/* SPDX-License-Identifier: GPL-2.0-or-later * Copyright 2011 Blender Foundation. */ #include "COM_RotateOperation.h" namespace blender::compositor { RotateOperation::RotateOperation() { this->add_input_socket(DataType::Color, ResizeMode::None); this->add_input_socket(DataType::Value, ResizeMode::None); this->add_output_socket(DataType::Color); this->set_canvas_input_index(0); image_socket_ = nullptr; degree_socket_ = nullptr; do_degree2_rad_conversion_ = false; is_degree_set_ = false; sampler_ = PixelSampler::Bilinear; } void RotateOperation::get_rotation_center(const rcti &area, float &r_x, float &r_y) { r_x = (BLI_rcti_size_x(&area) - 1) / 2.0; r_y = (BLI_rcti_size_y(&area) - 1) / 2.0; } void RotateOperation::get_rotation_offset(const rcti &input_canvas, const rcti &rotate_canvas, float &r_offset_x, float &r_offset_y) { r_offset_x = (BLI_rcti_size_x(&input_canvas) - BLI_rcti_size_x(&rotate_canvas)) / 2.0f; r_offset_y = (BLI_rcti_size_y(&input_canvas) - BLI_rcti_size_y(&rotate_canvas)) / 2.0f; } void RotateOperation::get_area_rotation_bounds(const rcti &area, const float center_x, const float center_y, const float sine, const float cosine, rcti &r_bounds) { const float dxmin = area.xmin - center_x; const float dymin = area.ymin - center_y; const float dxmax = area.xmax - center_x; const float dymax = area.ymax - center_y; const float x1 = center_x + (cosine * dxmin + (-sine) * dymin); const float x2 = center_x + (cosine * dxmax + (-sine) * dymin); const float x3 = center_x + (cosine * dxmin + (-sine) * dymax); const float x4 = center_x + (cosine * dxmax + (-sine) * dymax); const float y1 = center_y + (sine * dxmin + cosine * dymin); const float y2 = center_y + (sine * dxmax + cosine * dymin); const float y3 = center_y + (sine * dxmin + cosine * dymax); const float y4 = center_y + (sine * dxmax + cosine * dymax); const float minx = MIN2(x1, MIN2(x2, MIN2(x3, x4))); const float maxx = MAX2(x1, MAX2(x2, MAX2(x3, x4))); const float miny = MIN2(y1, MIN2(y2, MIN2(y3, y4))); const float maxy = MAX2(y1, MAX2(y2, MAX2(y3, y4))); r_bounds.xmin = floor(minx); r_bounds.xmax = ceil(maxx); r_bounds.ymin = floor(miny); r_bounds.ymax = ceil(maxy); } void RotateOperation::get_area_rotation_bounds_inverted(const rcti &area, const float center_x, const float center_y, const float sine, const float cosine, rcti &r_bounds) { get_area_rotation_bounds(area, center_x, center_y, -sine, cosine, r_bounds); } void RotateOperation::get_rotation_area_of_interest(const rcti &input_canvas, const rcti &rotate_canvas, const float sine, const float cosine, const rcti &output_area, rcti &r_input_area) { float center_x, center_y; get_rotation_center(input_canvas, center_x, center_y); float rotate_offset_x, rotate_offset_y; get_rotation_offset(input_canvas, rotate_canvas, rotate_offset_x, rotate_offset_y); r_input_area = output_area; BLI_rcti_translate(&r_input_area, rotate_offset_x, rotate_offset_y); get_area_rotation_bounds_inverted(r_input_area, center_x, center_y, sine, cosine, r_input_area); } void RotateOperation::get_rotation_canvas(const rcti &input_canvas, const float sine, const float cosine, rcti &r_canvas) { float center_x, center_y; get_rotation_center(input_canvas, center_x, center_y); rcti rot_bounds; get_area_rotation_bounds(input_canvas, center_x, center_y, sine, cosine, rot_bounds); float offset_x, offset_y; get_rotation_offset(input_canvas, rot_bounds, offset_x, offset_y); r_canvas = rot_bounds; BLI_rcti_translate(&r_canvas, -offset_x, -offset_y); } void RotateOperation::init_data() { if (execution_model_ == eExecutionModel::Tiled) { get_rotation_center(get_canvas(), center_x_, center_y_); } } void RotateOperation::init_execution() { image_socket_ = this->get_input_socket_reader(0); degree_socket_ = this->get_input_socket_reader(1); } void RotateOperation::deinit_execution() { image_socket_ = nullptr; degree_socket_ = nullptr; } inline void RotateOperation::ensure_degree() { if (!is_degree_set_) { float