/* * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * Copyright 2011, Blender Foundation. */ #include "COM_MathBaseOperation.h" namespace blender::compositor { MathBaseOperation::MathBaseOperation() { /* TODO(manzanilla): after removing tiled implementation, template this class to only add needed * number of inputs. */ this->addInputSocket(DataType::Value); this->addInputSocket(DataType::Value); this->addInputSocket(DataType::Value); this->addOutputSocket(DataType::Value); m_inputValue1Operation = nullptr; m_inputValue2Operation = nullptr; m_inputValue3Operation = nullptr; m_useClamp = false; this->flags.can_be_constant = true; } void MathBaseOperation::initExecution() { m_inputValue1Operation = this->getInputSocketReader(0); m_inputValue2Operation = this->getInputSocketReader(1); m_inputValue3Operation = this->getInputSocketReader(2); } void MathBaseOperation::deinitExecution() { m_inputValue1Operation = nullptr; m_inputValue2Operation = nullptr; m_inputValue3Operation = nullptr; } void MathBaseOperation::determine_canvas(const rcti &preferred_area, rcti &r_area) { NodeOperationInput *socket; rcti temp_area; socket = this->getInputSocket(0); const bool determined = socket->determine_canvas(COM_AREA_NONE, temp_area); if (determined) { this->set_canvas_input_index(0); } else { this->set_canvas_input_index(1); } NodeOperation::determine_canvas(preferred_area, r_area); } void MathBaseOperation::clampIfNeeded(float *color) { if (m_useClamp) { CLAMP(color[0], 0.0f, 1.0f); } } void MathBaseOperation::update_memory_buffer_partial(MemoryBuffer *output, const rcti &area, Span inputs) { BuffersIterator it = output->iterate_with(inputs, area); update_memory_buffer_partial(it); } void MathAddOperation::executePixelSampled(float output[4], float x, float y, PixelSampler sampler) { float inputValue1[4]; float inputValue2[4]; m_inputValue1Operation->readSampled(inputValue1, x, y, sampler); m_inputValue2Operation->readSampled(inputValue2, x, y, sampler); output[0] = inputValue1[0] + inputValue2[0]; clampIfNeeded(output); } void MathSubtractOperation::executePixelSampled(float output[4], float x, float y, PixelSampler sampler) { float inputValue1[4]; float inputValue2[4]; m_inputValue1Operation->readSampled(inputValue1, x, y, sampler); m_inputValue2Operation->readSampled(inputValue2, x, y, sampler); output[0] = inputValue1[0] - inputValue2[0]; clampIfNeeded(output); } void MathMultiplyOperation::executePixelSampled(float output[4], float x, float y, PixelSampler sampler) { float inputValue1[4]; float inputValue2[4]; m_inputValue1Operation->readSampled(inputValue1, x, y, sampler); m_inputValue2Operation->readSampled(inputValue2, x, y, sampler); output[0] = inputValue1[0] * inputValue2[0]; clampIfNeeded(output); } void MathDivideOperation::executePixelSampled(float output[4], float x, float y, PixelSampler sampler) { float inputValue1[4]; float inputValue2[4]; m_inputValue1Operation->readSampled(inputValue1, x, y, sampler); m_inputValue2Operation->readSampled(inputValue2, x, y, sampler); if (inputValue2[0] == 0) { /* We don't want to divide by zero. */ output[0] = 0.0; } else { output[0] = inputValue1[0] / inputValue2[0]; } clampIfNeeded(output); } void MathDivideOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { const float divisor = *it.in(1); *it.out = clamp_when_enabled((divisor == 0) ? 