/* * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * Copyright 2011, Blender Foundation. */ #include "COM_GaussianBokehBlurOperation.h" #include "RE_pipeline.h" namespace blender::compositor { GaussianBokehBlurOperation::GaussianBokehBlurOperation() : BlurBaseOperation(DataType::Color) { this->m_gausstab = nullptr; } void *GaussianBokehBlurOperation::initializeTileData(rcti * /*rect*/) { lockMutex(); if (!this->m_sizeavailable) { updateGauss(); } void *buffer = getInputOperation(0)->initializeTileData(nullptr); unlockMutex(); return buffer; } void GaussianBokehBlurOperation::init_data() { BlurBaseOperation::init_data(); const float width = this->getWidth(); const float height = this->getHeight(); if (!this->m_sizeavailable) { updateSize(); } radxf_ = this->m_size * (float)this->m_data.sizex; CLAMP(radxf_, 0.0f, width / 2.0f); /* Vertical. */ radyf_ = this->m_size * (float)this->m_data.sizey; CLAMP(radyf_, 0.0f, height / 2.0f); this->m_radx = ceil(radxf_); this->m_rady = ceil(radyf_); } void GaussianBokehBlurOperation::initExecution() { BlurBaseOperation::initExecution(); initMutex(); if (this->m_sizeavailable) { updateGauss(); } } void GaussianBokehBlurOperation::updateGauss() { if (this->m_gausstab == nullptr) { int ddwidth = 2 * this->m_radx + 1; int ddheight = 2 * this->m_rady + 1; int n = ddwidth * ddheight; /* create a full filter image */ float *ddgauss = (float *)MEM_mallocN(sizeof(float) * n, __func__); float *dgauss = ddgauss; float sum = 0.0f; float facx = (radxf_ > 0.0f ? 1.0f / radxf_ : 0.0f); float facy = (radyf_ > 0.0f ? 1.0f / radyf_ : 0.0f); for (int j = -this->m_rady; j <= this->m_rady; j++) { for (int i = -this->m_radx; i <= this->m_radx; i++, dgauss++) { float fj = (float)j * facy; float fi = (float)i * facx; float dist = sqrt(fj * fj + fi * fi); *dgauss = RE_filter_value(this->m_data.filtertype, dist); sum += *dgauss; } } if (sum > 0.0f) { /* normalize */ float norm = 1.0f / sum; for (int j = n - 1; j >= 0; j--) { ddgauss[j] *= norm; } } else { int center = m_rady * ddwidth + m_radx; ddgauss[center] = 1.0f; } this->m_gausstab = ddgauss; } } void GaussianBokehBlurOperation::executePixel(float output[4], int x, int y, void *data) { float tempColor[4]; tempColor[0] = 0; tempColor[1] = 0; tempColor[2] = 0; tempColor[3] = 0; float multiplier_accum = 0; MemoryBuffer *inputBuffer = (MemoryBuffer *)data; float *buffer = inputBuffer->getBuffer(); int bufferwidth = inputBuffer->getWidth(); const rcti &input_rect = inputBuffer->get_rect(); int bufferstartx = input_rect.xmin; int bufferstarty = input_rect.ymin; int ymin = max_ii(y - this->m_rady, input_rect.ymin); int ymax = min_ii(y + this->m_rady + 1, input_rect.ymax); int xmin = max_ii(x - this->m_radx, input_rect.xmin); int xmax = min_ii(x + this->m_radx + 1, input_rect.xmax); int index; int step = QualityStepHelper::getStep(); int offsetadd = QualityStepHelper::getOffsetAdd(); const int addConst = (xmin - x + this->m_radx); const int mulConst = (this->m_radx * 2 + 1); for (int ny = ymin; ny < ymax; ny += step) { index = ((ny - y) + this->m_rady) * mulConst + addConst; int bufferindex = ((xmin - bufferstartx) * 4) + ((ny - bufferstarty) * 4 * bufferwidth); for (int nx = xmin; nx < xmax; nx += step) { const float multiplier = this->m_gausstab[index]; madd_v4_v4fl(tempColor, &buffer[bufferindex], multiplier); multiplier_accum += multiplier; index += step; bufferindex += offsetadd; } } mul_v4_v4fl(output, tempColor, 1.0f / multiplier_accum); } void GaussianBokehBlurOperation::deinitExecution() { BlurBaseOperation::deinitExecution(); if (this->m_gausstab) { MEM_freeN(this->m_gausstab); this->m_gausstab = nullptr; } deinitMutex(); } bool GaussianBokehBlurOperation::determineDependingAreaOfInterest( rcti *input, ReadBufferOperation *readOperation, rcti *output) { rcti newInput; rcti sizeInput; sizeInput.xmin = 0; sizeInput.ymin = 0; sizeInput.xmax = 5; sizeInput.ymax = 5; NodeOperation *operation = this->getInputOperation(1); if (operation->determineDependingAreaOfInterest(&sizeInput, readOperation, output)) { return true; } if (this->m_sizeavailable && this->m_gausstab != nullptr) { newInput.xmin = 0; newInput.ymin = 0; newInput.xmax = this->getWidth(); newInput.ymax = this->getHeight(); } else { int addx = this->m_radx; int addy = this->m_rady; newInput.xmax = input->xmax + addx; newInput.xmin = input->xmin - addx; newInput.ymax = input->ymax + addy; newInput.ymin = input->ymin - addy; } return BlurBaseOperation::determineDependingAreaOfInterest(&newInput, readOperation, output); } void GaussianBokehBlurOperation::get_area_of_interest(const int input_idx, const rcti &output_area, rcti &r_input_area) { if (input_idx != IMAGE_INPUT_INDEX) { BlurBaseOperation::get_area_of_interest(input_idx, output_area, r_input_area); return; } r_input_area.xmax = output_area.xmax + m_radx; r_input_area.xmin = output_area.xmin - m_radx; r_input_area.ymax = output_area.ymax + m_rady; r_input_area.ymin = output_area.ymin - m_rady; } void GaussianBokehBlurOperation::update_memory_buffer_partial(MemoryBuffer *output, const rcti &area, Span inputs) { const MemoryBuffer *input = inputs[IMAGE_INPUT_INDEX]; BuffersIterator it = output->iterate_with({}, area); const rcti &input_rect = input->get_rect(); for (; !it.is_end(); ++it) { const int x = it.x; const int y = it.y; const int ymin = max_ii(y - this->m_rady, input_rect.ymin); const int ymax = min_ii(y + this->m_rady + 1, input_rect.ymax); const int xmin = max_ii(x - this->m_radx, input_rect.xmin); const int xmax = min_ii(x + this->m_radx + 1, input_rect.xmax); float tempColor[4] = {0}; float multiplier_accum = 0; const int step = QualityStepHelper::getStep(); const int elem_step = step * input->elem_stride; const int add_const = (xmin - x + this->m_radx); const int mul_const = (this->m_radx * 2 + 1); for (int ny = ymin; ny < ymax; ny += step) { const float *color = input->get_elem(xmin, ny); int gauss_index = ((ny - y) + this->m_rady) * mul_const + add_const; const int gauss_end = gauss_index + (xmax - xmin); for (; gauss_index < gauss_end; gauss_index += step, color += elem_step) { const float multiplier = this->m_gausstab[gauss_index]; madd_v4_v4fl(tempColor, color, multiplier); multiplier_accum += multiplier; } } mul_v4_v4fl(it.out, tempColor, 1.0f / multiplier_accum); } } // reference image GaussianBlurReferenceOperation::GaussianBlurReferenceOperation() : BlurBaseOperation(DataType::Color) { this->m_maintabs = nullptr; use_variable_size_ = true; } void GaussianBlurReferenceOperation::init_data() { /* Setup variables for gausstab and area of interest. */ this->m_data.image_in_width = this->getWidth(); this->m_data.image_in_height = this->getHeight(); if (this->m_data.relative) { switch (this->m_data.aspect) { case CMP_NODE_BLUR_ASPECT_NONE: this->m_data.sizex = (int)(this->m_data.percentx * 0.01f * this->m_data.image_in_width); this->m_data.sizey = (int)(this->m_data.percenty * 0.01f * this->m_data.image_in_height); break; case CMP_NODE_BLUR_ASPECT_Y: this->m_data.sizex = (int)(this->m_data.percentx * 0.01f * this->m_data.image_in_width); this->m_data.sizey = (int)(this->m_data.percenty * 0.01f * this->m_data.image_in_width); break; case CMP_NODE_BLUR_ASPECT_X: this->m_data.sizex = (int)(this->m_data.percentx * 0.01f * this->m_data.image_in_height); this->m_data.sizey = (int)(this->m_data.percenty * 0.01f * this->m_data.image_in_height); break; } } /* Horizontal. */ m_filtersizex = (float)this->m_data.sizex; int imgx = getWidth() / 2; if (m_filtersizex > imgx) { m_filtersizex = imgx; } else if (m_filtersizex < 1) { m_filtersizex = 1; } m_radx = (float)m_filtersizex; /* Vertical. */ m_filtersizey = (float)this->m_data.sizey; int imgy = getHeight() / 2; if (m_filtersizey > imgy) { m_filtersizey = imgy; } else if (m_filtersizey < 1) { m_filtersizey = 1; } m_rady = (float)m_filtersizey; } void *GaussianBlurReferenceOperation::initializeTileData(rcti * /*rect*/) { void *buffer = getInputOperation(0)->initializeTileData(nullptr); return buffer; } void GaussianBlurReferenceOperation::initExecution() { BlurBaseOperation::initExecution(); updateGauss(); } void GaussianBlurReferenceOperation::updateGauss() { int i; int x = MAX2(m_filtersizex, m_filtersizey); m_maintabs = (float **)MEM_mallocN(x * sizeof(float *), "gauss array"); for (i = 0; i < x; i++) { m_maintabs[i] = make_gausstab(i + 1, i + 1); } } void GaussianBlurReferenceOperation::executePixel(float output[4], int x, int y, void *data) { MemoryBuffer *memorybuffer = (MemoryBuffer *)data; float *buffer = memorybuffer->getBuffer(); float *gausstabx, *gausstabcenty; float *gausstaby, *gausstabcentx; int i, j; float *src; float sum, val; float rval, gval, bval, aval; int imgx = getWidth(); int imgy = getHeight(); float tempSize[4]; this->m_inputSize->read(tempSize, x, y, data); float refSize = tempSize[0]; int refradx = (int)(refSize * m_radx); int refrady = (int)(refSize * m_rady); if (refradx > m_filtersizex) { refradx = m_filtersizex; } else if (refradx < 1) { refradx = 1; } if (refrady > m_filtersizey) { refrady = m_filtersizey; } else if (refrady < 1) { refrady = 1; } if (refradx == 1 && refrady == 1) { memorybuffer->readNoCheck(output, x, y); } else { int minxr = x - refradx < 0 ? -x : -refradx; int maxxr = x + refradx > imgx ? imgx - x : refradx; int minyr = y - refrady < 0 ? -y : -refrady; int maxyr = y + refrady > imgy ? imgy - y : refrady; float *srcd = buffer + COM_DATA_TYPE_COLOR_CHANNELS * ((y + minyr) * imgx + x + minxr); gausstabx = m_maintabs[refradx - 1]; gausstabcentx = gausstabx + refradx; gausstaby = m_maintabs[refrady - 1]; gausstabcenty = gausstaby + refrady; sum = gval = rval = bval = aval = 0.0f; for (i = minyr; i < maxyr; i++, srcd += COM_DATA_TYPE_COLOR_CHANNELS * imgx) { src = srcd; for (j = minxr; j < maxxr; j++, src += COM_DATA_TYPE_COLOR_CHANNELS) { val = gausstabcenty[i] * gausstabcentx[j]; sum += val; rval += val * src[0]; gval += val * src[1]; bval += val * src[2]; aval += val * src[3]; } } sum = 1.0f / sum; output[0] = rval * sum; output[1] = gval * sum; output[2] = bval * sum; output[3] = aval * sum; } } void GaussianBlurReferenceOperation::deinitExecution() { int x, i; x = MAX2(this->m_filtersizex, this->m_filtersizey); for (i = 0; i < x; i++) { MEM_freeN(this->m_maintabs[i]); } MEM_freeN(this->m_maintabs); BlurBaseOperation::deinitExecution(); } bool GaussianBlurReferenceOperation::determineDependingAreaOfInterest( rcti *input, ReadBufferOperation *readOperation, rcti *output) { rcti newInput; NodeOperation *operation = this->getInputOperation(1); if (operation->determineDependingAreaOfInterest(input, readOperation, output)) { return true; } int addx = this->m_data.sizex + 2; int addy = this->m_data.sizey + 2; newInput.xmax = input->xmax + addx; newInput.xmin = input->xmin - addx; newInput.ymax = input->ymax + addy; newInput.ymin = input->ymin - addy; return NodeOperation::determineDependingAreaOfInterest(&newInput, readOperation, output); } void GaussianBlurReferenceOperation::get_area_of_interest(const int input_idx, const rcti &output_area, rcti &r_input_area) { if (input_idx != IMAGE_INPUT_INDEX) { BlurBaseOperation::get_area_of_interest(input_idx, output_area, r_input_area); return; } const int add_x = this->m_data.sizex + 2; const int add_y = this->m_data.sizey + 2; r_input_area.xmax = output_area.xmax + add_x; r_input_area.xmin = output_area.xmin - add_x; r_input_area.ymax = output_area.ymax + add_y; r_input_area.ymin = output_area.ymin - add_y; } void GaussianBlurReferenceOperation::update_memory_buffer_partial(MemoryBuffer *output, const rcti &area, Span inputs) { const MemoryBuffer *image_input = inputs[IMAGE_INPUT_INDEX]; MemoryBuffer *size_input = inputs[SIZE_INPUT_INDEX]; for (BuffersIterator it = output->iterate_with({size_input}, area); !it.is_end(); ++it) { const float ref_size = *it.in(0); int ref_radx = (int)(ref_size * m_radx); int ref_rady = (int)(ref_size * m_rady); if (ref_radx > m_filtersizex) { ref_radx = m_filtersizex; } else if (ref_radx < 1) { ref_radx = 1; } if (ref_rady > m_filtersizey) { ref_rady = m_filtersizey; } else if (ref_rady < 1) { ref_rady = 1; } const int x = it.x; const int y = it.y; if (ref_radx == 1 && ref_rady == 1) { image_input->read_elem(x, y, it.out); continue; } const int w = getWidth(); const int height = getHeight(); const int minxr = x - ref_radx < 0 ? -x : -ref_radx; const int maxxr = x + ref_radx > w ? w - x : ref_radx; const int minyr = y - ref_rady < 0 ? -y : -ref_rady; const int maxyr = y + ref_rady > height ? height - y : ref_rady; const float *gausstabx = m_maintabs[ref_radx - 1]; const float *gausstabcentx = gausstabx + ref_radx; const float *gausstaby = m_maintabs[ref_rady - 1]; const float *gausstabcenty = gausstaby + ref_rady; float gauss_sum = 0.0f; float color_sum[4] = {0}; const float *row_color = image_input->get_elem(x + minxr, y + minyr); for (int i = minyr; i < maxyr; i++, row_color += image_input->row_stride) { const float *color = row_color; for (int j = minxr; j < maxxr; j++, color += image_input->elem_stride) { const float val = gausstabcenty[i] * gausstabcentx[j]; gauss_sum += val; madd_v4_v4fl(color_sum, color, val); } } mul_v4_v4fl(it.out, color_sum, 1.0f / gauss_sum); } } } // namespace blender::compositor