degree[4]; switch (execution_model_) { case eExecutionModel::Tiled: degree_socket_->read_sampled(degree, 0, 0, PixelSampler::Nearest); break; case eExecutionModel::FullFrame: degree[0] = get_input_operation(DEGREE_INPUT_INDEX)->get_constant_value_default(0.0f); break; } double rad; if (do_degree2_rad_conversion_) { rad = DEG2RAD(double(degree[0])); } else { rad = degree[0]; } cosine_ = cos(rad); sine_ = sin(rad); is_degree_set_ = true; } } void RotateOperation::execute_pixel_sampled(float output[4], float x, float y, PixelSampler sampler) { ensure_degree(); const float dy = y - center_y_; const float dx = x - center_x_; const float nx = center_x_ + (cosine_ * dx + sine_ * dy); const float ny = center_y_ + (-sine_ * dx + cosine_ * dy); image_socket_->read_sampled(output, nx, ny, sampler); } bool RotateOperation::determine_depending_area_of_interest(rcti *input, ReadBufferOperation *read_operation, rcti *output) { ensure_degree(); rcti new_input; const float dxmin = input->xmin - center_x_; const float dymin = input->ymin - center_y_; const float dxmax = input->xmax - center_x_; const float dymax = input->ymax - center_y_; const float x1 = center_x_ + (cosine_ * dxmin + sine_ * dymin); const float x2 = center_x_ + (cosine_ * dxmax + sine_ * dymin); const float x3 = center_x_ + (cosine_ * dxmin + sine_ * dymax); const float x4 = center_x_ + (cosine_ * dxmax + sine_ * dymax); const float y1 = center_y_ + (-sine_ * dxmin + cosine_ * dymin); const float y2 = center_y_ + (-sine_ * dxmax + cosine_ * dymin); const float y3 = center_y_ + (-sine_ * dxmin + cosine_ * dymax); const float y4 = center_y_ + (-sine_ * dxmax + cosine_ * dymax); const float minx = MIN2(x1, MIN2(x2, MIN2(x3, x4))); const float maxx = MAX2(x1, MAX2(x2, MAX2(x3, x4))); const float miny = MIN2(y1, MIN2(y2, MIN2(y3, y4))); const float maxy = MAX2(y1, MAX2(y2, MAX2(y3, y4))); new_input.xmax = ceil(maxx) + 1; new_input.xmin = floor(minx) - 1; new_input.ymax = ceil(maxy) + 1; new_input.ymin = floor(miny) - 1; return NodeOperation::determine_depending_area_of_interest(&new_input, read_operation, output); } void RotateOperation::determine_canvas(const rcti &preferred_area, rcti &r_area) { if (execution_model_ == eExecutionModel::Tiled) { NodeOperation::determine_canvas(preferred_area, r_area); return; } const bool image_determined = get_input_socket(IMAGE_INPUT_INDEX)->determine_canvas(preferred_area, r_area); if (image_determined) { rcti input_canvas = r_area; rcti unused = COM_AREA_NONE; get_input_socket(DEGREE_INPUT_INDEX)->determine_canvas(input_canvas, unused); ensure_degree(); get_rotation_canvas(input_canvas, sine_, cosine_, r_area); } } void RotateOperation::get_area_of_interest(const int input_idx, const rcti &output_area, rcti &r_input_area) { if (input_idx == DEGREE_INPUT_INDEX) { r_input_area = COM_CONSTANT_INPUT_AREA_OF_INTEREST; return; } ensure_degree(); const rcti &input_image_canvas = get_input_operation(IMAGE_INPUT_INDEX)->get_canvas(); get_rotation_area_of_interest( input_image_canvas, this->get_canvas(), sine_, cosine_, output_area, r_input_area); expand_area_for_sampler(r_input_area, sampler_); } void RotateOperation::update_memory_buffer_partial(MemoryBuffer *output, const rcti &area, Span inputs) { const MemoryBuffer *input_img = inputs[IMAGE_INPUT_INDEX]; NodeOperation *image_op = get_input_operation(IMAGE_INPUT_INDEX); float center_x, center_y; get_rotation_center(image_op->get_canvas(), center_x, center_y); float rotate_offset_x, rotate_offset_y; get_rotation_offset( image_op->get_canvas(), this->get_canvas(), rotate_offset_x, rotate_offset_y); for (BuffersIterator it = output->iterate_with({}, area); !it.is_end(); ++it) { float x = rotate_offset_x + it.x + canvas_.xmin; float y = rotate_offset_y + it.y + canvas_.ymin; rotate_coords(x, y, center_x, center_y, sine_, cosine_); input_img->read_elem_sampled(x - canvas_.xmin, y - canvas_.ymin, sampler_, it.out); } } } // namespace blender::compositor