/* clkernelstoh output of file */ const char * clkernelstoh_COM_OpenCLKernels_cl = "/*\n" \ " * Copyright 2011, Blender Foundation.\n" \ " *\n" \ " * This program is free software; you can redistribute it and/or\n" \ " * modify it under the terms of the GNU General Public License\n" \ " * as published by the Free Software Foundation; either version 2\n" \ " * of the License, or (at your option) any later version.\n" \ " *\n" \ " * This program is distributed in the hope that it will be useful,\n" \ " * but WITHOUT ANY WARRANTY; without even the implied warranty of\n" \ " * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n" \ " * GNU General Public License for more details.\n" \ " *\n" \ " * You should have received a copy of the GNU General Public License\n" \ " * along with this program; if not, write to the Free Software Foundation,\n" \ " * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.\n" \ " *\n" \ " * Contributor:\n" \ " * Jeroen Bakker\n" \ " * Monique Dewanchand\n" \ " */\n" \ "\n" \ "/// This file contains all opencl kernels for node-operation implementations\n" \ "\n" \ "// Global SAMPLERS\n" \ "const sampler_t SAMPLER_NEAREST = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST;\n" \ "const sampler_t SAMPLER_NEAREST_CLAMP = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST;\n" \ "\n" \ "__constant const int2 zero = {0,0};\n" \ "\n" \ "// KERNEL --- BOKEH BLUR ---\n" \ "__kernel void bokehBlurKernel(__read_only image2d_t boundingBox, __read_only image2d_t inputImage,\n" \ " __read_only image2d_t bokehImage, __write_only image2d_t output,\n" \ " int2 offsetInput, int2 offsetOutput, int radius, int step, int2 dimension, int2 offset)\n" \ "{\n" \ " int2 coords = {get_global_id(0), get_global_id(1)};\n" \ " coords += offset;\n" \ " float tempBoundingBox;\n" \ " float4 color = {0.0f,0.0f,0.0f,0.0f};\n" \ " float4 multiplyer = {0.0f,0.0f,0.0f,0.0f};\n" \ " float4 bokeh;\n" \ " const float radius2 = radius * 2.0f;\n" \ " const int2 realCoordinate = coords + offsetOutput;\n" \ "\n" \ " tempBoundingBox = read_imagef(boundingBox, SAMPLER_NEAREST, coords).s0;\n" \ "\n" \ " if (tempBoundingBox > 0.0f && radius > 0 ) {\n" \ " const int2 bokehImageDim = get_image_dim(bokehImage);\n" \ " const int2 bokehImageCenter = bokehImageDim/2;\n" \ " const int2 minXY = max(realCoordinate - radius, zero);\n" \ " const int2 maxXY = min(realCoordinate + radius, dimension);\n" \ " int nx, ny;\n" \ "\n" \ " float2 uv;\n" \ " int2 inputXy;\n" \ "\n" \ " for (ny = minXY.y, inputXy.y = ny - offsetInput.y ; ny < maxXY.y ; ny += step, inputXy.y += step) {\n" \ " uv.y = ((realCoordinate.y-ny)/radius2)*bokehImageDim.y+bokehImageCenter.y;\n" \ "\n" \ " for (nx = minXY.x, inputXy.x = nx - offsetInput.x; nx < maxXY.x ; nx += step, inputXy.x += step) {\n" \ " uv.x = ((realCoordinate.x-nx)/radius2)*bokehImageDim.x+bokehImageCenter.x;\n" \ " bokeh = read_imagef(bokehImage, SAMPLER_NEAREST, uv);\n" \ " color += bokeh * read_imagef(inputImage, SAMPLER_NEAREST, inputXy);\n" \ " multiplyer += bokeh;\n" \ " }\n" \ " }\n" \ " color /= multiplyer;\n" \ "\n" \ " } else {\n" \ " int2 