV sets for (k = 0; k < totuvset; k++) { // get mtface by face index and uv set index MTFace *mtface = (MTFace*)CustomData_get_layer_n(&me->fdata, CD_MTFACE, k); set_face_uv(&mtface[face_index], uvs, k, *index_list_array[k], index, mface->v4 != 0); } test_index_face(mface, &me->fdata, face_index, vcount); if (has_normals) { if (!flat_face(nind, nor, vcount)) mface->flag |= ME_SMOOTH; nind += vcount; } mface++; face_index++; prim.totface++; } else { std::vector tri; triangulate_poly(indices, vcount, me->mvert, tri); for (k = 0; k < tri.size() / 3; k++) { int v = k * 3; unsigned int uv_indices[3] = { index + tri[v], index + tri[v + 1], index + tri[v + 2] }; unsigned int tri_indices[3] = { indices[tri[v]], indices[tri[v + 1]], indices[tri[v + 2]] }; set_face_indices(mface, tri_indices, false); for (unsigned int l = 0; l < totuvset; l++) { // get mtface by face index and uv set index MTFace *mtface = (MTFace*)CustomData_get_layer_n(&me->fdata, CD_MTFACE, l); set_face_uv(&mtface[face_index], uvs, l, *index_list_array[l], uv_indices); } test_index_face(mface, &me->fdata, face_index, 3); if (has_normals) { unsigned int ntri[3] = {nind[tri[v]], nind[tri[v + 1]], nind[tri[v + 2]]}; if (!flat_face(ntri, nor, 3)) mface->flag |= ME_SMOOTH; } mface++; face_index++; prim.totface++; } if (has_normals) nind += vcount; } index += vcount; indices += vcount; } } mat_prim_map[mp->getMaterialId()].push_back(prim); } geom_uid_mat_mapping_map[mesh->getUniqueId()] = mat_prim_map; } void get_vector(float v[3], COLLADAFW::MeshVertexData& arr, int i) { i *= 3; switch(arr.getType()) { case COLLADAFW::MeshVertexData::DATA_TYPE_FLOAT: { COLLADAFW::ArrayPrimitiveType* values = arr.getFloatValues(); if (values->empty()) return; v[0] = (*values)[i++]; v[1] = (*values)[i++]; v[2] = (*values)[i]; } break; case COLLADAFW::MeshVertexData::DATA_TYPE_DOUBLE: { COLLADAFW::ArrayPrimitiveType* values = arr.getDoubleValues(); if (values->empty()) return; v[0] = (float)(*values)[i++]; v[1] = (float)(*values)[i++]; v[2] = (float)(*values)[i]; } break; default: break; } } bool flat_face(unsigned int *nind, COLLADAFW::MeshVertexData& nor, int count) { float a[3], b[3]; get_vector(a, nor, *nind); normalize_v3(a); nind++; for (int i = 1; i < count; i++, nind++) { get_vector(b, nor, *nind); normalize_v3(b); float dp = dot_v3v3(a, b); if (dp < 0.99999f || dp > 1.00001f) return false; } return true; } public: MeshImporter(ArmatureImporter *arm, Scene *sce) : scene(sce), armature_importer(arm) {} virtual Object *get_object_by_geom_uid(const COLLADAFW::UniqueId& geom_uid) { if (uid_object_map.find(geom_uid) != uid_object_map.end()) return uid_object_map[geom_uid]; return NULL; } MTex *assign_textures_to_uvlayer(COLLADAFW::TextureCoordinateBinding &ctexture, Mesh *me, TexIndexTextureArrayMap& texindex_texarray_map, MTex *color_texture) { COLLADAFW::TextureMapId texture_index = ctexture.getTextureMapId(); char *uvname = CustomData_get_layer_name(&me->fdata, CD_MTFACE, ctexture.getSetIndex()); if (texindex_texarray_map.find(texture_index) == texindex_texarray_map.end()) { fprintf(stderr, "Cannot find texture array by texture index.\n"); return color_texture; } std::vector textures = texindex_texarray_map[texture_index]; std::vector::iterator it; for (it = textures.begin(); it != textures.end(); it++) { MTex *texture = *it; if (texture) { strcpy(texture->uvname, uvname); if (texture->mapto == MAP_COL) color_texture = texture; } } return color_texture; } MTFace *assign_material_to_geom(COLLADAFW::MaterialBinding cmaterial, std::map& uid_material_map, Object *ob, const COLLADAFW::UniqueId *geom_uid, MTex **color_texture, char *layername, MTFace *texture_face, std::map& material_texture_mapping_map, int mat_index) { Mesh *me = (Mesh*)ob->data; const COLLADAFW::UniqueId& ma_uid = cmaterial.getReferencedMaterial(); // do we know this material? if (uid_material_map.find(ma_uid) == uid_material_map.end()) { fprintf(stderr, "Cannot find material by UID.\n"); return NULL; } Material *ma = uid_material_map[ma_uid]; assign_material(ob, ma, ob->totcol + 1); COLLADAFW::TextureCoordinateBindingArray& tex_array = cmaterial.getTextureCoordinateBindingArray(); TexIndexTextureArrayMap texindex_texarray_map = material_texture_mapping_map[ma]; unsigned int i; // loop through for (i = 0; i < tex_array.getCount(); i++) { *color_texture = assign_textures_to_uvlayer(tex_array[i], me, texindex_texarray_map, *color_texture); } // set texture face if (*color_texture && strlen((*color_texture)->uvname) && strcmp(layername, (*color_texture)->uvname) != 0) { texture_face = (MTFace*)CustomData_get_layer_named(&me->fdata, CD_MTFACE, (*color_texture)->uvname); strcpy(layername, (*color_texture)->uvname); } MaterialIdPrimitiveArrayMap& mat_prim_map = geom_uid_mat_mapping_map[*geom_uid]; COLLADAFW::MaterialId mat_id = cmaterial.getMaterialId(); // assign material indices to mesh faces if (mat_prim_map.find(mat_id) != mat_prim_map.end()) { std::vector& prims = mat_prim_map[mat_id]; std::vector::iterator it; for (it = prims.begin(); it != prims.end(); it++) { Primitive& prim = *it; i = 0; while (i++ < prim.totface) { prim.mface->mat_nr = mat_index; prim.mface++; // bind texture images to faces if (texture_face && (*color_texture)) { texture_face->mode = TF_TEX; texture_face->tpage = (Image*)(*color_texture)->tex->ima; texture_face++; } } } } return texture_face; } Object *create_mesh_object(COLLADAFW::Node *node, COLLADAFW::InstanceGeometry *geom, bool isController, std::map& uid_material_map, std::map& material_texture_mapping_map) { const COLLADAFW::UniqueId *geom_uid = &geom->getInstanciatedObjectId(); // check if node instanciates controller or geometry if (isController) { geom_uid = armature_importer->get_geometry_uid(*geom_uid); if (!geom_uid) { fprintf(stderr, "Couldn't find a mesh UID by controller's UID.\n"); return NULL; } } else { if (uid_mesh_map.find(*geom_uid) == uid_mesh_map.end()) { // this could happen if a mesh was not created // (e.g. if it contains unsupported geometry) fprintf(stderr, "Couldn't find a mesh by UID.