/* * Copyright 2014, Blender Foundation. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * Contributor: * Lukas Toenne */ #include "MEM_guardedalloc.h" #include "COM_SunBeamsOperation.h" SunBeamsOperation::SunBeamsOperation() : NodeOperation() { this->addInputSocket(COM_DT_COLOR); this->addOutputSocket(COM_DT_COLOR); this->setResolutionInputSocketIndex(0); this->setComplex(true); } void SunBeamsOperation::initExecution() { /* convert to pixels */ this->m_source_px[0] = this->m_data.source[0] * this->getWidth(); this->m_source_px[1] = this->m_data.source[1] * this->getHeight(); this->m_ray_length_px = this->m_data.ray_length * max(this->getWidth(), this->getHeight()); } /** * Defines a line accumulator for a specific sector, * given by the four matrix entries that rotate from buffer space into the sector * * (x,y) is used to designate buffer space coordinates * (u,v) is used to designate sector space coordinates * * For a target point (x,y) the sector should be chosen such that * ``u >= v >= 0`` * This removes the need to handle all sorts of special cases. * * Template parameters: * fxu : buffer increment in x for sector u+1 * fxv : buffer increment in x for sector v+1 * fyu : buffer increment in y for sector u+1 * fyv : buffer increment in y for sector v+1 */ template struct BufferLineAccumulator { /* utility functions implementing the matrix transform to/from sector space */ static inline void buffer_to_sector(const float source[2], int x, int y, int &u, int &v) { int x0 = (int)source[0]; int y0 = (int)source[1]; x -= x0; y -= y0; u = x * fxu + y * fyu; v = x * fxv + y * fyv; } static inline void buffer_to_sector(const float source[2], float x, float y, float &u, float &v) { int x0 = (int)source[0]; int y0 = (int)source[1]; x -= (float)x0; y -= (float)y0; u = x * fxu + y * fyu; v = x * fxv + y * fyv; } static inline void sector_to_buffer(const float source[2], int u, int v, int &x, int &y) { int x0 = (int)source[0]; int y0 = (int)source[1]; x = x0 + u * fxu + v * fxv; y = y0 + u * fyu + v * fyv; } static inline void sector_to_buffer(const float source[2], float u, float v, float &x, float &y) { int x0 = (int)source[0]; int y0 = (int)source[1]; x = (float)x0 + u * fxu + v * fxv; y = (float)y0 + u * fyu + v * fyv; } /** * Set up the initial buffer pointer and calculate necessary variables for looping. * * Note that sector space is centered around the "source" point while the loop starts * at dist_min from the target pt. This way the loop can be canceled as soon as it runs * out of the buffer rect, because no pixels further along the line can contribute. * * \param x, y Start location in the buffer * \param num Total steps in the loop * \param v, dv Vertical offset in sector space, for line offset perpendicular to the loop axis */ static float *init_buffer_iterator(MemoryBuffer *input, const float source[2], const float co[2], float dist_min, float dist_max, int &x, int &y, int &num, float &v, float &dv, float &falloff_factor) { float pu, pv; buffer_to_sector(source, co[0], co[1], pu, pv); /* line angle */ float tan_phi = pv / pu; float dr = sqrtf(tan_phi * tan_phi + 1.0f); float cos_phi = 1.0f / dr; /* clamp u range to avoid influence of pixels "behind" the source */ float umin = max_ff(pu - cos_phi * dist_min, 0.0f); float umax = max_ff(pu - cos_phi * dist_max, 0.0f); v = umin * tan_phi; dv = tan_phi; int start = (int)floorf(umax); int end = (int)ceilf(umin); num = end - start; sector_to_buffer(source, end, (int)ceilf(v), x, y); falloff_factor = dist_max > dist_min ? dr / (float)(dist_max - dist_min) : 0.0f; float *iter = input->getBuffer() + COM_NUM_CHANNELS_COLOR * (x + input->getWidth() * y); return iter; } /** * Perform the actual accumulation along a ray segment from source to pt. * Only pixels withing dist_min..dist_max contribute. * * The loop runs backwards(!) over the primary sector space axis u, i.e. increasing distance to pt. * After each step it decrements v by dv < 1, adding a buffer shift when necessary. */ static void eval(MemoryBuffer *input, float output[4], const float co[2], const float source[2], float dist_min, float dist_max) { rcti rect = *input->getRect(); int buffer_width = input->getWidth(); int x, y, num; float v, dv; float falloff_factor; float border[4]; zero_v4(output); if ((int)(co[0] - source[0]) == 0 && (int)(co[1] - source[1]) == 0) { copy_v4_v4(output, input->getBuffer() + COM_NUM_CHANNELS_COLOR * ((int)source[0] + input->getWidth() * (int)source[1])); return; } /* initialise the iteration variables */ float *buffer = init_buffer_iterator(input, source, co, dist_min, dist_max, x, y, num, v, dv, falloff_factor); zero_v3(border); border[3] = 