/* * Copyright 2011, Blender Foundation. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * Contributor: * Jeroen Bakker * Monique Dewanchand */ /// This file contains all opencl kernels for node-operation implementations // Global SAMPLERS const sampler_t SAMPLER_NEAREST = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST; const sampler_t SAMPLER_NEAREST_CLAMP = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST; __constant const int2 zero = {0,0}; // KERNEL --- BOKEH BLUR --- __kernel void bokehBlurKernel(__read_only image2d_t boundingBox, __read_only image2d_t inputImage, __read_only image2d_t bokehImage, __write_only image2d_t output, int2 offsetInput, int2 offsetOutput, int radius, int step, int2 dimension, int2 offset) { int2 coords = {get_global_id(0), get_global_id(1)}; coords += offset; float tempBoundingBox; float4 color = {0.0f,0.0f,0.0f,0.0f}; float4 multiplyer = {0.0f,0.0f,0.0f,0.0f}; float4 bokeh; const float radius2 = radius*2.0f; const int2 realCoordinate = coords + offsetOutput; int2 imageCoordinates = realCoordinate - offsetInput; tempBoundingBox = read_imagef(boundingBox, SAMPLER_NEAREST, coords).s0; if (tempBoundingBox > 0.0f && radius > 0 ) { const int2 bokehImageDim = get_image_dim(bokehImage); const int2 bokehImageCenter = bokehImageDim/2; const int2 minXY = max(realCoordinate - radius, zero); const int2 maxXY = min(realCoordinate + radius, dimension); int nx, ny; float2 uv; int2 inputXy; if (radius < 2) { color = read_imagef(inputImage, SAMPLER_NEAREST, imageCoordinates); multiplyer = (float4)(1.0f, 1.0f, 1.0f, 1.0f); } for (ny = minXY.y, inputXy.y = ny - offsetInput.y ; ny < maxXY.y ; ny += step, inputXy.y += step) { uv.y = ((realCoordinate.y-ny)/radius2)*bokehImageDim.y+bokehImageCenter.y; for (nx = minXY.x, inputXy.x = nx - offsetInput.x; nx < maxXY.x ; nx += step, inputXy.x += step) { uv.x = ((realCoordinate.x-nx)/radius2)*bokehImageDim.x+bokehImageCenter.x; bokeh = read_imagef(bokehImage, SAMPLER_NEAREST, uv); color += bokeh * read_imagef(inputImage, SAMPLER_NEAREST, inputXy); multiplyer += bokeh; } } color /= multiplyer; } else { color = read_imagef(inputImage, SAMPLER_NEAREST, imageCoordinates); } write_imagef(output, coords, color); } //KERNEL --- DEFOCUS /VARIABLESIZEBOKEHBLUR --- __kernel void defocusKernel(__read_only image2d_t inputImage, __read_only image2d_t bokehImage, __read_only image2d_t inputSize, __write_only image2d_t output, int2 offsetInput, int2 offsetOutput, int step, int maxBlurScalar, float threshold, float scalar, int2 dimension, int2 offset) { float4 color = {1.0f, 0.0f, 0.0f, 1.0f}; int2 coords = {get_global_id(0), get_global_id(1)}; coords += offset; const int2 realCoordinate = coords + offsetOutput; float4 readColor; float4 tempColor; float4 bokeh; float size; float4 multiplier_accum = {1.0f, 1.0f, 1.0f, 1.0f}; float4 color_accum; int minx = max(realCoordinate.s0 - maxBlurScalar, 0); int miny = max(realCoordinate.s1 - maxBlurScalar, 0); int maxx = min(realCoordinate.s0 + maxBlurScalar, dimension.s0); int maxy = min(realCoordinate.s1 + maxBlurScalar, dimension.s1); { int2 inputCoordinate = realCoordinate - offsetInput; float size_center = read_imagef(inputSize, SAMPLER_NEAREST, inputCoordinate).s0 * scalar; color_accum = read_imagef(inputImage, SAMPLER_NEAREST, inputCoordinate); readColor = color_accum; if (size_center > threshold) { for (int ny = miny; ny < maxy; ny += step) { inputCoordinate.s1 = ny - offsetInput.s1; float dy = ny - realCoordinate.s1; for (int nx = minx; nx < maxx; nx += step) { float dx = nx - realCoordinate.s0; if (dx != 0 || dy != 0) { inputCoordinate.s0 = nx - offsetInput.s0; size = min(read_imagef(inputSize, SAMPLER_NEAREST, inputCoordinate).s0 * scalar, size_center); if (size > threshold) { if (size >= fabs(dx) && size >= fabs(dy)) { float2 uv = {256.0f + dx * 255.0f / size, 256.0f + dy * 255.0f / size}; bokeh = read_imagef(bokehImage, SAMPLER_NEAREST, uv); tempColor = read_imagef(inputImage, SAMPLER_NEAREST, inputCoordinate); color_accum += bokeh * tempColor; multiplier_accum += bokeh; } } } } } } color = color_accum * (1.0f / multiplier_accum); /* blend in out values over the threshold, otherwise we get sharp, ugly transitions */ if ((size_center > threshold) && (size_center < threshold * 2.0f)) { /* factor from 0-1 */ float fac = (size_center - threshold) / threshold; color = (readColor * (1.0f - fac)) + (color * fac); } write_imagef(output, coords, color); } } // KERNEL --- DILATE --- __kernel void dilateKernel(__read_only image2d_t inputImage, __write_only image2d_t output, int2 offsetInput, int2 offsetOutput, int scope, int distanceSquared, int2 dimension, int2 offset) { int2 coords = {get_global_id(0), get_global_id(1)}; coords += offset; const int2 realCoordinate = coords + offsetOutput; const int2 minXY = max(realCoordinate - scope, zero); const int2 maxXY = min(realCoordinate + scope, dimension); float value = 0.0f; int nx, ny; int2 inputXy; for (ny = minXY.y, inputXy.y = ny - offsetInput.y ; ny < maxXY.y ; ny ++, inputXy.y++) { const float deltaY = (realCoordinate.y - ny); for (nx = minXY.x, inputXy.x = nx - offsetInput.x; nx < maxXY.x ; nx ++, inputXy.x++) { const float deltaX = (realCoordinate.x - nx); const float measuredDistance = deltaX * deltaX + deltaY * deltaY; if (measuredDistance <= distanceSquared) { value = max(value, read_imagef(inputImage, SAMPLER_NEAREST, inputXy).s0); } } } float4 color = {value,0.0f,0.0f,0.0f}; write_imagef(output, coords, color); } // KERNEL --- DILATE --- __kernel void erodeKernel(__read_only image2d_t inputImage, __write_only image2d_t output, int2 offsetInput, int2 offsetOutput, int scope, int distanceSquared, int2 dimension, int2 offset) { int2 coords = {get_global_id(0), get_global_id(1)}; coords += offset; const int2 realCoordinate = coords + offsetOutput; const int2 minXY = max(realCoordinate - scope, zero); const int2 maxXY = min(realCoordinate + scope, dimension); float value = 1.0f; int nx, ny; int2 inputXy; for (ny = minXY.y, inputXy.y = ny - offsetInput.y ; ny < maxXY.y ; ny ++, inputXy.y++) { for (nx = minXY.x, inputXy.x = nx - offsetInput.x; nx < maxXY.x ; nx ++, inputXy.x++) { const float deltaX = (realCoordinate.x - nx); const float deltaY = (realCoordinate.y - ny); const float measuredDistance = deltaX * deltaX+deltaY * deltaY; if (measuredDistance <= distanceSquared) { value = min(value, read_imagef(inputImage, SAMPLER_NEAREST, inputXy).s0); } } } float4 color = {value,0.0f,0.0f,0.0f}; write_imagef(output, coords, color); } // KERNEL --- DIRECTIONAL BLUR --- __kernel void directionalBlurKernel(__read_only image2d_t inputImage, __write_only image2d_t output, int2 offsetOutput, int iterations, float scale, float rotation, float2 translate, float2 center, int2 offset) { int2 coords = {get_global_id(0), get_global_id(1)}; coords += offset; const int2 realCoordinate = coords + offsetOutput; float4 col; float2 ltxy = translate; float lsc = scale; float lrot = rotation; col = read_imagef(inputImage, SAMPLER_NEAREST, realCoordinate); /* blur the image */ for (int i = 0; i < iterations; ++i) { const float cs = cos(lrot), ss = sin(lrot); const float isc = 1.0f / (1.0f + lsc); const float v = isc * (realCoordinate.s1 - center.s1) + ltxy.s1; const float u = isc * (realCoordinate.s0 - center.s0) + ltxy.s0; float2 uv = { cs * u + ss * v + center.s0, cs * v - ss * u + center.s1 }; col += read_imagef(inputImage, SAMPLER_NEAREST_CLAMP, uv); /* double transformations */ ltxy += translate; lrot += rotation; lsc += scale; } col *= (1.0f/(iterations+1)); write_imagef(output, coords, col); }