/* * Copyright 2011, Blender Foundation. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * Contributor: * Jeroen Bakker * Monique Dewanchand * Campbell Barton */ #include "COM_GaussianAlphaYBlurOperation.h" #include "BLI_math.h" #include "MEM_guardedalloc.h" extern "C" { # include "RE_pipeline.h" } GaussianAlphaYBlurOperation::GaussianAlphaYBlurOperation() : BlurBaseOperation(COM_DT_VALUE) { this->m_gausstab = NULL; this->m_filtersize = 0; this->m_falloff = -1; /* intentionally invalid, so we can detect uninitialized values */ } void *GaussianAlphaYBlurOperation::initializeTileData(rcti *rect) { lockMutex(); if (!this->m_sizeavailable) { updateGauss(); } void *buffer = getInputOperation(0)->initializeTileData(NULL); unlockMutex(); return buffer; } void GaussianAlphaYBlurOperation::initExecution() { /* BlurBaseOperation::initExecution(); */ /* until we suppoer size input - comment this */ initMutex(); if (this->m_sizeavailable) { float rad = max_ff(m_size * m_data->sizey, 0.0f); m_filtersize = min_ii(ceil(rad), MAX_GAUSSTAB_RADIUS); m_gausstab = BlurBaseOperation::make_gausstab(rad, m_filtersize); m_distbuf_inv = BlurBaseOperation::make_dist_fac_inverse(rad, m_filtersize, m_falloff); } } void GaussianAlphaYBlurOperation::updateGauss() { if (this->m_gausstab == NULL) { updateSize(); float rad = max_ff(m_size * m_data->sizey, 0.0f); m_filtersize = min_ii(ceil(rad), MAX_GAUSSTAB_RADIUS); m_gausstab = BlurBaseOperation::make_gausstab(rad, m_filtersize); } if (this->m_distbuf_inv == NULL) { updateSize(); float rad = max_ff(m_size * m_data->sizey, 0.0f); m_filtersize = min_ii(ceil(rad), MAX_GAUSSTAB_RADIUS); m_distbuf_inv = BlurBaseOperation::make_dist_fac_inverse(rad, m_filtersize, m_falloff); } } BLI_INLINE float finv_test(const float f, const bool test) { return (LIKELY(test == false)) ? f : 1.0f - f; } void GaussianAlphaYBlurOperation::executePixel(float output[4], int x, int y, void *data) { const bool do_invert = this->m_do_subtract; MemoryBuffer *inputBuffer = (MemoryBuffer *)data; float *buffer = inputBuffer->getBuffer(); int bufferwidth = inputBuffer->getWidth(); int bufferstartx = inputBuffer->getRect()->xmin; int bufferstarty = inputBuffer->getRect()->ymin; rcti &rect = *inputBuffer->getRect(); int xmin = max_ii(x, rect.xmin); int ymin = max_ii(y - m_filtersize, rect.ymin); int ymax = min_ii(y + m_filtersize + 1, rect.ymax); /* *** this is the main part which is different to 'GaussianYBlurOperation' *** */ int step = getStep(); /* gauss */ float alpha_accum = 0.0f; float multiplier_accum = 0.0f; /* dilate */ float value_max = finv_test(buffer[(x * 4) + (y * 4 * bufferwidth)], do_invert); /* init with the current color to avoid unneeded lookups */ float distfacinv_max = 1.0f; /* 0 to 1 */ for (int ny = ymin; ny < ymax; ny += step) { int bufferindex = ((xmin - bufferstartx) * 4) + ((ny - bufferstarty) * 4 * bufferwidth); const int index = (ny - y) + this->m_filtersize; float value = finv_test(buffer[bufferindex], do_invert); float multiplier; /* gauss */ { multiplier = this->m_gausstab[index]; alpha_accum += value * multiplier; multiplier_accum += multiplier; } /* dilate - find most extreme color */ if (value > value_max) { multiplier = this->m_distbuf_inv[index]; value *= multiplier; if (value > value_max) { value_max = value; distfacinv_max = multiplier; } } } /* blend between the max value and gauss blue - gives nice feather */ const float value_blur = alpha_accum / multiplier_accum; const float value_final = (value_max * distfacinv_max) + (value_blur * (1.0f - distfacinv_max)); output[0] = finv_test(value_final, do_invert); } void GaussianAlphaYBlurOperation::deinitExecution() { BlurBaseOperation::deinitExecution(); MEM_freeN(this->m_gausstab); this->m_gausstab = NULL; MEM_freeN(this->m_distbuf_inv); this->m_distbuf_inv = NULL; deinitMutex(); } bool GaussianAlphaYBlurOperation::determineDependingAreaOfInterest(rcti *input, ReadBufferOperation *readOperation, rcti *output) { rcti newInput; #if 0 /* until we add size input */ rcti sizeInput; sizeInput.xmin = 0; sizeInput.ymin = 0; sizeInput.xmax = 5; sizeInput.ymax = 5; NodeOperation *operation = this->getInputOperation(1); if (operation->determineDependingAreaOfInterest(&sizeInput, readOperation, output)) { return true; } else #endif { if (this->m_sizeavailable && this->m_gausstab != NULL) { newInput.xmax = input->xmax; newInput.xmin = input->xmin; newInput.ymax = input->ymax + this->m_filtersize + 1; newInput.ymin = input->ymin - this->m_filtersize - 1; } else { newInput.xmax = this->getWidth(); newInput.xmin = 0; newInput.ymax = this->getHeight(); newInput.ymin = 0; } return NodeOperation::determineDependingAreaOfInterest(&newInput, readOperation, output); } }