/* SPDX-License-Identifier: GPL-2.0-or-later * Copyright 2011 Blender Foundation. */ #include "COM_MathBaseOperation.h" namespace blender::compositor { MathBaseOperation::MathBaseOperation() { /* TODO(manzanilla): after removing tiled implementation, template this class to only add needed * number of inputs. */ this->add_input_socket(DataType::Value); this->add_input_socket(DataType::Value); this->add_input_socket(DataType::Value); this->add_output_socket(DataType::Value); input_value1_operation_ = nullptr; input_value2_operation_ = nullptr; input_value3_operation_ = nullptr; use_clamp_ = false; flags_.can_be_constant = true; } void MathBaseOperation::init_execution() { input_value1_operation_ = this->get_input_socket_reader(0); input_value2_operation_ = this->get_input_socket_reader(1); input_value3_operation_ = this->get_input_socket_reader(2); } void MathBaseOperation::deinit_execution() { input_value1_operation_ = nullptr; input_value2_operation_ = nullptr; input_value3_operation_ = nullptr; } void MathBaseOperation::determine_canvas(const rcti &preferred_area, rcti &r_area) { NodeOperationInput *socket; rcti temp_area = COM_AREA_NONE; socket = this->get_input_socket(0); const bool determined = socket->determine_canvas(COM_AREA_NONE, temp_area); if (determined) { this->set_canvas_input_index(0); } else { this->set_canvas_input_index(1); } NodeOperation::determine_canvas(preferred_area, r_area); } void MathBaseOperation::clamp_if_needed(float *color) { if (use_clamp_) { CLAMP(color[0], 0.0f, 1.0f); } } void MathBaseOperation::update_memory_buffer_partial(MemoryBuffer *output, const rcti &area, Span inputs) { BuffersIterator it = output->iterate_with(inputs, area); update_memory_buffer_partial(it); } void MathAddOperation::execute_pixel_sampled(float output[4], float x, float y, PixelSampler sampler) { float input_value1[4]; float input_value2[4]; input_value1_operation_->read_sampled(input_value1, x, y, sampler); input_value2_operation_->read_sampled(input_value2, x, y, sampler); output[0] = input_value1[0] + input_value2[0]; clamp_if_needed(output); } void MathSubtractOperation::execute_pixel_sampled(float output[4], float x, float y, PixelSampler sampler) { float input_value1[4]; float input_value2[4]; input_value1_operation_->read_sampled(input_value1, x, y, sampler); input_value2_operation_->read_sampled(input_value2, x, y, sampler); output[0] = input_value1[0] - input_value2[0]; clamp_if_needed(output); } void MathMultiplyOperation::execute_pixel_sampled(float output[4], float x, float y, PixelSampler sampler) { float input_value1[4]; float input_value2[4]; input_value1_operation_->read_sampled(input_value1, x, y, sampler); input_value2_operation_->read_sampled(input_value2, x, y, sampler); output[0] = input_value1[0] * input_value2[0]; clamp_if_needed(output); } void MathDivideOperation::execute_pixel_sampled(float output[4], float x, float y, PixelSampler sampler) { float input_value1[4]; float input_value2[4]; input_value1_operation_->read_sampled(input_value1, x, y, sampler); input_value2_operation_->read_sampled(input_value2, x, y, sampler); if (input_value2[0] == 0) { /* We don't want to divide by zero. */ output[0] = 0.0; } else { output[0] = input_value1[0] / input_value2[0]; } clamp_if_needed(output); } void MathDivideOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { const float divisor = *it.in(1); *it.out = clamp_when_enabled((divisor == 0) ? 