\n"); return NULL; } } if (!uid_mesh_map[*geom_uid]) return NULL; Object *ob = add_object(scene, OB_MESH); // store object pointer for ArmatureImporter uid_object_map[*geom_uid] = ob; // name Object const std::string& id = node->getOriginalId(); if (id.length()) rename_id(&ob->id, (char*)id.c_str()); // replace ob->data freeing the old one Mesh *old_mesh = (Mesh*)ob->data; set_mesh(ob, uid_mesh_map[*geom_uid]); if (old_mesh->id.us == 0) free_libblock(&G.main->mesh, old_mesh); char layername[100]; MTFace *texture_face = NULL; MTex *color_texture = NULL; COLLADAFW::MaterialBindingArray& mat_array = geom->getMaterialBindings(); // loop through geom's materials for (unsigned int i = 0; i < mat_array.getCount(); i++) { texture_face = assign_material_to_geom(mat_array[i], uid_material_map, ob, geom_uid, &color_texture, layername, texture_face, material_texture_mapping_map, i); } return ob; } // create a mesh storing a pointer in a map so it can be retrieved later by geometry UID bool write_geometry(const COLLADAFW::Geometry* geom) { // TODO: import also uvs, normals // XXX what to do with normal indices? // XXX num_normals may be != num verts, then what to do? // check geometry->getType() first if (geom->getType() != COLLADAFW::Geometry::GEO_TYPE_MESH) { // TODO: report warning fprintf(stderr, "Mesh type %s is not supported\n", geomTypeToStr(geom->getType())); return true; } COLLADAFW::Mesh *mesh = (COLLADAFW::Mesh*)geom; if (!is_nice_mesh(mesh)) { fprintf(stderr, "Ignoring mesh %s\n", get_dae_name(mesh)); return true; } const std::string& str_geom_id = mesh->getOriginalId(); Mesh *me = add_mesh((char*)str_geom_id.c_str()); // store the Mesh pointer to link it later with an Object this->uid_mesh_map[mesh->getUniqueId()] = me; int new_tris = 0; read_vertices(mesh, me); new_tris = count_new_tris(mesh, me); read_faces(mesh, me, new_tris); make_edges(me, 0); mesh_calc_normals(me->mvert, me->totvert, me->mface, me->totface, NULL); return true; } }; class AnimationImporter : private TransformReader, public AnimationImporterBase { private: ArmatureImporter *armature_importer; Scene *scene; std::map > curve_map; std::map uid_animated_map; // std::map > fcurves_actionGroup_map; std::map animlist_map; std::vector unused_curves; std::map joint_objects; FCurve *create_fcurve(int array_index, const char *rna_path) { FCurve *fcu = (FCurve*)MEM_callocN(sizeof(FCurve), "FCurve"); fcu->flag = (FCURVE_VISIBLE|FCURVE_AUTO_HANDLES|FCURVE_SELECTED); fcu->rna_path = BLI_strdupn(rna_path, strlen(rna_path)); fcu->array_index = array_index; return fcu; } void create_bezt(FCurve *fcu, float frame, float output) { BezTriple bez; memset(&bez, 0, sizeof(BezTriple)); bez.vec[1][0] = frame; bez.vec[1][1] = output; bez.ipo = U.ipo_new; /* use default interpolation mode here... */ bez.f1 = bez.f2 = bez.f3 = SELECT; bez.h1 = bez.h2 = HD_AUTO; insert_bezt_fcurve(fcu, &bez, 0); calchandles_fcurve(fcu); } // create one or several fcurves depending on the number of parameters being animated void animation_to_fcurves(COLLADAFW::AnimationCurve *curve) { COLLADAFW::FloatOrDoubleArray& input = curve->getInputValues(); COLLADAFW::FloatOrDoubleArray& output = curve->getOutputValues(); // COLLADAFW::FloatOrDoubleArray& intan = curve->getInTangentValues(); // COLLADAFW::FloatOrDoubleArray& outtan = curve->getOutTangentValues(); float fps = (float)FPS; size_t dim = curve->getOutDimension(); unsigned int i; std::vector& fcurves = curve_map[curve->getUniqueId()]; if (dim == 1) { FCurve *fcu = (FCurve*)MEM_callocN(sizeof(FCurve), "FCurve"); fcu->flag = (FCURVE_VISIBLE|FCURVE_AUTO_HANDLES|FCURVE_SELECTED); // fcu->rna_path = BLI_strdupn(path, strlen(path)); fcu->array_index = 0; //fcu->totvert = curve->getKeyCount(); // create beztriple for each key for (i = 0; i < curve->getKeyCount(); i++) { BezTriple bez; memset(&bez, 0, sizeof(BezTriple)); // intangent // bez.vec[0][0] = get_float_value(intan, i + i) * fps; // bez.vec[0][1] = get_float_value(intan, i + i + 1); // input, output bez.vec[1][0] = get_float_value(input, i) * fps; bez.vec[1][1] = get_float_value(output, i); // outtangent // bez.vec[2][0] = get_float_value(outtan, i + i) * fps; // bez.vec[2][1] = get_float_value(outtan, i + i + 1); bez.ipo = U.ipo_new; /* use default interpolation mode here... */ bez.f1 = bez.f2 = bez.f3 = SELECT; bez.h1 = bez.h2 = HD_AUTO; insert_bezt_fcurve(fcu, &bez, 0); } calchandles_fcurve(fcu); fcurves.push_back(fcu); } else if(dim == 3) { for (i = 0; i < dim; i++ ) { FCurve *fcu = (FCurve*)MEM_callocN(sizeof(FCurve), "FCurve"); fcu->flag = (FCURVE_VISIBLE|FCURVE_AUTO_HANDLES|FCURVE_SELECTED); // fcu->rna_path = BLI_strdupn(path, strlen(path)); fcu->array_index = 0; //fcu->totvert = curve->getKeyCount(); // create beztriple for each key for (unsigned int j = 0; j < curve->getKeyCount(); j++) { BezTriple bez; memset(&bez, 0, sizeof(BezTriple)); // intangent // bez.vec[0][0] = get_float_value(intan, j * 6 + i + i) * fps; // bez.vec[0][1] = get_float_value(intan, j * 6 + i + i + 1); // input, output bez.vec[1][0] = get_float_value(input, j) * fps; bez.vec[1][1] = get_float_value(output, j * 3 + i); // outtangent // bez.vec[2][0] = get_float_value(outtan, j * 6 + i + i) * fps; // bez.vec[2][1] = get_float_value(outtan, j * 6 + i + i + 1); bez.ipo = U.ipo_new; /* use default interpolation mode here... */ bez.f1 = bez.f2 = bez.f3 = SELECT; bez.h1 = bez.h2 = HD_AUTO; insert_bezt_fcurve(fcu, &bez, 0); } calchandles_fcurve(fcu); fcurves.push_back(fcu); } } for (std::vector::iterator it = fcurves.begin(); it != fcurves.end(); it++) unused_curves.push_back(*it); } void fcurve_deg_to_rad(FCurve *cu) { for (unsigned int i = 0; i < cu->totvert; i++) { // TODO convert handles too cu->bezt[i].vec[1][1] *= M_PI / 180.0f; } } void add_fcurves_to_object(Object *ob, std::vector& curves, char *rna_path, int array_index, Animation *animated) { bAction *act; if (!ob->adt || !ob->adt->action) act = verify_adt_action((ID*)&ob->id, 1); else act = ob->adt->action; std::vector::iterator it; int i; #if 0 char *p = strstr(rna_path, "rotation_euler"); bool is_rotation = p && *(p + strlen("rotation_euler")) == '\0'; // convert degrees to radians for rotation if (is_rotation) fcurve_deg_to_rad(fcu); #endif for (it = curves.begin(), i = 0; it != curves.end(); it++, i++) { FCurve *fcu = *it; fcu->rna_path = BLI_strdupn(rna_path, strlen(rna_path)); if (array_index == -1) fcu->array_index = i; else fcu->array_index = array_index; if (ob->type == OB_ARMATURE) { bActionGroup *grp = NULL; const char *bone_name = get_joint_name(animated->node); if (bone_name) { /* try to find group */ grp = action_groups_find_named(act, bone_name); /* no matching groups, so add one */ if (grp == NULL) { /* Add a new group, and make it active */ grp = (bActionGroup*)MEM_callocN(sizeof(bActionGroup), "bActionGroup"); grp->flag = AGRP_SELECTED; BLI_strncpy(grp->name, bone_name, sizeof(grp->name)); BLI_addtail(&act->groups, grp); BLI_uniquename(&act->groups, grp, "Group", '.', offsetof(bActionGroup, name), 64); } /* add F-Curve to group */ action_groups_add_channel(act, grp, fcu); } #if 0 if (is_rotation) { fcurves_actionGroup_map[grp].push_back(fcu); } #endif } else { BLI_addtail(&act->curves, fcu); } // curve is used, so remove it from unused_curves