0 : *it.in(0) / divisor); } } void MathSineOperation::executePixelSampled(float output[4], float x, float y, PixelSampler sampler) { float inputValue1[4]; float inputValue2[4]; m_inputValue1Operation->readSampled(inputValue1, x, y, sampler); m_inputValue2Operation->readSampled(inputValue2, x, y, sampler); output[0] = sin(inputValue1[0]); clampIfNeeded(output); } void MathSineOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { *it.out = sin(*it.in(0)); clamp_when_enabled(it.out); } } void MathCosineOperation::executePixelSampled(float output[4], float x, float y, PixelSampler sampler) { float inputValue1[4]; float inputValue2[4]; m_inputValue1Operation->readSampled(inputValue1, x, y, sampler); m_inputValue2Operation->readSampled(inputValue2, x, y, sampler); output[0] = cos(inputValue1[0]); clampIfNeeded(output); } void MathCosineOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { *it.out = cos(*it.in(0)); clamp_when_enabled(it.out); } } void MathTangentOperation::executePixelSampled(float output[4], float x, float y, PixelSampler sampler) { float inputValue1[4]; float inputValue2[4]; m_inputValue1Operation->readSampled(inputValue1, x, y, sampler); m_inputValue2Operation->readSampled(inputValue2, x, y, sampler); output[0] = tan(inputValue1[0]); clampIfNeeded(output); } void MathTangentOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { *it.out = tan(*it.in(0)); clamp_when_enabled(it.out); } } void MathHyperbolicSineOperation::executePixelSampled(float output[4], float x, float y, PixelSampler sampler) { float inputValue1[4]; float inputValue2[4]; m_inputValue1Operation->readSampled(inputValue1, x, y, sampler); m_inputValue2Operation->readSampled(inputValue2, x, y, sampler); output[0] = sinh(inputValue1[0]); clampIfNeeded(output); } void MathHyperbolicSineOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { *it.out = sinh(*it.in(0)); clamp_when_enabled(it.out); } } void MathHyperbolicCosineOperation::executePixelSampled(float output[4], float x, float y, PixelSampler sampler) { float inputValue1[4]; float inputValue2[4]; m_inputValue1Operation->readSampled(inputValue1, x, y, sampler); m_inputValue2Operation->readSampled(inputValue2, x, y, sampler); output[0] = cosh(inputValue1[0]); clampIfNeeded(output); } void MathHyperbolicCosineOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { *it.out = cosh(*it.in(0)); clamp_when_enabled(it.out); } } void MathHyperbolicTangentOperation::executePixelSampled(float output[4], float x, float y, PixelSampler sampler) { float inputValue1[4]; float inputValue2[4]; m_inputValue1Operation->readSampled(inputValue1, x, y, sampler); m_inputValue2Operation->readSampled(inputValue2, x, y, sampler); output[0] = tanh(inputValue1[0]); clampIfNeeded(output); } void MathHyperbolicTangentOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { *it.out = tanh(*it.in(0)); clamp_when_enabled(it.out); } } void MathArcSineOperation::executePixelSampled(float output[4], float x, float y, PixelSampler sampler) { float inputValue1[4]; float inputValue2[4]; m_inputValue1Operation->readSampled(inputValue1, x, y, sampler); m_inputValue2Operation->readSampled(inputValue2, x, y, sampler); if (inputValue1[0] <= 1 && inputValue1[0] >= -1) { output[0] = asin(inputValue1[0]); } else { output[0] = 0.0; } clampIfNeeded(output); } void MathArcSineOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { float value1 = *it.in(0); *it.out = clamp_when_enabled((value1 <= 1 && value1 >= -1) ? asin(value1) : 0.0f); } } void MathArcCosineOperation::executePixelSampled(float output[4], float x, float y, PixelSampler sampler) { float inputValue1[4]; float inputValue2[4]; m_inputValue1Operation->readSampled(inputValue1, x, y, sampler); m_inputValue2Operation->readSampled(inputValue2, x, y, sampler); if (inputValue1[0] <= 1 && inputValue1[0] >= -1) { output[0] = acos(inputValue1[0]); } else { output[0] = 0.0; } clampIfNeeded(output); } void MathArcCosineOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { float value1 = *it.in(0); *it.out = clamp_when_enabled((value1 <= 1 && value1 >= -1) ? acos(value1) : 0.0f); } } void MathArcTangentOperation::executePixelSampled(float output[4], float x, float y, PixelSampler sampler) { float inputValue1[4]; float inputValue2[4]; m_inputValue1Operation->readSampled(inputValue1, x, y, sampler); m_inputValue2Operation->readSampled(inputValue2, x, y, sampler); output[0] = atan(inputValue1[0]); clampIfNeeded(output); } void MathArcTangentOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { *it.out = atan(*it.in(0)); clamp_when_enabled(it.out); } } void MathPowerOperation::executePixelSampled(float output[4], float x, float y, PixelSampler sampler) { float inputValue1[4]; float inputValue2[4]; m_inputValue1Operation->readSampled(inputValue1, x, y, sampler); m_inputValue2Operation->readSampled(inputValue2, x, y, sampler); if (inputValue1[0] >= 0) { output[0] = pow(inputValue1[0], inputValue2[0]); } else { float y_mod_1 = fmod(inputValue2[0], 1); /* if input value is not nearly an integer, fall back to zero, nicer than straight rounding */ if (y_mod_1 > 0.999f || y_mod_1 < 0.001f) { output[0] = pow(inputValue1[0], floorf(inputValue2[0] + 0.5f)); } else { output[0] = 0.0; } } clampIfNeeded(output); } void MathPowerOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { const float value1 = *it.in(0); const float value2 = *it.in(1); if (value1 >= 0) { *it.out = pow(value1, value2); } else { const float y_mod_1 = fmod(value2, 1); /* If input value is not nearly an integer, fall back to zero, nicer than straight rounding. */ if (y_mod_1 > 0.999f || y_mod_1 < 0.001f) { *it.out = pow(value1, floorf(value2 + 0.5f)); } else { *it.out = 0.0f; } } clamp_when_enabled(it.out); } } void MathLogarithmOperation::executePixelSampled(float output[4], float x, float y, PixelSampler sampler) { float inputValue1[4]; float inputValue2[4]; m_inputValue1Operation->readSampled(inputValue1, x, y, sampler); m_inputValue2Operation->readSampled(inputValue2, x, y, sampler); if (inputValue1[0] > 0 && inputValue2[0] > 0) { output[0] = log(inputValue1[0]) / log(inputValue2[0]); } else { output[0] = 0.0; } clampIfNeeded(output); } void MathLogarithmOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { const float value1 = *it.in(0); const float value2 = *it.in(1); if (value1 > 0 && value2 > 0) { *it.out = log(value1) / log(value2); } else { *it.out = 0.0; } clamp_when_enabled(it.out); } } void MathMinimumOperation::executePixelSampled(float output[4], float x, float y, PixelSampler sampler) { float inputValue1[4]; float inputValue2[4]; m_inputValue1Operation->readSampled(inputValue1, x, y, sampler); m_inputValue2Operation->readSampled(inputValue2, x, y, sampler); output[0] = MIN2(inputValue1[0], inputValue2[0]); clampIfNeeded(output); } void MathMinimumOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { *it.out = MIN2(*it.in(0), *it.in(1)); clamp_when_enabled(it.out); } } void MathMaximumOperation::executePixelSampled(float output[4], float x, float y, PixelSampler sampler) { float inputValue1[4]; float inputValue2[4]; m_inputValue1Operation->readSampled(inputValue1, x, y, sampler); m_inputValue2Operation->readSampled(inputValue2, x, y, sampler); output[0] = MAX2(inputValue1[0], inputValue2[0]); clampIfNeeded(output); } void MathMaximumOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { *it.out = MAX2(*it.in(0), *it.in(1)); clamp_when_enabled(it.out); } } void MathRoundOperation::executePixelSampled(float output[4], float x, float y, PixelSampler sampler) { float inputValue1[4]; float inputValue2[4]; m_inputValue1Operation->readSampled(inputValue1, x, y, sampler); m_inputValue2Operation->readSampled(inputValue2, x, y, sampler); output[0] = round(inputValue1[0]); clampIfNeeded(output); } void MathRoundOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { *it.out = round(*it.in(0)); clamp_when_enabled(it.out); } } void MathLessThanOperation::executePixelSampled(float output[4], float x, float y, PixelSampler sampler) { float inputValue1[4]; float inputValue2[4]; m_inputValue1Operation->readSampled(inputValue1, x, y, sampler); m_inputValue2Operation->readSampled(inputValue2, x, y, sampler); output[0] = inputValue1[0] < inputValue2[0] ? 