0 : *it.in(0) / divisor); } } void MathSineOperation::execute_pixel_sampled(float output[4], float x, float y, PixelSampler sampler) { float input_value1[4]; float input_value2[4]; input_value1_operation_->read_sampled(input_value1, x, y, sampler); input_value2_operation_->read_sampled(input_value2, x, y, sampler); output[0] = sin(input_value1[0]); clamp_if_needed(output); } void MathSineOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { *it.out = sin(*it.in(0)); clamp_when_enabled(it.out); } } void MathCosineOperation::execute_pixel_sampled(float output[4], float x, float y, PixelSampler sampler) { float input_value1[4]; float input_value2[4]; input_value1_operation_->read_sampled(input_value1, x, y, sampler); input_value2_operation_->read_sampled(input_value2, x, y, sampler); output[0] = cos(input_value1[0]); clamp_if_needed(output); } void MathCosineOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { *it.out = cos(*it.in(0)); clamp_when_enabled(it.out); } } void MathTangentOperation::execute_pixel_sampled(float output[4], float x, float y, PixelSampler sampler) { float input_value1[4]; float input_value2[4]; input_value1_operation_->read_sampled(input_value1, x, y, sampler); input_value2_operation_->read_sampled(input_value2, x, y, sampler); output[0] = tan(input_value1[0]); clamp_if_needed(output); } void MathTangentOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { *it.out = tan(*it.in(0)); clamp_when_enabled(it.out); } } void MathHyperbolicSineOperation::execute_pixel_sampled(float output[4], float x, float y, PixelSampler sampler) { float input_value1[4]; float input_value2[4]; input_value1_operation_->read_sampled(input_value1, x, y, sampler); input_value2_operation_->read_sampled(input_value2, x, y, sampler); output[0] = sinh(input_value1[0]); clamp_if_needed(output); } void MathHyperbolicSineOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { *it.out = sinh(*it.in(0)); clamp_when_enabled(it.out); } } void MathHyperbolicCosineOperation::execute_pixel_sampled(float output[4], float x, float y, PixelSampler sampler) { float input_value1[4]; float input_value2[4]; input_value1_operation_->read_sampled(input_value1, x, y, sampler); input_value2_operation_->read_sampled(input_value2, x, y, sampler); output[0] = cosh(input_value1[0]); clamp_if_needed(output); } void MathHyperbolicCosineOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { *it.out = cosh(*it.in(0)); clamp_when_enabled(it.out); } } void MathHyperbolicTangentOperation::execute_pixel_sampled(float output[4], float x, float y, PixelSampler sampler) { float input_value1[4]; float input_value2[4]; input_value1_operation_->read_sampled(input_value1, x, y, sampler); input_value2_operation_->read_sampled(input_value2, x, y, sampler); output[0] = tanh(input_value1[0]); clamp_if_needed(output); } void MathHyperbolicTangentOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { *it.out = tanh(*it.in(0)); clamp_when_enabled(it.out); } } void MathArcSineOperation::execute_pixel_sampled(float output[4], float x, float y, PixelSampler sampler) { float input_value1[4]; float input_value2[4]; input_value1_operation_->read_sampled(input_value1, x, y, sampler); input_value2_operation_->read_sampled(input_value2, x, y, sampler); if (input_value1[0] <= 1 && input_value1[0] >= -1) { output[0] = asin(input_value1[0]); } else { output[0] = 0.0; } clamp_if_needed(output); } void MathArcSineOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { float value1 = *it.in(0); *it.out = clamp_when_enabled((value1 <= 1 && value1 >= -1) ? asin(value1) : 0.0f); } } void MathArcCosineOperation::execute_pixel_sampled(float output[4], float x, float y, PixelSampler sampler) { float input_value1[4]; float input_value2[4]; input_value1_operation_->read_sampled(input_value1, x, y, sampler); input_value2_operation_->read_sampled(input_value2, x, y, sampler); if (input_value1[0] <= 1 && input_value1[0] >= -1) { output[0] = acos(input_value1[0]); } else { output[0] = 0.0; } clamp_if_needed(output); } void MathArcCosineOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { float value1 = *it.in(0); *it.out = clamp_when_enabled((value1 <= 1 && value1 >= -1) ? acos(value1) : 0.0f); } } void MathArcTangentOperation::execute_pixel_sampled(float output[4], float x, float y, PixelSampler sampler) { float input_value1[4]; float input_value2[4]; input_value1_operation_->read_sampled(input_value1, x, y, sampler); input_value2_operation_->read_sampled(input_value2, x, y, sampler); output[0] = atan(input_value1[0]); clamp_if_needed(output); } void MathArcTangentOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { *it.out = atan(*it.in(0)); clamp_when_enabled(it.out); } } void MathPowerOperation::execute_pixel_sampled(float output[4], float x, float y, PixelSampler sampler) { float input_value1[4]; float input_value2[4]; input_value1_operation_->read_sampled(input_value1, x, y, sampler); input_value2_operation_->read_sampled(input_value2, x, y, sampler); if (input_value1[0] >= 0) { output[0] = pow(input_value1[0], input_value2[0]); } else { float y_mod_1 = fmod(input_value2[0], 1); /* if input value is not nearly an integer, fall back to zero, nicer than straight rounding */ if (y_mod_1 > 0.999f || y_mod_1 < 0.001f) { output[0] = pow(input_value1[0], floorf(input_value2[0] + 0.5f)); } else { output[0] = 0.0; } } clamp_if_needed(output); } void MathPowerOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { const float value1 = *it.in(0); const float value2 = *it.in(1); if (value1 >= 0) { *it.out = pow(value1, value2); } else { const float y_mod_1 = fmod(value2, 1); /* If input value is not nearly an integer, fall back to zero, nicer than straight rounding. */ if (y_mod_1 > 0.999f || y_mod_1 < 0.001f) { *it.out = pow(value1, floorf(value2 + 0.5f)); } else { *it.out = 0.0f; } } clamp_when_enabled(it.out); } } void MathLogarithmOperation::execute_pixel_sampled(float output[4], float x, float y, PixelSampler sampler) { float input_value1[4]; float input_value2[4]; input_value1_operation_->read_sampled(input_value1, x, y, sampler); input_value2_operation_->read_sampled(input_value2, x, y, sampler); if (input_value1[0] > 0 && input_value2[0] > 0) { output[0] = log(input_value1[0]) / log(input_value2[0]); } else { output[0] = 0.0; } clamp_if_needed(output); } void MathLogarithmOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { const float value1 = *it.in(0); const float value2 = *it.in(1); if (value1 > 0 && value2 > 0) { *it.out = log(value1) / log(value2); } else { *it.out = 0.0; } clamp_when_enabled(it.out); } } void MathMinimumOperation::execute_pixel_sampled(float output[4], float x, float y, PixelSampler sampler) { float input_value1[4]; float input_value2[4]; input_value1_operation_->read_sampled(input_value1, x, y, sampler); input_value2_operation_->read_sampled(input_value2, x, y, sampler); output[0] = MIN2(input_value1[0], input_value2[0]); clamp_if_needed(output); } void MathMinimumOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { *it.out = MIN2(*it.in(0), *it.in(1)); clamp_when_enabled(it.out); } } void MathMaximumOperation::execute_pixel_sampled(float output[4], float x, float y, PixelSampler sampler) { float input_value1[4]; float input_value2[4]; input_value1_operation_->read_sampled(input_value1, x, y, sampler); input_value2_operation_->read_sampled(input_value2, x, y, sampler); output[0] = MAX2(input_value1[0], input_value2[0]); clamp_if_needed(output); } void MathMaximumOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { *it.out = MAX2(*it.in(0), *it.in(1)); clamp_when_enabled(it.out); } } void MathRoundOperation::execute_pixel_sampled(float output[4], float x, float y, PixelSampler sampler) { float input_value1[4]; float input_value2[4]; input_value1_operation_->read_sampled(input_value1, x, y, sampler); input_value2_operation_->read_sampled(input_value2, x, y, sampler); output[0] = round(input_value1[0]); clamp_if_needed(output); } void MathRoundOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { *it.out = round(*it.in(0)); clamp_when_enabled(it.out); } } void MathLessThanOperation::execute_pixel_sampled(float output[4], float x, float y, PixelSampler sampler) { float input_value1[4]; float input_value2[4]; input_value1_operation_->read_sampled(input_value1, x, y, sampler); input_value2_operation_->read_sampled(input_value2, x, y, sampler); output[0] = input_value1[0] < input_value2[0] ? 