/* * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * Copyright 2011, Blender Foundation. */ #include "COM_CalculateMeanOperation.h" #include "BLI_math.h" #include "BLI_utildefines.h" #include "COM_ExecutionSystem.h" #include "IMB_colormanagement.h" namespace blender::compositor { CalculateMeanOperation::CalculateMeanOperation() { this->addInputSocket(DataType::Color, ResizeMode::None); this->addOutputSocket(DataType::Value); this->m_imageReader = nullptr; this->m_iscalculated = false; this->m_setting = 1; this->flags.complex = true; } void CalculateMeanOperation::initExecution() { this->m_imageReader = this->getInputSocketReader(0); this->m_iscalculated = false; NodeOperation::initMutex(); } void CalculateMeanOperation::executePixel(float output[4], int /*x*/, int /*y*/, void * /*data*/) { output[0] = this->m_result; } void CalculateMeanOperation::deinitExecution() { this->m_imageReader = nullptr; NodeOperation::deinitMutex(); } bool CalculateMeanOperation::determineDependingAreaOfInterest(rcti * /*input*/, ReadBufferOperation *readOperation, rcti *output) { rcti imageInput; if (this->m_iscalculated) { return false; } NodeOperation *operation = getInputOperation(0); imageInput.xmax = operation->getWidth(); imageInput.xmin = 0; imageInput.ymax = operation->getHeight(); imageInput.ymin = 0; if (operation->determineDependingAreaOfInterest(&imageInput, readOperation, output)) { return true; } return false; } void *CalculateMeanOperation::initializeTileData(rcti *rect) { lockMutex(); if (!this->m_iscalculated) { MemoryBuffer *tile = (MemoryBuffer *)this->m_imageReader->initializeTileData(rect); calculateMean(tile); this->m_iscalculated = true; } unlockMutex(); return nullptr; } void CalculateMeanOperation::calculateMean(MemoryBuffer *tile) { this->m_result = 0.0f; float *buffer = tile->getBuffer(); int size = tile->getWidth() * tile->getHeight(); int pixels = 0; float sum = 0.0f; for (int i = 0, offset = 0; i < size; i++, offset += 4) { if (buffer[offset + 3] > 0) { pixels++; switch (this->m_setting) { case 1: { sum += IMB_colormanagement_get_luminance(&buffer[offset]); break; } case 2: { sum += buffer[offset]; break; } case 3: { sum += buffer[offset + 1]; break; } case 4: { sum += buffer[offset + 2]; break; } case 5: { float yuv[3]; rgb_to_yuv(buffer[offset], buffer[offset + 1], buffer[offset + 2], &yuv[0], &yuv[1], &yuv[2], BLI_YUV_ITU_BT709); sum += yuv[0]; break; } } } } this->m_result = sum / pixels; } void CalculateMeanOperation::setSetting(int setting) { this->m_setting = setting; switch (setting) { case 1: { setting_func_ = IMB_colormanagement_get_luminance; break; } case 2: { setting_func_ = [](const float *elem) { return elem[0]; }; break; } case 3: { setting_func_ = [](const float *elem) { return elem[1]; }; break; } case 4: { setting_func_ = [](const float *elem) { return elem[2]; }; break; } case 5: { setting_func_ = [](const float *elem) { float yuv[3]; rgb_to_yuv(elem[0], elem[1], elem[2], &yuv[0], &yuv[1], &yuv[2], BLI_YUV_ITU_BT709); return yuv[0]; }; break; } } } void CalculateMeanOperation::get_area_of_interest(int input_idx, const rcti &UNUSED(output_area), rcti &r_input_area) { BLI_assert(input_idx == 0); NodeOperation *operation = getInputOperation(input_idx); r_input_area.xmin = 0; r_input_area.ymin = 0; r_input_area.xmax = operation->getWidth(); r_input_area.ymax = operation->getHeight(); } void CalculateMeanOperation::update_memory_buffer_started(MemoryBuffer *UNUSED(output), const rcti &UNUSED(area), Span inputs) { if (!this->m_iscalculated) { MemoryBuffer *input = inputs[0]; m_result = calc_mean(input); this->m_iscalculated = true; } } void CalculateMeanOperation::update_memory_buffer_partial(MemoryBuffer *output, const rcti &area, Span UNUSED(inputs)) { output->fill(area, &m_result); } float CalculateMeanOperation::calc_mean(const MemoryBuffer *input) { PixelsSum total = {0}; exec_system_->execute_work( input->get_rect(), [=](const rcti &split) { return calc_area_sum(input, split); }, total, [](PixelsSum &join, const PixelsSum &chunk) { join.sum += chunk.sum; join.num_pixels += chunk.num_pixels; }); return total.num_pixels == 0 ? 0.0f : total.sum / total.num_pixels; } using PixelsSum = CalculateMeanOperation::PixelsSum; PixelsSum CalculateMeanOperation::calc_area_sum(const MemoryBuffer *input, const rcti &area) { PixelsSum result = {0}; for (const float *elem : input->get_buffer_area(area)) { if (elem[3] <= 0.0f) { continue; } result.sum += setting_func_(elem); result.num_pixels++; } return result; } } // namespace blender::compositor