imageCoordinates = realCoordinate - offsetInput;\n" \ " color = read_imagef(inputImage, SAMPLER_NEAREST, imageCoordinates);\n" \ " }\n" \ "\n" \ " write_imagef(output, coords, color);\n" \ "}\n" \ "\n" \ "//KERNEL --- DEFOCUS /VARIABLESIZEBOKEHBLUR ---\n" \ "__kernel void defocusKernel(__read_only image2d_t inputImage, __read_only image2d_t bokehImage,\n" \ " __read_only image2d_t inputSize,\n" \ " __write_only image2d_t output, int2 offsetInput, int2 offsetOutput,\n" \ " int step, int maxBlur, float threshold, int2 dimension, int2 offset)\n" \ "{\n" \ " float4 color = {1.0f, 0.0f, 0.0f, 1.0f};\n" \ " int2 coords = {get_global_id(0), get_global_id(1)};\n" \ " coords += offset;\n" \ " const int2 realCoordinate = coords + offsetOutput;\n" \ "\n" \ " float4 readColor;\n" \ " float4 bokeh;\n" \ " float tempSize;\n" \ " float4 multiplier_accum = {1.0f, 1.0f, 1.0f, 1.0f};\n" \ " float4 color_accum;\n" \ "\n" \ " int minx = max(realCoordinate.s0 - maxBlur, 0);\n" \ " int miny = max(realCoordinate.s1 - maxBlur, 0);\n" \ " int maxx = min(realCoordinate.s0 + maxBlur, dimension.s0);\n" \ " int maxy = min(realCoordinate.s1 + maxBlur, dimension.s1);\n" \ "\n" \ " {\n" \ " int2 inputCoordinate = realCoordinate - offsetInput;\n" \ " float size = read_imagef(inputSize, SAMPLER_NEAREST, inputCoordinate).s0;\n" \ " color_accum = read_imagef(inputImage, SAMPLER_NEAREST, inputCoordinate);\n" \ "\n" \ " if (size > threshold) {\n" \ " for (int ny = miny; ny < maxy; ny += step) {\n" \ " inputCoordinate.s1 = ny - offsetInput.s1;\n" \ " float dy = ny - realCoordinate.s1;\n" \ " for (int nx = minx; nx < maxx; nx += step) {\n" \ " float dx = nx - realCoordinate.s0;\n" \ " if (dx != 0 || dy != 0) {\n" \ " inputCoordinate.s0 = nx - offsetInput.s0;\n" \ " tempSize = read_imagef(inputSize, SAMPLER_NEAREST, inputCoordinate).s0;\n" \ " if (tempSize > threshold) {\n" \ " if (tempSize >= fabs(dx) && tempSize >= fabs(dy)) {\n" \ " float2 uv = { 256.0f + dx * 256.0f / tempSize, 256.0f + dy * 256.0f / tempSize};\n" \ " bokeh = read_imagef(bokehImage, SAMPLER_NEAREST, uv);\n" \ " readColor = read_imagef(inputImage, SAMPLER_NEAREST, inputCoordinate);\n" \ " color_accum += bokeh * readColor;\n" \ " multiplier_accum += bokeh;\n" \ " }\n" \ " }\n" \ " }\n" \ " }\n" \ " }\n" \ " }\n" \ " }\n" \ "\n" \ " color = color_accum * (1.0f / multiplier_accum);\n" \ " write_imagef(output, coords, color);\n" \ "}\n" \ "\n" \ "\n" \ "// KERNEL --- DILATE ---\n" \ "__kernel void dilateKernel(__read_only image2d_t inputImage, __write_only image2d_t output,\n" \ " int2 offsetInput, int2 offsetOutput, int scope, int distanceSquared, int2 dimension,\n" \ " int2 offset)\n" \ "{\n" \ " int2 coords = {get_global_id(0), get_global_id(1)};\n" \ " coords += offset;\n" \ " const int2 realCoordinate = coords + offsetOutput;\n" \ "\n" \ " const int2 minXY = max(realCoordinate - scope, zero);\n" \ " const int2 maxXY = min(realCoordinate + scope, dimension);\n" \ "\n" \ " float value = 0.0f;\n" \ " int nx, ny;\n" \ " int2 inputXy;\n" \ "\n" \ " for (ny = minXY.y, inputXy.y = ny - offsetInput.y ; ny < maxXY.y ; ny ++, inputXy.y++) {\n" \ " const