1.0f : 0.0f; clamp_if_needed(output); } void MathGreaterThanOperation::execute_pixel_sampled(float output[4], float x, float y, PixelSampler sampler) { float input_value1[4]; float input_value2[4]; input_value1_operation_->read_sampled(input_value1, x, y, sampler); input_value2_operation_->read_sampled(input_value2, x, y, sampler); output[0] = input_value1[0] > input_value2[0] ? 1.0f : 0.0f; clamp_if_needed(output); } void MathModuloOperation::execute_pixel_sampled(float output[4], float x, float y, PixelSampler sampler) { float input_value1[4]; float input_value2[4]; input_value1_operation_->read_sampled(input_value1, x, y, sampler); input_value2_operation_->read_sampled(input_value2, x, y, sampler); if (input_value2[0] == 0) { output[0] = 0.0; } else { output[0] = fmod(input_value1[0], input_value2[0]); } clamp_if_needed(output); } void MathModuloOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { const float value2 = *it.in(1); *it.out = (value2 == 0) ? 0 : fmod(*it.in(0), value2); clamp_when_enabled(it.out); } } void MathAbsoluteOperation::execute_pixel_sampled(float output[4], float x, float y, PixelSampler sampler) { float input_value1[4]; input_value1_operation_->read_sampled(input_value1, x, y, sampler); output[0] = fabs(input_value1[0]); clamp_if_needed(output); } void MathAbsoluteOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { *it.out = fabs(*it.in(0)); clamp_when_enabled(it.out); } } void MathRadiansOperation::execute_pixel_sampled(float output[4], float x, float y, PixelSampler sampler) { float input_value1[4]; input_value1_operation_->read_sampled(input_value1, x, y, sampler); output[0] = DEG2RADF(input_value1[0]); clamp_if_needed(output); } void MathRadiansOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { *it.out = DEG2RADF(*it.in(0)); clamp_when_enabled(it.out); } } void MathDegreesOperation::execute_pixel_sampled(float output[4], float x, float y, PixelSampler sampler) { float input_value1[4]; input_value1_operation_->read_sampled(input_value1, x, y, sampler); output[0] = RAD2DEGF(input_value1[0]); clamp_if_needed(output); } void MathDegreesOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { *it.out = RAD2DEGF(*it.in(0)); clamp_when_enabled(it.out); } } void MathArcTan2Operation::execute_pixel_sampled(float output[4], float x, float y, PixelSampler sampler) { float input_value1[4]; float input_value2[4]; input_value1_operation_->read_sampled(input_value1, x, y, sampler); input_value2_operation_->read_sampled(input_value2, x, y, sampler); output[0] = atan2(input_value1[0], input_value2[0]); clamp_if_needed(output); } void MathArcTan2Operation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { *it.out = atan2(*it.in(0), *it.in(1)); clamp_when_enabled(it.out); } } void MathFloorOperation::execute_pixel_sampled(float output[4], float x, float y, PixelSampler sampler) { float input_value1[4]; input_value1_operation_->read_sampled(input_value1, x, y, sampler); output[0] = floor(input_value1[0]); clamp_if_needed(output); } void MathFloorOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { *it.out = floor(*it.in(0)); clamp_when_enabled(it.out); } } void MathCeilOperation::execute_pixel_sampled(float output[4], float x, float y, PixelSampler sampler) { float