unused_curves.erase(std::remove(unused_curves.begin(), unused_curves.end(), fcu), unused_curves.end()); } } public: AnimationImporter(UnitConverter *conv, ArmatureImporter *arm, Scene *scene) : TransformReader(conv), armature_importer(arm), scene(scene) { } ~AnimationImporter() { // free unused FCurves for (std::vector::iterator it = unused_curves.begin(); it != unused_curves.end(); it++) free_fcurve(*it); if (unused_curves.size()) fprintf(stderr, "removed %u unused curves\n", unused_curves.size()); } bool write_animation(const COLLADAFW::Animation* anim) { if (anim->getAnimationType() == COLLADAFW::Animation::ANIMATION_CURVE) { COLLADAFW::AnimationCurve *curve = (COLLADAFW::AnimationCurve*)anim; // XXX Don't know if it's necessary // Should we check outPhysicalDimension? if (curve->getInPhysicalDimension() != COLLADAFW::PHYSICAL_DIMENSION_TIME) { fprintf(stderr, "Inputs physical dimension is not time. \n"); return true; } // a curve can have mixed interpolation type, // in this case curve->getInterpolationTypes returns a list of interpolation types per key COLLADAFW::AnimationCurve::InterpolationType interp = curve->getInterpolationType(); if (interp != COLLADAFW::AnimationCurve::INTERPOLATION_MIXED) { switch (interp) { case COLLADAFW::AnimationCurve::INTERPOLATION_LINEAR: case COLLADAFW::AnimationCurve::INTERPOLATION_BEZIER: animation_to_fcurves(curve); break; default: // TODO there're also CARDINAL, HERMITE, BSPLINE and STEP types fprintf(stderr, "CARDINAL, HERMITE, BSPLINE and STEP anim interpolation types not supported yet.\n"); break; } } else { // not supported yet fprintf(stderr, "MIXED anim interpolation type is not supported yet.\n"); } } else { fprintf(stderr, "FORMULA animation type is not supported yet.\n"); } return true; } // called on post-process stage after writeVisualScenes bool write_animation_list(const COLLADAFW::AnimationList* animlist) { const COLLADAFW::UniqueId& animlist_id = animlist->getUniqueId(); animlist_map[animlist_id] = animlist; #if 0 // should not happen if (uid_animated_map.find(animlist_id) == uid_animated_map.end()) { return true; } // for bones rna_path is like: pose.bones["bone-name"].rotation // what does this AnimationList animate? Animation& animated = uid_animated_map[animlist_id]; Object *ob = animated.ob; char rna_path[100]; char joint_path[100]; bool is_joint = false; // if ob is NULL, it should be a JOINT if (!ob) { ob = armature_importer->get_armature_for_joint(animated.node); if (!ob) { fprintf(stderr, "Cannot find armature for node %s\n", get_joint_name(animated.node)); return true; } armature_importer->get_rna_path_for_joint(animated.node, joint_path, sizeof(joint_path)); is_joint = true; } const COLLADAFW::AnimationList::AnimationBindings& bindings = animlist->getAnimationBindings(); switch (animated.tm->getTransformationType()) { case COLLADAFW::Transformation::TRANSLATE: case COLLADAFW::Transformation::SCALE: { bool loc = animated.tm->getTransformationType() == COLLADAFW::Transformation::TRANSLATE; if (is_joint) BLI_snprintf(rna_path, sizeof(rna_path), "%s.%s", joint_path, loc ? "location" : "scale"); else BLI_strncpy(rna_path, loc ? "location" : "scale", sizeof(rna_path)); for (int i = 0; i < bindings.getCount(); i++) { const COLLADAFW::AnimationList::AnimationBinding& binding = bindings[i]; COLLADAFW::UniqueId anim_uid = binding.animation; if (curve_map.find(anim_uid) == curve_map.end()) { fprintf(stderr, "Cannot find FCurve by animation UID.\n"); continue; } std::vector& fcurves = curve_map[anim_uid]; switch (binding.animationClass) { case COLLADAFW::AnimationList::POSITION_X: add_fcurves_to_object(ob, fcurves, rna_path, 0, &animated); break; case COLLADAFW::AnimationList::POSITION_Y: add_fcurves_to_object(ob, fcurves, rna_path, 1, &animated); break; case COLLADAFW::AnimationList::POSITION_Z: add_fcurves_to_object(ob, fcurves, rna_path, 2, &animated); break; case COLLADAFW::AnimationList::POSITION_XYZ: add_fcurves_to_object(ob, fcurves, rna_path, -1, &animated); break; default: fprintf(stderr, "AnimationClass %d is not supported for %s.\n", binding.animationClass, loc ? "TRANSLATE" : "SCALE"); } } } break; case COLLADAFW::Transformation::ROTATE: { if (is_joint) BLI_snprintf(rna_path, sizeof(rna_path), "%s.rotation_euler", joint_path); else BLI_strncpy(rna_path, "rotation_euler", sizeof(rna_path)); COLLADAFW::Rotate* rot = (COLLADAFW::Rotate*)animated.tm; COLLADABU::Math::Vector3& axis = rot->getRotationAxis(); for (int i = 0; i < bindings.getCount(); i++) { const COLLADAFW::AnimationList::AnimationBinding& binding = bindings[i]; COLLADAFW::UniqueId anim_uid = binding.animation; if (curve_map.find(anim_uid) == curve_map.end()) { fprintf(stderr, "Cannot find FCurve by animation UID.\n"); continue; } std::vector& fcurves = curve_map[anim_uid]; switch (binding.animationClass) { case COLLADAFW::AnimationList::ANGLE: if (COLLADABU::Math::Vector3::UNIT_X == axis) { add_fcurves_to_object(ob, fcurves, rna_path, 0, &animated); } else if (COLLADABU::Math::Vector3::UNIT_Y == axis) { add_fcurves_to_object(ob, fcurves, rna_path, 1, &animated); } else if (COLLADABU::Math::Vector3::UNIT_Z == axis) { add_fcurves_to_object(ob, fcurves, rna_path, 2, &animated); } break; case COLLADAFW::AnimationList::AXISANGLE: // TODO convert axis-angle to quat? or XYZ? default: fprintf(stderr, "AnimationClass %d is not supported for ROTATE transformation.\n", binding.animationClass); } } } break; case COLLADAFW::Transformation::MATRIX: case COLLADAFW::Transformation::SKEW: case COLLADAFW::Transformation::LOOKAT: fprintf(stderr, "Animation of MATRIX, SKEW and LOOKAT transformations is not supported yet.\n"); break; } #endif return true; } void read_node_transform(COLLADAFW::Node *node, Object *ob) { float mat[4][4]; TransformReader::get_node_mat(mat, node, &uid_animated_map, ob); if (ob) TransformReader::decompose(mat, ob->loc, ob->rot, NULL, ob->size); } #if 0 virtual void change_eul_to_quat(Object *ob, bAction *act) { bActionGroup *grp; int i; for (grp = (bActionGroup*)act->groups.first; grp; grp = grp->next) { FCurve *eulcu[3] = {NULL, NULL, NULL}; if (fcurves_actionGroup_map.find(grp) == fcurves_actionGroup_map.end()) continue; std::vector &rot_fcurves = fcurves_actionGroup_map[grp]; if (rot_fcurves.size() > 3) continue; for (i = 0; i < rot_fcurves.size(); i++) eulcu[rot_fcurves[i]->array_index] = rot_fcurves[i]; char joint_path[100]; char rna_path[100]; BLI_snprintf(joint_path, sizeof(joint_path), "pose.bones[\"%s\"]", grp->name); BLI_snprintf(rna_path, sizeof(rna_path), "%s.rotation_quaternion", joint_path); FCurve *quatcu[4] = { create_fcurve(0, rna_path), create_fcurve(1, rna_path), create_fcurve(2, rna_path), create_fcurve(3, rna_path) }; bPoseChannel *chan = get_pose_channel(ob->pose, grp->name); float m4[4][4], irest[3][3]; invert_m4_m4(m4, chan->bone->arm_mat); copy_m3_m4(irest, m4); for (i = 0; i < 3; i++) { FCurve *cu = eulcu[i]; if (!cu) continue; for (int j = 0; j < cu->totvert; j++) { float frame = cu->bezt[j].vec[1][0]; float eul[3] = { eulcu[0] ? evaluate_fcurve(eulcu[0], frame) : 0.0f, eulcu[1] ? evaluate_fcurve(eulcu[1], frame) : 0.0f, eulcu[2] ? evaluate_fcurve(eulcu[2], frame) : 0.0f }; // make eul relative to bone rest pose float rot[3][3], rel[3][3], quat[4]; /*eul_to_mat3(rot, eul); mul_m3_m3m3(rel, irest, rot); mat3_to_quat(quat, rel); */ eul_to_quat(quat, eul); for (int k = 0; k < 4; k++) create_bezt(quatcu[k], frame, quat[k]); } } // now replace old Euler curves for (i = 0; i < 3; i++) { if (!eulcu[i]) continue; action_groups_remove_channel(act, eulcu[i]); free_fcurve(eulcu[i]); } chan->rotmode = ROT_MODE_QUAT; for (i = 0; i < 4; i++) action_groups_add_channel(act, grp, quatcu[i]); } bPoseChannel *pchan; for (pchan = (bPoseChannel*)ob->pose->chanbase.first; pchan; pchan = pchan->next) { pchan->rotmode = ROT_MODE_QUAT; } } #endif // prerequisites: // animlist_map - map animlist id -> animlist // curve_map - map anim id -> curve(s) Object *translate_animation(COLLADAFW::Node *node, std::map& object_map, std::map& root_map, COLLADAFW::Transformation::TransformationType tm_type, Object *par_job = NULL) { bool is_rotation = tm_type == COLLADAFW::Transformation::ROTATE; bool is_joint = node->getType() == COLLADAFW::Node::JOINT; COLLADAFW::Node *root = root_map.find(node->getUniqueId()) == root_map.end() ? node : root_map[node->getUniqueId()]; Object *ob = is_joint ? armature_importer->get_armature_for_joint(node) : object_map[node->getUniqueId()]; const char *bone_name = is_joint ? get_joint_name(node) : NULL; if (!ob) { fprintf(stderr, "cannot find Object for Node with id=\"%s\"\n", node->getOriginalId().c_str()); return NULL; } // frames at which to sample std::vector frames; // for each , , etc. there is a separate Transformation const COLLADAFW::TransformationPointerArray& tms = node->getTransformations(); unsigned int i; // find frames at which to sample plus convert all keys to radians for (i = 0; i < tms.getCount(); i++) { COLLADAFW::Transformation *tm = tms[i]; COLLADAFW::Transformation::TransformationType type = tm->getTransformationType(); if (type == tm_type) { const COLLADAFW::UniqueId& listid = tm->getAnimationList(); if (animlist_map.find(listid) != animlist_map.end()) { const COLLADAFW::AnimationList *animlist = animlist_map[listid]; const COLLADAFW::AnimationList::AnimationBindings& bindings = animlist->getAnimationBindings(); if (bindings.getCount()) { for (unsigned int j = 0; j < bindings.getCount(); j++) { std::vector& curves = curve_map[bindings[j].animation]; bool xyz = ((type == COLLADAFW::Transformation::TRANSLATE || type == COLLADAFW::Transformation::SCALE) && bindings[j].animationClass == COLLADAFW::AnimationList::POSITION_XYZ); if ((!xyz && curves.size() == 1) || (xyz && curves.size() == 3)) { std::vector::iterator iter; for (iter = curves.begin(); iter != curves.end(); iter++) { FCurve *fcu = *iter; if (is_rotation) fcurve_deg_to_rad(fcu); for (unsigned int k = 0; k < fcu->totvert; k++) { float fra = fcu->bezt[k].vec[1][0]; if (std::find(frames.begin(), frames.end(), fra) == frames.end()) frames.push_back(fra); } } } else { fprintf(stderr, "expected %d curves, got %u\n", xyz ? 3 : 1, curves.size()); } } } } } } sort(frames.begin(), frames.end()); float irest_dae[4][4]; float rest[4][4], irest[4][4]; if (is_joint) { get_joint_rest_mat(irest_dae, root, node); invert_m4(irest_dae); Bone *bone = get_named_bone((bArmature*)ob->data, bone_name); if (!bone) { fprintf(stderr, "cannot find bone \"%s\"\n", bone_name); return NULL; } unit_m4(rest); copy_m4_m4(rest, bone->arm_mat); invert_m4_m4(irest, rest); } char rna_path[200]; Object *job = NULL; #ifdef ARMATURE_TEST FCurve *job_curves[4]; job = get_joint_object(root, node, par_job); #endif if (frames.size() == 0) return job; const char *tm_str = NULL; switch (tm_type) { case COLLADAFW::Transformation::ROTATE: tm_str = "rotation_quaternion"; break; case COLLADAFW::Transformation::SCALE: tm_str = "scale"; break; case COLLADAFW::Transformation::TRANSLATE: tm_str = "location"; break; default: return job; } if (is_joint) { char joint_path[200]; armature_importer->get_rna_path_for_joint(node, joint_path, sizeof(joint_path)); BLI_snprintf(rna_path, sizeof(rna_path), "%s.%s", joint_path, tm_str); } else { strcpy(rna_path, tm_str); } // new curves FCurve *newcu[4]; unsigned int totcu = is_rotation ? 4 : 3; for (i = 0; i < totcu; i++) { newcu[i] = create_fcurve(i, rna_path); #ifdef ARMATURE_TEST if (is_joint) job_curves[i] = create_fcurve(i, tm_str); #endif } std::vector::iterator it; // sample values at each frame for (it = frames.begin(); it != frames.end(); it++) { float fra = *it; float mat[4][4]; float matfra[4][4]; unit_m4(matfra); // calc object-space mat evaluate_transform_at_frame(matfra, node, fra); // for joints, we need a special matrix if (is_joint) { // special matrix: iR * M * iR_dae * R // where R, iR are bone rest and inverse rest mats in world space (Blender bones), // iR_dae is joint inverse rest matrix (DAE) and M is an evaluated joint world-space matrix (DAE) float temp[4][4], par[4][4]; // calc M calc_joint_parent_mat_rest(par, NULL, root, node); mul_m4_m4m4(temp, matfra, par); // evaluate_joint_world_transform_at_frame(temp, NULL, , node, fra); // calc special matrix mul_serie_m4(mat, irest, temp, irest_dae, rest, NULL, NULL, NULL, NULL); } else { copy_m4_m4(mat, matfra); } float val[4]; switch (tm_type) { case COLLADAFW::Transformation::ROTATE: mat4_to_quat(val, mat); break; case COLLADAFW::Transformation::SCALE: mat4_to_size(val, mat); break; case COLLADAFW::Transformation::TRANSLATE: copy_v3_v3(val, mat[3]); break; default: break; } // add 4 or 3 keys for (i = 0; i < totcu; i++) { add_bezt(newcu[i], fra, val[i]); } #ifdef ARMATURE_TEST if (is_joint) { switch (tm_type) { case COLLADAFW::Transformation::ROTATE: mat4_to_quat(val, matfra); break; case COLLADAFW::Transformation::SCALE: mat4_to_size(val, matfra); break; case COLLADAFW::Transformation::TRANSLATE: copy_v3_v3(val, matfra[3]); break; default: break; } for (i = 0; i < totcu; i++) add_bezt(job_curves[i], fra, val[i]); } #endif } verify_adt_action((ID*)&ob->id, 1); ListBase *curves = &ob->adt->action->curves; // add curves for (i = 0; i < totcu; i++) { if (is_joint) add_bone_fcurve(ob, node, newcu[i]); else BLI_addtail(curves, newcu[i]); #ifdef ARMATURE_TEST if (is_joint) BLI_addtail(&job->adt->action->curves, job_curves[i]); #endif } if (is_rotation) { if (is_joint) { bPoseChannel *chan = get_pose_channel(ob->pose, bone_name); chan->rotmode = ROT_MODE_QUAT; } else { ob->rotmode = ROT_MODE_QUAT; } } return job; } // internal, better make it private // warning: evaluates only rotation // prerequisites: animlist_map, curve_map void evaluate_transform_at_frame(float mat[4][4], COLLADAFW::Node *node, float fra) { const COLLADAFW::TransformationPointerArray& tms = node->getTransformations(); unit_m4(mat); for (unsigned int i = 0; i < tms.getCount(); i++) { COLLADAFW::Transformation *tm = tms[i]; COLLADAFW::Transformation::TransformationType type = tm->getTransformationType(); float m[4][4]; unit_m4(m); if (!evaluate_animation(tm, m, fra)) { switch (type) { case COLLADAFW::Transformation::ROTATE: dae_rotate_to_mat4(tm, m); break; case COLLADAFW::Transformation::TRANSLATE: dae_translate_to_mat4(tm, m); break; case COLLADAFW::Transformation::SCALE: dae_scale_to_mat4(tm, m); break; case COLLADAFW::Transformation::MATRIX: dae_matrix_to_mat4(tm, m); break; default: fprintf(stderr, "unsupported transformation type %d\n", type); } } float temp[4][4]; copy_m4_m4(temp, mat); mul_m4_m4m4(mat, m, temp); } } // return true to indicate that mat contains a sane value bool evaluate_animation(COLLADAFW::Transformation *tm, float mat[4][4], float fra) { const COLLADAFW::UniqueId& listid = tm->getAnimationList(); COLLADAFW::Transformation::TransformationType type = tm->getTransformationType(); if (type != COLLADAFW::Transformation::ROTATE && type != COLLADAFW::Transformation::SCALE && type != COLLADAFW::Transformation::TRANSLATE) { fprintf(stderr, "animation of transformation %d is not supported yet\n", type); return false; } if (animlist_map.find(listid) == animlist_map.end()) return false; const COLLADAFW::AnimationList *animlist = animlist_map[listid]; const COLLADAFW::AnimationList::AnimationBindings& bindings = animlist->getAnimationBindings(); if (bindings.getCount()) { float vec[3]; bool is_scale = (type == COLLADAFW::Transformation::SCALE); if (type == COLLADAFW::Transformation::SCALE) dae_scale_to_v3(tm, vec); else if (type == COLLADAFW::Transformation::TRANSLATE) dae_translate_to_v3(tm, vec); for (unsigned int j = 0; j < bindings.getCount(); j++) { const COLLADAFW::AnimationList::AnimationBinding& binding = bindings[j]; std::vector& curves = curve_map[binding.animation]; COLLADAFW::AnimationList::AnimationClass animclass = binding.animationClass; if (type == COLLADAFW::Transformation::ROTATE) { if (curves.size() != 1) { fprintf(stderr, "expected 1 curve, got %u\n", curves.size()); return false; } else { if (animclass == COLLADAFW::AnimationList::ANGLE) { COLLADABU::Math::Vector3& axis = ((COLLADAFW::Rotate*)tm)->getRotationAxis(); float ax[3] = {axis[0], axis[1], axis[2]}; float angle = evaluate_fcurve(curves[0], fra); axis_angle_to_mat4(mat, ax, angle); return true; } else { // TODO support other animclasses fprintf(stderr, " animclass %d is not supported yet\n", animclass); return false; } } } else { bool is_xyz = animclass == COLLADAFW::AnimationList::POSITION_XYZ; if ((!is_xyz && curves.size() == 1) || (is_xyz && curves.size() == 3)) { switch (animclass) { case COLLADAFW::AnimationList::POSITION_X: vec[0] = evaluate_fcurve(curves[0], fra); break; case COLLADAFW::AnimationList::POSITION_Y: vec[1] = evaluate_fcurve(curves[0], fra); break; case COLLADAFW::AnimationList::POSITION_Z: vec[2] = evaluate_fcurve(curves[0], fra); break; case COLLADAFW::AnimationList::POSITION_XYZ: vec[0] = evaluate_fcurve(curves[0], fra); vec[1] = evaluate_fcurve(curves[1], fra); vec[2] = evaluate_fcurve(curves[2], fra); break; default: fprintf(stderr, "<%s> animclass %d is not supported yet\n", is_scale ? "scale" : "translate", animclass); break; } } else { if (is_xyz) fprintf(stderr, "expected 3 curves, got %u, animclass=%d\n", curves.size(), animclass); else fprintf(stderr, "expected 1 curve, got %u, animclass=%d\n", curves.size(), animclass); return false; } } } if (is_scale) size_to_mat4(mat, vec); else copy_v3_v3(mat[3], vec); return true; } return false; } // gives a world-space mat of joint at rest position void get_joint_rest_mat(float mat[4][4], COLLADAFW::Node *root, COLLADAFW::Node *node) { // if bind mat is not available, // use "current" node transform, i.e. all those tms listed inside if (!armature_importer->get_joint_bind_mat(mat, node)) { float par[4][4], m[4][4]; calc_joint_parent_mat_rest(par, NULL, root, node); get_node_mat(m, node, NULL, NULL); mul_m4_m4m4(mat, m, par); } } // gives a world-space mat, end's mat not included bool calc_joint_parent_mat_rest(float mat[4][4], float par[4][4], COLLADAFW::Node *node, COLLADAFW::Node *end) { float m[4][4]; if (node == end) { par ? copy_m4_m4(mat, par) : unit_m4(mat); return true; } // use bind matrix if available or calc "current" world mat if (!armature_importer->get_joint_bind_mat(m, node)) { if (par) { float temp[4][4]; get_node_mat(temp, node, NULL, NULL); mul_m4_m4m4(m, temp, par); } else { get_node_mat(m, node, NULL, NULL); } } COLLADAFW::NodePointerArray& children = node->getChildNodes(); for (unsigned int i = 0; i < children.getCount(); i++) { if (calc_joint_parent_mat_rest(mat, m, children[i], end)) return true; } return false; } #ifdef ARMATURE_TEST Object *get_joint_object(COLLADAFW::Node *root, COLLADAFW::Node *node, Object *par_job) { if (joint_objects.find(node->getUniqueId()) == joint_objects.end()) { Object *job = add_object(scene, OB_EMPTY); rename_id((ID*)&job->id, (char*)get_joint_name(node)); job->lay = object_in_scene(job, scene)->lay = 2; mul_v3_fl(job->size, 0.5f); job->recalc |= OB_RECALC_OB; verify_adt_action((ID*)&job->id, 1); job->rotmode = ROT_MODE_QUAT; float mat[4][4]; get_joint_rest_mat(mat, root, node); if (par_job) { float temp[4][4], ipar[4][4]; invert_m4_m4(ipar, par_job->obmat); copy_m4_m4(temp, mat); mul_m4_m4m4(mat, temp, ipar); } TransformBase::decompose(mat, job->loc, NULL, job->quat, job->size); if (par_job) { job->parent = par_job; par_job->recalc |= OB_RECALC_OB; job->parsubstr[0] = 0; } where_is_object(scene, job); // after parenting and layer change DAG_scene_sort(scene); joint_objects[node->getUniqueId()] = job; } return joint_objects[node->getUniqueId()]; } #endif #if 0 // recursively evaluates joint tree until end is found, mat then is world-space matrix of end // mat must be identity on enter, node must be root bool evaluate_joint_world_transform_at_frame(float mat[4][4], float par[4][4], COLLADAFW::Node *node, COLLADAFW::Node *end, float fra) { float m[4][4]; if (par) { float temp[4][4]; evaluate_transform_at_frame(temp, node, node == end ? fra : 0.0f); mul_m4_m4m4(m, temp, par); } else { evaluate_transform_at_frame(m, node, node == end ? fra : 0.0f); } if (node == end) { copy_m4_m4(mat, m); return true; } else { COLLADAFW::NodePointerArray& children = node->getChildNodes(); for (int i = 0; i < children.getCount(); i++) { if (evaluate_joint_world_transform_at_frame(mat, m, children[i], end, fra)) return true; } } return false; } #endif void add_bone_fcurve(Object *ob, COLLADAFW::Node *node, FCurve *fcu) { const char *bone_name = get_joint_name(node); bAction *act = ob->adt->action; /* try to find group */ bActionGroup *grp = action_groups_find_named(act, bone_name); /* no matching groups, so add one */ if (grp == NULL) { /* Add a new group, and make it active */ grp = (bActionGroup*)MEM_callocN(sizeof(bActionGroup), "bActionGroup"); grp->flag = AGRP_SELECTED; BLI_strncpy(grp->name, bone_name, sizeof(grp->name)); BLI_addtail(&act->groups, grp); BLI_uniquename(&act->groups, grp, "Group", '.', offsetof(bActionGroup, name), 64); } /* add F-Curve to group */ action_groups_add_channel(act, grp, fcu); } void add_bezt(FCurve *fcu, float fra, float value) { BezTriple bez; memset(&bez, 0, sizeof(BezTriple)); bez.vec[1][0] = fra; bez.vec[1][1] = value; bez.ipo = U.ipo_new; /* use default interpolation mode here... */ bez.f1 = bez.f2 = bez.f3 = SELECT; bez.h1 = bez.h2 = HD_AUTO; insert_bezt_fcurve(fcu, &bez, 0); calchandles_fcurve(fcu); } }; /* COLLADA Importer limitations: - no multiple scene import, all objects are added to active scene */ /** Class that needs to be implemented by a writer. IMPORTANT: The write functions are called in arbitrary order.*/ class Writer: public COLLADAFW::IWriter { private: std::string mFilename; bContext *mContext; UnitConverter unit_converter; ArmatureImporter armature_importer; MeshImporter mesh_importer; AnimationImporter anim_importer; std::map uid_image_map; std::map uid_material_map; std::map uid_effect_map; std::map uid_camera_map; std::map uid_lamp_map; std::map material_texture_mapping_map; std::map object_map; std::vector vscenes; std::map root_map; // find root joint by child joint uid, for bone tree evaluation during resampling // animation // std::map > uid_fcurve_map; // Nodes don't share AnimationLists (Arystan) // std::map uid_animated_map; // AnimationList->uniqueId to AnimatedObject map public: /** Constructor. */ Writer(bContext *C, const char *filename) : mFilename(filename), mContext(C), armature_importer(&unit_converter, &mesh_importer, &anim_importer, CTX_data_scene(C)), mesh_importer(&armature_importer, CTX_data_scene(C)), anim_importer(&unit_converter, &armature_importer, CTX_data_scene(C)) {} /** Destructor. */ ~Writer() {} bool write() { COLLADASaxFWL::Loader loader; COLLADAFW::Root root(&loader, this); // XXX report error if (!root.loadDocument(mFilename)) return false; return true; } /** This method will be called if an error in the loading process occurred and the loader cannot continue to to load. The writer should undo all operations that have been performed. @param errorMessage A message containing informations about the error that occurred. */ virtual void cancel(const COLLADAFW::String& errorMessage) { // TODO: if possible show error info // // Should we get rid of invisible Meshes that were created so far // or maybe create objects at coordinate space origin? // // The latter sounds better. } /** This is the method called. The writer hast to prepare to receive data.*/ virtual void start() { } /** This method is called after the last write* method. No other methods will be called after this.*/ virtual void finish() { #if 0 armature_importer.fix_animation(); #endif for (std::vector::iterator it = vscenes.begin(); it != vscenes.end(); it++) { const COLLADAFW::NodePointerArray& roots = (*it)->getRootNodes(); for (unsigned int i = 0; i < roots.getCount(); i++) translate_anim_recursive(roots[i]); } } void translate_anim_recursive(COLLADAFW::Node *node, COLLADAFW::Node *par = NULL, Object *parob = NULL) { if (par && par->getType() == COLLADAFW::Node::JOINT) { // par is root if there's no corresp. key in root_map if (root_map.find(par->getUniqueId()) == root_map.end()) root_map[node->getUniqueId()] = par; else root_map[node->getUniqueId()] = root_map[par->getUniqueId()]; } COLLADAFW::Transformation::TransformationType types[] = { COLLADAFW::Transformation::ROTATE, COLLADAFW::Transformation::SCALE, COLLADAFW::Transformation::TRANSLATE }; unsigned int i; Object *ob; for (i = 0; i < 3; i++) ob = anim_importer.translate_animation(node, object_map, root_map, types[i]); COLLADAFW::NodePointerArray &children = node->getChildNodes(); for (i = 0; i < children.getCount(); i++) { translate_anim_recursive(children[i], node, ob); } } /** When this method is called, the writer must write the global document asset. @return The writer should return true, if writing succeeded, false otherwise.*/ virtual bool writeGlobalAsset ( const COLLADAFW::FileInfo* asset ) { // XXX take up_axis, unit into account // COLLADAFW::FileInfo::Unit unit = asset->getUnit(); // COLLADAFW::FileInfo::UpAxisType upAxis = asset->getUpAxisType(); unit_converter.read_asset(asset); return true; } /** When this method is called, the writer must write the scene. @return The writer should return true, if writing succeeded, false otherwise.*/ virtual bool writeScene ( const COLLADAFW::Scene* scene ) { // XXX could store the scene id, but do nothing for now return true; } Object *create_camera_object(COLLADAFW::InstanceCamera *camera, Object *ob, Scene *sce) { const COLLADAFW::UniqueId& cam_uid = camera->getInstanciatedObjectId(); if (uid_camera_map.find(cam_uid) == uid_camera_map.end()) { fprintf(stderr, "Couldn't find camera by UID. \n"); return NULL; } ob = add_object(sce, OB_CAMERA); Camera *cam = uid_camera_map[cam_uid]; Camera *old_cam = (Camera*)ob->data; old_cam->id.us--; ob->data = cam; if (old_cam->id.us == 0) free_libblock(&G.main->camera, old_cam); return ob; } Object *create_lamp_object(COLLADAFW::InstanceLight *lamp, Object *ob, Scene *sce) { const COLLADAFW::UniqueId& lamp_uid = lamp->getInstanciatedObjectId(); if (uid_lamp_map.find(lamp_uid) == uid_lamp_map.end()) { fprintf(stderr, "Couldn't find lamp by UID. \n"); return NULL; } ob = add_object(sce, OB_LAMP); Lamp *la = uid_lamp_map[lamp_uid]; Lamp *old_lamp = (Lamp*)ob->data; old_lamp->id.us--; ob->data = la; if (old_lamp->id.us == 0) free_libblock(&G.main->lamp, old_lamp); return ob; } void write_node (COLLADAFW::Node *node, COLLADAFW::Node *parent_node, Scene *sce, Object *par) { Object *ob = NULL; if (node->getType() == COLLADAFW::Node::JOINT) { if (node->getType() == COLLADAFW::Node::JOINT) { armature_importer.add_joint(node, parent_node == NULL || parent_node->getType() != COLLADAFW::Node::JOINT); } } else { COLLADAFW::InstanceGeometryPointerArray &geom = node->getInstanceGeometries(); COLLADAFW::InstanceCameraPointerArray &camera = node->getInstanceCameras(); COLLADAFW::InstanceLightPointerArray &lamp = node->getInstanceLights(); COLLADAFW::InstanceControllerPointerArray &controller = node->getInstanceControllers(); COLLADAFW::InstanceNodePointerArray &inst_node = node->getInstanceNodes(); // XXX linking object with the first , though a node may have more of them... // maybe join multiple meshes into 1, and link object with it? not sure... // if (geom.getCount() != 0) { ob = mesh_importer.create_mesh_object(node, geom[0], false, uid_material_map, material_texture_mapping_map); } else if (camera.getCount() != 0) { ob = create_camera_object(camera[0], ob, sce); } else if (lamp.getCount() != 0) { ob = create_lamp_object(lamp[0], ob, sce); } else if (controller.getCount() != 0) { COLLADAFW::InstanceGeometry *geom = (COLLADAFW::InstanceGeometry*)controller[0]; ob = mesh_importer.create_mesh_object(node, geom, true, uid_material_map, material_texture_mapping_map); } // XXX instance_node is not supported yet else if (inst_node.getCount() != 0) { return; } // if node is empty - create empty object // XXX empty node may not mean it is empty object, not sure about this else { ob = add_object(sce, OB_EMPTY); } // check if object is not NULL if (!ob) return; object_map[node->getUniqueId()] = ob; // if par was given make this object child of the previous if (par && ob) { ob->parent = par; // doing what 'set parent' operator does par->recalc |= OB_RECALC_OB; ob->parsubstr[0] = 0; DAG_scene_sort(sce); } } anim_importer.read_node_transform(node, ob); // if node has child nodes write them COLLADAFW::NodePointerArray &child_nodes = node->getChildNodes(); for (unsigned int i = 0; i < child_nodes.getCount(); i++) { write_node(child_nodes[i], node, sce, ob); } } /** When this method is called, the writer must write the entire visual scene. @return The writer should return true, if writing succeeded, false otherwise.*/ virtual bool writeVisualScene ( const COLLADAFW::VisualScene* visualScene ) { // this method called on post process after writeGeometry, writeMaterial, etc. // for each in : // create an Object // if Mesh (previously created in writeGeometry) to which corresponds exists, link Object with that mesh // update: since we cannot link a Mesh with Object in // writeGeometry because does not reference , // we link Objects with Meshes here vscenes.push_back(visualScene); // TODO: create a new scene except the selected - use current blender // scene for it Scene *sce = CTX_data_scene(mContext); const COLLADAFW::NodePointerArray& roots = visualScene->getRootNodes(); for (unsigned int i = 0; i < roots.getCount(); i++) { write_node(roots[i], NULL, sce, NULL); } armature_importer.make_armatures(mContext); return true; } /** When this method is called, the writer must handle all nodes contained in the library nodes. @return The writer should return true, if writing succeeded, false otherwise.*/ virtual bool writeLibraryNodes ( const COLLADAFW::LibraryNodes* libraryNodes ) { return true; } /** When this method is called, the writer must write the geometry. @return The writer should return true, if writing succeeded, false otherwise.*/ virtual bool writeGeometry ( const COLLADAFW::Geometry* geom ) { return mesh_importer.write_geometry(geom); } /** When this method is called, the writer must write the material. @return The writer should return true, if writing succeeded, false otherwise.*/ virtual bool writeMaterial( const COLLADAFW::Material* cmat ) { const std::string& str_mat_id = cmat->getOriginalId(); Material *ma = add_material((char*)str_mat_id.c_str()); this->uid_effect_map[cmat->getInstantiatedEffect()] = ma; this->uid_material_map[cmat->getUniqueId()] = ma; return true; } // create mtex, create texture, set texture image MTex *create_texture(COLLADAFW::EffectCommon *ef, COLLADAFW::Texture &ctex, Material *ma, int i, TexIndexTextureArrayMap &texindex_texarray_map) { COLLADAFW::SamplerPointerArray& samp_array = ef->getSamplerPointerArray(); COLLADAFW::Sampler *sampler = samp_array[ctex.getSamplerId()]; const COLLADAFW::UniqueId& ima_uid = sampler->getSourceImage(); if (uid_image_map.find(ima_uid) == uid_image_map.end()) { fprintf(stderr, "Couldn't find an image by UID.\n"); return NULL; } ma->mtex[i] = add_mtex(); ma->mtex[i]->texco = TEXCO_UV; ma->mtex[i]->tex = add_texture("Texture"); ma->mtex[i]->tex->type = TEX_IMAGE; ma->mtex[i]->tex->imaflag &= ~TEX_USEALPHA; ma->mtex[i]->tex->ima = uid_image_map[ima_uid]; texindex_texarray_map[ctex.getTextureMapId()].push_back(ma->mtex[i]); return ma->mtex[i]; } void write_profile_COMMON(COLLADAFW::EffectCommon *ef, Material *ma) { COLLADAFW::EffectCommon::ShaderType shader = ef->getShaderType(); // blinn if (shader == COLLADAFW::EffectCommon::SHADER_BLINN) { ma->spec_shader = MA_SPEC_BLINN; ma->spec = ef->getShininess().getFloatValue(); } // phong else if (shader == COLLADAFW::EffectCommon::SHADER_PHONG) { ma->spec_shader = MA_SPEC_PHONG; // XXX setting specular hardness instead of specularity intensity ma->har = ef->getShininess().getFloatValue() * 4; } // lambert else if (shader == COLLADAFW::EffectCommon::SHADER_LAMBERT) { ma->diff_shader = MA_DIFF_LAMBERT; } // default - lambert else { ma->diff_shader = MA_DIFF_LAMBERT; fprintf(stderr, "Current shader type is not supported.\n"); } // reflectivity ma->ray_mirror = ef->getReflectivity().getFloatValue(); // index of refraction ma->ang = ef->getIndexOfRefraction().getFloatValue(); int i = 0; COLLADAFW::Color col; MTex *mtex = NULL; TexIndexTextureArrayMap texindex_texarray_map; // DIFFUSE // color if (ef->getDiffuse().isColor()) { col = ef->getDiffuse().getColor(); ma->r = col.getRed(); ma->g = col.getGreen(); ma->b = col.getBlue(); } // texture else if (ef->getDiffuse().isTexture()) { COLLADAFW::Texture ctex = ef->getDiffuse().getTexture(); mtex = create_texture(ef, ctex, ma, i, texindex_texarray_map); if (mtex != NULL) { mtex->mapto = MAP_COL; ma->texact = (int)i; i++; } } // AMBIENT // color if (ef->getAmbient().isColor()) { col = ef->getAmbient().getColor(); ma->ambr = col.getRed(); ma->ambg = col.getGreen(); ma->ambb = col.getBlue(); } // texture else if (ef->getAmbient().isTexture()) { COLLADAFW::Texture ctex = ef->getAmbient().getTexture(); mtex = create_texture(ef, ctex, ma, i, texindex_texarray_map); if (mtex != NULL) { mtex->mapto = MAP_AMB; i++; } } // SPECULAR // color if (ef->getSpecular().isColor()) { col = ef->getSpecular().getColor(); ma->specr = col.getRed(); ma->specg = col.getGreen(); ma->specb = col.getBlue(); } // texture else if (ef->getSpecular().isTexture()) { COLLADAFW::Texture ctex = ef->getSpecular().getTexture(); mtex = create_texture(ef, ctex, ma, i, texindex_texarray_map); if (mtex != NULL) { mtex->mapto = MAP_SPEC; i++; } } // REFLECTIVE // color if (ef->getReflective().isColor()) { col = ef->getReflective().getColor(); ma->mirr = col.getRed(); ma->mirg = col.getGreen(); ma->mirb = col.getBlue(); } // texture else if (ef->getReflective().isTexture()) { COLLADAFW::Texture ctex = ef->getReflective().getTexture(); mtex = create_texture(ef, ctex, ma, i, texindex_texarray_map); if (mtex != NULL) { mtex->mapto = MAP_REF; i++; } } // EMISSION // color if (ef->getEmission().isColor()) { // XXX there is no emission color in blender // but I am not sure } // texture else if (ef->getEmission().isTexture()) { COLLADAFW::Texture ctex = ef->getEmission().getTexture(); mtex = create_texture(ef, ctex, ma, i, texindex_texarray_map); if (mtex != NULL) { mtex->mapto = MAP_EMIT; i++; } } // TRANSPARENT // color // if (ef->getOpacity().isColor()) { // // XXX don't know what to do here // } // // texture // else if (ef->getOpacity().isTexture()) { // ctex = ef->getOpacity().getTexture(); // if (mtex != NULL) mtex->mapto &= MAP_ALPHA; // else { // mtex = create_texture(ef, ctex, ma, i, texindex_texarray_map); // if (mtex != NULL) mtex->mapto = MAP_ALPHA; // } // } material_texture_mapping_map[ma] = texindex_texarray_map; } /** When this method is called, the writer must write the effect. @return The writer should return true, if writing succeeded, false otherwise.*/ virtual bool writeEffect( const COLLADAFW::Effect* effect ) { const COLLADAFW::UniqueId& uid = effect->getUniqueId(); if (uid_effect_map.find(uid) == uid_effect_map.end()) { fprintf(stderr, "Couldn't find a material by UID.\n"); return true; } Material *ma = uid_effect_map[uid]; COLLADAFW::CommonEffectPointerArray common_efs = effect->getCommonEffects(); if (common_efs.getCount() < 1) { fprintf(stderr, "Couldn't find .\n"); return true; } // XXX TODO: Take all s // Currently only first is supported COLLADAFW::EffectCommon *ef = common_efs[0]; write_profile_COMMON(ef, ma); return true; } /** When this method is called, the writer must write the camera. @return The writer should return true, if writing succeeded, false otherwise.*/ virtual bool writeCamera( const COLLADAFW::Camera* camera ) { Camera *cam = NULL; std::string cam_id, cam_name; cam_id = camera->getOriginalId(); cam_name = camera->getName(); if (cam_name.size()) cam = (Camera*)add_camera((char*)cam_name.c_str()); else cam = (Camera*)add_camera((char*)cam_id.c_str()); if (!cam) { fprintf(stderr, "Cannot create camera. \n"); return true; } cam->clipsta = camera->getNearClippingPlane().getValue(); cam->clipend = camera->getFarClippingPlane().getValue(); COLLADAFW::Camera::CameraType type = camera->getCameraType(); switch(type) { case COLLADAFW::Camera::ORTHOGRAPHIC: { cam->type = CAM_ORTHO; } break; case COLLADAFW::Camera::PERSPECTIVE: { cam->type = CAM_PERSP; } break; case COLLADAFW::Camera::UNDEFINED_CAMERATYPE: { fprintf(stderr, "Current camera type is not supported. \n"); cam->type = CAM_PERSP; } break; } this->uid_camera_map[camera->getUniqueId()] = cam; // XXX import camera options return true; } /** When this method is called, the writer must write the image. @return The writer should return true, if writing succeeded, false otherwise.*/ virtual bool writeImage( const COLLADAFW::Image* image ) { // XXX maybe it is necessary to check if the path is absolute or relative const std::string& filepath = image->getImageURI().toNativePath(); const char *filename = (const char*)mFilename.c_str(); char dir[FILE_MAX]; char full_path[FILE_MAX]; BLI_split_dirfile(filename, dir, NULL); BLI_join_dirfile(full_path, dir, filepath.c_str()); Image *ima = BKE_add_image_file(full_path, 0); if (!ima) { fprintf(stderr, "Cannot create image. \n"); return true; } this->uid_image_map[image->getUniqueId()] = ima; return true; } /** When this method is called, the writer must write the light. @return The writer should return true, if writing succeeded, false otherwise.*/ virtual bool writeLight( const COLLADAFW::Light* light ) { Lamp *lamp = NULL; std::string la_id, la_name; la_id = light->getOriginalId(); la_name = light->getName(); if (la_name.size()) lamp = (Lamp*)add_lamp((char*)la_name.c_str()); else lamp = (Lamp*)add_lamp((char*)la_id.c_str()); if (!lamp) { fprintf(stderr, "Cannot create lamp. \n"); return true; } if (light->getColor().isValid()) { COLLADAFW::Color col = light->getColor(); lamp->r = col.getRed(); lamp->g = col.getGreen(); lamp->b = col.getBlue(); } COLLADAFW::Light::LightType type = light->getLightType(); switch(type) { case COLLADAFW::Light::AMBIENT_LIGHT: { lamp->type = LA_HEMI; } break; case COLLADAFW::Light::SPOT_LIGHT: { lamp->type = LA_SPOT; lamp->falloff_type = LA_FALLOFF_SLIDERS; lamp->att1 = light->getLinearAttenuation().getValue(); lamp->att2 = light->getQuadraticAttenuation().getValue(); lamp->spotsize = light->getFallOffAngle().getValue(); lamp->spotblend = light->getFallOffExponent().getValue(); } break; case COLLADAFW::Light::DIRECTIONAL_LIGHT: { lamp->type = LA_SUN; } break; case COLLADAFW::Light::POINT_LIGHT: { lamp->type = LA_LOCAL; lamp->att1 = light->getLinearAttenuation().getValue(); lamp->att2 = light->getQuadraticAttenuation().getValue(); } break; case COLLADAFW::Light::UNDEFINED: { fprintf(stderr, "Current lamp type is not supported. \n"); lamp->type = LA_LOCAL; } break; } this->uid_lamp_map[light->getUniqueId()] = lamp; return true; } // this function is called only for animations that pass COLLADAFW::validate virtual bool writeAnimation( const COLLADAFW::Animation* anim ) { // return true; return anim_importer.write_animation(anim); } // called on post-process stage after writeVisualScenes virtual bool writeAnimationList( const COLLADAFW::AnimationList* animationList ) { // return true; return anim_importer.write_animation_list(animationList); } /** When this method is called, the writer must write the skin controller data. @return The writer should return true, if writing succeeded, false otherwise.*/ virtual bool writeSkinControllerData( const COLLADAFW::SkinControllerData* skin ) { return armature_importer.write_skin_controller_data(skin); } // this is called on postprocess, before writeVisualScenes virtual bool writeController( const COLLADAFW::Controller* controller ) { return armature_importer.write_controller(controller); } virtual bool writeFormulas( const COLLADAFW::Formulas* formulas ) { return true; } virtual bool writeKinematicsScene( const COLLADAFW::KinematicsScene* kinematicsScene ) { return true; } }; void DocumentImporter::import(bContext *C, const char *filename) { Writer w(C, filename); w.write(); }