float deltaY = (realCoordinate.y - ny);\n" \ " for (nx = minXY.x, inputXy.x = nx - offsetInput.x; nx < maxXY.x ; nx ++, inputXy.x++) {\n" \ " const float deltaX = (realCoordinate.x - nx);\n" \ " const float measuredDistance = deltaX * deltaX + deltaY * deltaY;\n" \ " if (measuredDistance <= distanceSquared) {\n" \ " value = max(value, read_imagef(inputImage, SAMPLER_NEAREST, inputXy).s0);\n" \ " }\n" \ " }\n" \ " }\n" \ "\n" \ " float4 color = {value,0.0f,0.0f,0.0f};\n" \ " write_imagef(output, coords, color);\n" \ "}\n" \ "\n" \ "// KERNEL --- DILATE ---\n" \ "__kernel void erodeKernel(__read_only image2d_t inputImage, __write_only image2d_t output,\n" \ " int2 offsetInput, int2 offsetOutput, int scope, int distanceSquared, int2 dimension,\n" \ " int2 offset)\n" \ "{\n" \ " int2 coords = {get_global_id(0), get_global_id(1)};\n" \ " coords += offset;\n" \ " const int2 realCoordinate = coords + offsetOutput;\n" \ "\n" \ " const int2 minXY = max(realCoordinate - scope, zero);\n" \ " const int2 maxXY = min(realCoordinate + scope, dimension);\n" \ "\n" \ " float value = 1.0f;\n" \ " int nx, ny;\n" \ " int2 inputXy;\n" \ "\n" \ " for (ny = minXY.y, inputXy.y = ny - offsetInput.y ; ny < maxXY.y ; ny ++, inputXy.y++) {\n" \ " for (nx = minXY.x, inputXy.x = nx - offsetInput.x; nx < maxXY.x ; nx ++, inputXy.x++) {\n" \ " const float deltaX = (realCoordinate.x - nx);\n" \ " const float deltaY = (realCoordinate.y - ny);\n" \ " const float measuredDistance = deltaX * deltaX + deltaY * deltaY;\n" \ " if (measuredDistance <= distanceSquared) {\n" \ " value = min(value, read_imagef(inputImage, SAMPLER_NEAREST, inputXy).s0);\n" \ " }\n" \ " }\n" \ " }\n" \ "\n" \ " float4 color = {value,0.0f,0.0f,0.0f};\n" \ " write_imagef(output, coords, color);\n" \ "}\n" \ "\n" \ "// KERNEL --- DIRECTIONAL BLUR ---\n" \ "__kernel void directionalBlurKernel(__read_only image2d_t inputImage, __write_only image2d_t output,\n" \ " int2 offsetOutput, int iterations, float scale, float rotation, float2 translate,\n" \ " float2 center, int2 offset)\n" \ "{\n" \ " int2 coords = {get_global_id(0), get_global_id(1)};\n" \ " coords += offset;\n" \ " const int2 realCoordinate = coords + offsetOutput;\n" \ "\n" \ " float4 col;\n" \ " float2 ltxy = translate;\n" \ " float lsc = scale;\n" \ " float lrot = rotation;\n" \ "\n" \ " col = read_imagef(inputImage, SAMPLER_NEAREST, realCoordinate);\n" \ "\n" \ " /* blur the image */\n" \ " for (int i = 0; i < iterations; ++i) {\n" \ " const float cs = cos(lrot), ss = sin(lrot);\n" \ " const float isc = 1.0f / (1.0f + lsc);\n" \ "\n" \ " const float v = isc * (realCoordinate.s1 - center.s1) + ltxy.s1;\n" \ " const float u = isc * (realCoordinate.s0 - center.s0) + ltxy.s0;\n" \ " float2 uv = {\n" \ " cs * u + ss * v + center.s0,\n" \ " cs * v - ss * u + center.s1\n" \ " };\n" \ "\n" \ " col += read_imagef(inputImage, SAMPLER_NEAREST_CLAMP, uv);\n" \ "\n" \ " /* double transformations */\n" \ " ltxy += translate;\n" \ " lrot += rotation;\n" \ " lsc += scale;\n" \ " }\n" \ "\n" \ " col *= (1.0f/(iterations+1));\n" \ "\n" \ " write_imagef(output, coords, col);\n" \ "}\n" \ "\0";