input_value1[4]; input_value1_operation_->read_sampled(input_value1, x, y, sampler); output[0] = ceil(input_value1[0]); clamp_if_needed(output); } void MathCeilOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { *it.out = ceil(*it.in(0)); clamp_when_enabled(it.out); } } void MathFractOperation::execute_pixel_sampled(float output[4], float x, float y, PixelSampler sampler) { float input_value1[4]; input_value1_operation_->read_sampled(input_value1, x, y, sampler); output[0] = input_value1[0] - floor(input_value1[0]); clamp_if_needed(output); } void MathFractOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { const float value = *it.in(0); *it.out = clamp_when_enabled(value - floor(value)); } } void MathSqrtOperation::execute_pixel_sampled(float output[4], float x, float y, PixelSampler sampler) { float input_value1[4]; input_value1_operation_->read_sampled(input_value1, x, y, sampler); if (input_value1[0] > 0) { output[0] = sqrt(input_value1[0]); } else { output[0] = 0.0f; } clamp_if_needed(output); } void MathSqrtOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { const float value = *it.in(0); *it.out = clamp_when_enabled(value > 0 ? sqrt(value) : 0.0f); } } void MathInverseSqrtOperation::execute_pixel_sampled(float output[4], float x, float y, PixelSampler sampler) { float input_value1[4]; input_value1_operation_->read_sampled(input_value1, x, y, sampler); if (input_value1[0] > 0) { output[0] = 1.0f / sqrt(input_value1[0]); } else { output[0] = 0.0f; } clamp_if_needed(output); } void MathInverseSqrtOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { const float value = *it.in(0); *it.out = clamp_when_enabled(value > 0 ? 1.0f / sqrt(value) : 0.0f); } } void MathSignOperation::execute_pixel_sampled(float output[4], float x, float y, PixelSampler sampler) { float input_value1[4]; input_value1_operation_->read_sampled(input_value1, x, y, sampler); output[0] = compatible_signf(input_value1[0]); clamp_if_needed(output); } void MathSignOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { *it.out = compatible_signf(*it.in(0)); clamp_when_enabled(it.out); } } void MathExponentOperation::execute_pixel_sampled(float output[4], float x, float y, PixelSampler sampler) { float input_value1[4]; input_value1_operation_->read_sampled(input_value1, x, y, sampler); output[0] = expf(input_value1[0]); clamp_if_needed(output); } void MathExponentOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { *it.out = expf(*it.in(0)); clamp_when_enabled(it.out); } } void MathTruncOperation::execute_pixel_sampled(float output[4], float x, float y, PixelSampler sampler) { float input_value1[4]; input_value1_operation_->read_sampled(input_value1, x, y, sampler); output[0] = (input_value1[0] >= 0.0f) ? floor(input_value1[0]) : ceil(input_value1[0]); clamp_if_needed(output); } void MathTruncOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { const float value = *it.in(0); *it.out = (value >= 0.0f) ? floor(value) : ceil(value); clamp_when_enabled(it.out); } } void MathSnapOperation::execute_pixel_sampled(float output[4], float x, float y, PixelSampler sampler) { float input_value1[4]; float input_value2[4]; input_value1_operation_->read_sampled(input_value1, x, y, sampler); input_value2_operation_->read_sampled(input_value2, x, y, sampler); if (input_value1[0] == 0 || input_value2[0] == 0) { /* We don't want to divide by zero. */ output[0] = 0.0f; } else { output[0] = floorf(input_value1[0] / input_value2[0]) * input_value2[0]; } clamp_if_needed(output); } void MathSnapOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { const float value1 = *it.in(0); const float value2 = *it.in(1); if (value1 == 0 || value2 == 0) { /* Avoid dividing by zero. */ *it.out = 0.0f; } else { *it.out = floorf(value1 / value2) * value2; } clamp_when_enabled(it.out); } } void MathWrapOperation::execute_pixel_sampled(float