1.0f : 0.0f; clampIfNeeded(output); } void MathGreaterThanOperation::executePixelSampled(float output[4], float x, float y, PixelSampler sampler) { float inputValue1[4]; float inputValue2[4]; m_inputValue1Operation->readSampled(inputValue1, x, y, sampler); m_inputValue2Operation->readSampled(inputValue2, x, y, sampler); output[0] = inputValue1[0] > inputValue2[0] ? 1.0f : 0.0f; clampIfNeeded(output); } void MathModuloOperation::executePixelSampled(float output[4], float x, float y, PixelSampler sampler) { float inputValue1[4]; float inputValue2[4]; m_inputValue1Operation->readSampled(inputValue1, x, y, sampler); m_inputValue2Operation->readSampled(inputValue2, x, y, sampler); if (inputValue2[0] == 0) { output[0] = 0.0; } else { output[0] = fmod(inputValue1[0], inputValue2[0]); } clampIfNeeded(output); } void MathModuloOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { const float value2 = *it.in(1); *it.out = (value2 == 0) ? 0 : fmod(*it.in(0), value2); clamp_when_enabled(it.out); } } void MathAbsoluteOperation::executePixelSampled(float output[4], float x, float y, PixelSampler sampler) { float inputValue1[4]; m_inputValue1Operation->readSampled(inputValue1, x, y, sampler); output[0] = fabs(inputValue1[0]); clampIfNeeded(output); } void MathAbsoluteOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { *it.out = fabs(*it.in(0)); clamp_when_enabled(it.out); } } void MathRadiansOperation::executePixelSampled(float output[4], float x, float y, PixelSampler sampler) { float inputValue1[4]; m_inputValue1Operation->readSampled(inputValue1, x, y, sampler); output[0] = DEG2RADF(inputValue1[0]); clampIfNeeded(output); } void MathRadiansOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { *it.out = DEG2RADF(*it.in(0)); clamp_when_enabled(it.out); } } void MathDegreesOperation::executePixelSampled(float output[4], float x, float y, PixelSampler sampler) { float inputValue1[4]; m_inputValue1Operation->readSampled(inputValue1, x, y, sampler); output[0] = RAD2DEGF(inputValue1[0]); clampIfNeeded(output); } void MathDegreesOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { *it.out = RAD2DEGF(*it.in(0)); clamp_when_enabled(it.out); } } void MathArcTan2Operation::executePixelSampled(float output[4], float x, float y, PixelSampler sampler) { float inputValue1[4]; float inputValue2[4]; m_inputValue1Operation->readSampled(inputValue1, x, y, sampler); m_inputValue2Operation->readSampled(inputValue2, x, y, sampler); output[0] = atan2(inputValue1[0], inputValue2[0]); clampIfNeeded(output); } void MathArcTan2Operation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { *it.out = atan2(*it.in(0), *it.in(1)); clamp_when_enabled(it.out); } } void MathFloorOperation::executePixelSampled(float output[4], float x, float y, PixelSampler sampler) { float inputValue1[4]; m_inputValue1Operation->readSampled(inputValue1, x, y, sampler); output[0] = floor(inputValue1[0]); clampIfNeeded(output); } void MathFloorOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { *it.out = floor(*it.in(0)); clamp_when_enabled(it.out); } } void MathCeilOperation::executePixelSampled(float output[4], float x, float y, PixelSampler sampler) { float inputValue1[4]; m_inputValue1Operation->readSampled(inputValue1, x, y, sampler); output[0] = ceil(inputValue1[0]); clampIfNeeded(output); } void MathCeilOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { *it.out = ceil(*it.in(0)); clamp_when_enabled(it.out); } } void MathFractOperation::executePixelSampled(float output[4], float x, float y, PixelSampler sampler) { float inputValue1[4]; m_inputValue1Operation->readSampled(inputValue1, x, y, sampler); output[0] = inputValue1[0] - floor(inputValue1[0]); clampIfNeeded(output); } void MathFractOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { const float value = *it.in(0); *it.out = clamp_when_enabled(value - floor(value)); } } void MathSqrtOperation::executePixelSampled(float output[4], float x, float y, PixelSampler sampler) { float inputValue1[4]; m_inputValue1Operation->readSampled(inputValue1, x, y, sampler); if (inputValue1[0] > 0) { output[0] = sqrt(inputValue1[0]); } else { output[0] = 0.0f; } clampIfNeeded(output); } void MathSqrtOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { const float value = *it.in(0); *it.out = clamp_when_enabled(value > 0 ? sqrt(value) : 0.0f); } } void MathInverseSqrtOperation::executePixelSampled(float output[4], float x, float y, PixelSampler sampler) { float inputValue1[4]; m_inputValue1Operation->readSampled(inputValue1, x, y, sampler); if (inputValue1[0] > 0) { output[0] = 1.0f / sqrt(inputValue1[0]); } else { output[0] = 0.0f; } clampIfNeeded(output); } void MathInverseSqrtOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { const float value = *it.in(0); *it.out = clamp_when_enabled(value > 0 ? 1.0f / sqrt(value) : 0.0f); } } void MathSignOperation::executePixelSampled(float output[4], float x, float y, PixelSampler sampler) { float inputValue1[4]; m_inputValue1Operation->readSampled(inputValue1, x, y, sampler); output[0] = compatible_signf(inputValue1[0]); clampIfNeeded(output); } void MathSignOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { *it.out = compatible_signf(*it.in(0)); clamp_when_enabled(it.out); } } void MathExponentOperation::executePixelSampled(float output[4], float x, float y, PixelSampler sampler) { float inputValue1[4]; m_inputValue1Operation->readSampled(inputValue1, x, y, sampler); output[0] = expf(inputValue1[0]); clampIfNeeded(output); } void MathExponentOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { *it.out = expf(*it.in(0)); clamp_when_enabled(it.out); } } void MathTruncOperation::executePixelSampled(float output[4], float x, float y, PixelSampler sampler) { float inputValue1[4]; m_inputValue1Operation->readSampled(inputValue1, x, y, sampler); output[0] = (inputValue1[0] >= 0.0f) ? floor(inputValue1[0]) : ceil(inputValue1[0]); clampIfNeeded(output); } void MathTruncOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { const float value = *it.in(0); *it.out = (value >= 0.0f) ? floor(value) : ceil(value); clamp_when_enabled(it.out); } } void MathSnapOperation::executePixelSampled(float output[4], float x, float y, PixelSampler sampler) { float inputValue1[4]; float inputValue2[4]; m_inputValue1Operation->readSampled(inputValue1, x, y, sampler); m_inputValue2Operation->readSampled(inputValue2, x, y, sampler); if (inputValue1[0] == 0 || inputValue2[0] == 0) { /* We don't want to divide by zero. */ output[0] = 0.0f; } else { output[0] = floorf(inputValue1[0] / inputValue2[0]) * inputValue2[0]; } clampIfNeeded(output); } void MathSnapOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { const float value1 = *it.in(0); const float value2 = *it.in(1); if (value1 == 0 || value2 == 0) { /* Avoid dividing by zero. */ *it.out = 0.0f; } else { *it.out = floorf(value1 / value2) * value2; } clamp_when_enabled(it.out); } } void MathWrapOperation::executePixelSampled(float