1.0f; /* v_local keeps track of when to decrement v (see below) */ float v_local = v - floorf(v); for (int i = 0; i < num; i++) { float weight = 1.0f - (float)i * falloff_factor; weight *= weight; /* range check, use last valid color when running beyond the image border */ if (x >= rect.xmin && x < rect.xmax && y >= rect.ymin && y < rect.ymax) { madd_v4_v4fl(output, buffer, buffer[3] * weight); /* use as border color in case subsequent pixels are out of bounds */ copy_v4_v4(border, buffer); } else { madd_v4_v4fl(output, border, border[3] * weight); } /* TODO implement proper filtering here, see * http://en.wikipedia.org/wiki/Lanczos_resampling * http://en.wikipedia.org/wiki/Sinc_function * * using lanczos with x = distance from the line segment, * normalized to a == 0.5f, could give a good result * * for now just divide equally at the end ... */ /* decrement u */ x -= fxu; y -= fyu; buffer -= (fxu + fyu * buffer_width) * COM_NUM_CHANNELS_COLOR; /* decrement v (in steps of dv < 1) */ v_local -= dv; if (v_local < 0.0f) { v_local += 1.0f; x -= fxv; y -= fyv; buffer -= (fxv + fyv * buffer_width) * COM_NUM_CHANNELS_COLOR; } } /* normalize */ if (num > 0) { mul_v4_fl(output, 1.0f / (float)num); } } }; /** * Dispatch function which selects an appropriate accumulator based on the sector of the target point, * relative to the source. * * The BufferLineAccumulator defines the actual loop over the buffer, with an efficient inner loop * due to using compile time constants instead of a local matrix variable defining the sector space. */ static void accumulate_line(MemoryBuffer *input, float output[4], const float co[2], const float source[2], float dist_min, float dist_max) { /* coordinates relative to source */ float pt_ofs[2] = {co[0] - source[0], co[1] - source[1]}; /* The source sectors are defined like so: * * \ 3 | 2 / * \ | / * 4 \ | / 1 * \|/ * ----------- * /|\ * 5 / | \ 8 * / | \ * / 6 | 7 \ * * The template arguments encode the transformation into "sector space", * by means of rotation/mirroring matrix elements. */ if (fabsf(pt_ofs[1]) > fabsf(pt_ofs[0])) { if (pt_ofs[0] > 0.0f) { if (pt_ofs[1] > 0.0f) { /* 2 */ BufferLineAccumulator<0, 1, 1, 0>::eval(input, output, co, source, dist_min, dist_max); } else { /* 7 */ BufferLineAccumulator<0, 1, -1, 0>::eval(input, output, co, source, dist_min, dist_max); } } else { if (pt_ofs[1] > 0.0f) { /* 3 */ BufferLineAccumulator<0, -1, 1, 0>::eval(input, output, co, source, dist_min, dist_max); } else { /* 6 */ BufferLineAccumulator<0, -1, -1, 0>::eval(input, output, co, source, dist_min, dist_max); } } } else { if (pt_ofs[0] > 0.0f) { if (pt_ofs[1] > 0.0f) { /* 1 */ BufferLineAccumulator< 1, 0, 0, 1>::eval(input, output, co, source, dist_min, dist_max); } else { /* 8 */ BufferLineAccumulator< 1, 0, 0, -1>::eval(input, output, co, source, dist_min, dist_max); } } else { if (pt_ofs[1] > 0.0f) { /* 4 */ BufferLineAccumulator<-1, 0, 0, 1>::eval(input, output, co, source, dist_min, dist_max); } else { /* 5 */ BufferLineAccumulator<-1, 0, 0, -1>::eval(input, output, co, source, dist_min, dist_max); } } } } void *SunBeamsOperation::initializeTileData(rcti * /*rect*/) { void *buffer = getInputOperation(0)->initializeTileData(NULL); return buffer; } void SunBeamsOperation::executePixel(float output[4], int x, int y, void *data) { const float co[2] = {(float)x, (float)y}; accumulate_line((MemoryBuffer *)data, output, co, this->m_source_px, 0.0f, this->m_ray_length_px); } static void calc_ray_shift(rcti *rect, float x, float y, const float source[2], float ray_length) { float co[2] = {(float)x, (float)y}; float dir[2], dist; /* move (x,y) vector toward the source by ray_length distance */ sub_v2_v2v2(dir, co, source); dist = normalize_v2(dir); mul_v2_fl(dir, min_ff(dist, ray_length)); sub_v2_v2(co, dir); int ico[2] = {(int)co[0], (int)co[1]}; BLI_rcti_do_minmax_v(rect, ico); } bool SunBeamsOperation::determineDependingAreaOfInterest(rcti *input, ReadBufferOperation *readOperation, rcti *output) { /* Enlarges the rect by moving each corner toward the source. * This is the maximum distance that pixels can influence each other * and gives a rect that contains all possible accumulated pixels. */ rcti rect = *input; calc_ray_shift(&rect, input->xmin, input->ymin, this->m_source_px, this->m_ray_length_px); calc_ray_shift(&rect, input->xmin, input->ymax, this->m_source_px, this->m_ray_length_px); calc_ray_shift(&rect, input->xmax, input->ymin, this->m_source_px, this->m_ray_length_px); calc_ray_shift(&rect, input->xmax, input->ymax, this->m_source_px, this->m_ray_length_px); return NodeOperation::determineDependingAreaOfInterest(&rect, readOperation, output); }