output[4], float x, float y, PixelSampler sampler) { float input_value1[4]; float input_value2[4]; float input_value3[4]; input_value1_operation_->read_sampled(input_value1, x, y, sampler); input_value2_operation_->read_sampled(input_value2, x, y, sampler); input_value3_operation_->read_sampled(input_value3, x, y, sampler); output[0] = wrapf(input_value1[0], input_value2[0], input_value3[0]); clamp_if_needed(output); } void MathWrapOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { *it.out = wrapf(*it.in(0), *it.in(1), *it.in(2)); clamp_when_enabled(it.out); } } void MathPingpongOperation::execute_pixel_sampled(float output[4], float x, float y, PixelSampler sampler) { float input_value1[4]; float input_value2[4]; input_value1_operation_->read_sampled(input_value1, x, y, sampler); input_value2_operation_->read_sampled(input_value2, x, y, sampler); output[0] = pingpongf(input_value1[0], input_value2[0]); clamp_if_needed(output); } void MathPingpongOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { *it.out = pingpongf(*it.in(0), *it.in(1)); clamp_when_enabled(it.out); } } void MathCompareOperation::execute_pixel_sampled(float output[4], float x, float y, PixelSampler sampler) { float input_value1[4]; float input_value2[4]; float input_value3[4]; input_value1_operation_->read_sampled(input_value1, x, y, sampler); input_value2_operation_->read_sampled(input_value2, x, y, sampler); input_value3_operation_->read_sampled(input_value3, x, y, sampler); output[0] = (fabsf(input_value1[0] - input_value2[0]) <= MAX2(input_value3[0], 1e-5f)) ? 1.0f : 0.0f; clamp_if_needed(output); } void MathCompareOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { *it.out = (fabsf(*it.in(0) - *it.in(1)) <= MAX2(*it.in(2), 1e-5f)) ? 1.0f : 0.0f; clamp_when_enabled(it.out); } } void MathMultiplyAddOperation::execute_pixel_sampled(float output[4], float x, float y, PixelSampler sampler) { float input_value1[4]; float input_value2[4]; float input_value3[4]; input_value1_operation_->read_sampled(input_value1, x, y, sampler); input_value2_operation_->read_sampled(input_value2, x, y, sampler); input_value3_operation_->read_sampled(input_value3, x, y, sampler); output[0] = input_value1[0] * input_value2[0] + input_value3[0]; clamp_if_needed(output); } void MathMultiplyAddOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { *it.out = it.in(0)[0] * it.in(1)[0] + it.in(2)[0]; clamp_when_enabled(it.out); } } void MathSmoothMinOperation::execute_pixel_sampled(float output[4], float x, float y, PixelSampler sampler) { float input_value1[4]; float input_value2[4]; float input_value3[4]; input_value1_operation_->read_sampled(input_value1, x, y, sampler); input_value2_operation_->read_sampled(input_value2, x, y, sampler); input_value3_operation_->read_sampled(input_value3, x, y, sampler); output[0] = smoothminf(input_value1[0], input_value2[0], input_value3[0]); clamp_if_needed(output); } void MathSmoothMinOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { *it.out = smoothminf(*it.in(0), *it.in(1), *it.in(2)); clamp_when_enabled(it.out); } } void MathSmoothMaxOperation::execute_pixel_sampled(float output[4], float x, float y, PixelSampler sampler) { float input_value1[4]; float input_value2[4]; float input_value3[4]; input_value1_operation_->read_sampled(input_value1, x, y, sampler); input_value2_operation_->read_sampled(input_value2, x, y, sampler); input_value3_operation_->read_sampled(input_value3, x, y, sampler); output[0] = -smoothminf(-input_value1[0], -input_value2[0], input_value3[0]); clamp_if_needed(output); } void MathSmoothMaxOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { *it.out = -smoothminf(-it.in(0)[0], -it.in(1)[0], it.in(2)[0]); clamp_when_enabled(it.out); } } } // namespace blender::compositor