output[4], float x, float y, PixelSampler sampler) { float inputValue1[4]; float inputValue2[4]; float inputValue3[4]; m_inputValue1Operation->readSampled(inputValue1, x, y, sampler); m_inputValue2Operation->readSampled(inputValue2, x, y, sampler); m_inputValue3Operation->readSampled(inputValue3, x, y, sampler); output[0] = wrapf(inputValue1[0], inputValue2[0], inputValue3[0]); clampIfNeeded(output); } void MathWrapOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { *it.out = wrapf(*it.in(0), *it.in(1), *it.in(2)); clamp_when_enabled(it.out); } } void MathPingpongOperation::executePixelSampled(float output[4], float x, float y, PixelSampler sampler) { float inputValue1[4]; float inputValue2[4]; m_inputValue1Operation->readSampled(inputValue1, x, y, sampler); m_inputValue2Operation->readSampled(inputValue2, x, y, sampler); output[0] = pingpongf(inputValue1[0], inputValue2[0]); clampIfNeeded(output); } void MathPingpongOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { *it.out = pingpongf(*it.in(0), *it.in(1)); clamp_when_enabled(it.out); } } void MathCompareOperation::executePixelSampled(float output[4], float x, float y, PixelSampler sampler) { float inputValue1[4]; float inputValue2[4]; float inputValue3[4]; m_inputValue1Operation->readSampled(inputValue1, x, y, sampler); m_inputValue2Operation->readSampled(inputValue2, x, y, sampler); m_inputValue3Operation->readSampled(inputValue3, x, y, sampler); output[0] = (fabsf(inputValue1[0] - inputValue2[0]) <= MAX2(inputValue3[0], 1e-5f)) ? 1.0f : 0.0f; clampIfNeeded(output); } void MathCompareOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { *it.out = (fabsf(*it.in(0) - *it.in(1)) <= MAX2(*it.in(2), 1e-5f)) ? 1.0f : 0.0f; clamp_when_enabled(it.out); } } void MathMultiplyAddOperation::executePixelSampled(float output[4], float x, float y, PixelSampler sampler) { float inputValue1[4]; float inputValue2[4]; float inputValue3[4]; m_inputValue1Operation->readSampled(inputValue1, x, y, sampler); m_inputValue2Operation->readSampled(inputValue2, x, y, sampler); m_inputValue3Operation->readSampled(inputValue3, x, y, sampler); output[0] = inputValue1[0] * inputValue2[0] + inputValue3[0]; clampIfNeeded(output); } void MathMultiplyAddOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { *it.out = it.in(0)[0] * it.in(1)[0] + it.in(2)[0]; clamp_when_enabled(it.out); } } void MathSmoothMinOperation::executePixelSampled(float output[4], float x, float y, PixelSampler sampler) { float inputValue1[4]; float inputValue2[4]; float inputValue3[4]; m_inputValue1Operation->readSampled(inputValue1, x, y, sampler); m_inputValue2Operation->readSampled(inputValue2, x, y, sampler); m_inputValue3Operation->readSampled(inputValue3, x, y, sampler); output[0] = smoothminf(inputValue1[0], inputValue2[0], inputValue3[0]); clampIfNeeded(output); } void MathSmoothMinOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { *it.out = smoothminf(*it.in(0), *it.in(1), *it.in(2)); clamp_when_enabled(it.out); } } void MathSmoothMaxOperation::executePixelSampled(float output[4], float x, float y, PixelSampler sampler) { float inputValue1[4]; float inputValue2[4]; float inputValue3[4]; m_inputValue1Operation->readSampled(inputValue1, x, y, sampler); m_inputValue2Operation->readSampled(inputValue2, x, y, sampler); m_inputValue3Operation->readSampled(inputValue3, x, y, sampler); output[0] = -smoothminf(-inputValue1[0], -inputValue2[0], inputValue3[0]); clampIfNeeded(output); } void MathSmoothMaxOperation::update_memory_buffer_partial(BuffersIterator &it) { for (; !it.is_end(); ++it) { *it.out = -smoothminf(-it.in(0)[0], -it.in(1)[0], it.in(2)[0]); clamp_when_enabled(it.out); } } } // namespace blender::compositor