/* SPDX-License-Identifier: GPL-2.0-or-later * Copyright 2011 Blender Foundation. */ #include "COM_TonemapOperation.h" #include "COM_ExecutionSystem.h" #include "IMB_colormanagement.h" namespace blender::compositor { TonemapOperation::TonemapOperation() { this->add_input_socket(DataType::Color, ResizeMode::Align); this->add_output_socket(DataType::Color); image_reader_ = nullptr; data_ = nullptr; cached_instance_ = nullptr; flags_.complex = true; } void TonemapOperation::init_execution() { image_reader_ = this->get_input_socket_reader(0); NodeOperation::init_mutex(); } void TonemapOperation::execute_pixel(float output[4], int x, int y, void *data) { AvgLogLum *avg = (AvgLogLum *)data; image_reader_->read(output, x, y, nullptr); mul_v3_fl(output, avg->al); float dr = output[0] + data_->offset; float dg = output[1] + data_->offset; float db = output[2] + data_->offset; output[0] /= ((dr == 0.0f) ? 1.0f : dr); output[1] /= ((dg == 0.0f) ? 1.0f : dg); output[2] /= ((db == 0.0f) ? 1.0f : db); const float igm = avg->igm; if (igm != 0.0f) { output[0] = powf(MAX2(output[0], 0.0f), igm); output[1] = powf(MAX2(output[1], 0.0f), igm); output[2] = powf(MAX2(output[2], 0.0f), igm); } } void PhotoreceptorTonemapOperation::execute_pixel(float output[4], int x, int y, void *data) { AvgLogLum *avg = (AvgLogLum *)data; const NodeTonemap *ntm = data_; const float f = expf(-data_->f); const float m = (ntm->m > 0.0f) ? ntm->m : (0.3f + 0.7f * powf(avg->auto_key, 1.4f)); const float ic = 1.0f - ntm->c, ia = 1.0f - ntm->a; image_reader_->read(output, x, y, nullptr); const float L = IMB_colormanagement_get_luminance(output); float I_l = output[0] + ic * (L - output[0]); float I_g = avg->cav[0] + ic * (avg->lav - avg->cav[0]); float I_a = I_l + ia * (I_g - I_l); output[0] /= (output[0] + powf(f * I_a, m)); I_l = output[1] + ic * (L - output[1]); I_g = avg->cav[1] + ic * (avg->lav - avg->cav[1]); I_a = I_l + ia * (I_g - I_l); output[1] /= (output[1] + powf(f * I_a, m)); I_l = output[2] + ic * (L - output[2]); I_g = avg->cav[2] + ic * (avg->lav - avg->cav[2]); I_a = I_l + ia * (I_g - I_l); output[2] /= (output[2] + powf(f * I_a, m)); } void TonemapOperation::deinit_execution() { image_reader_ = nullptr; delete cached_instance_; NodeOperation::deinit_mutex(); } bool TonemapOperation::determine_depending_area_of_interest(rcti * /*input*/, ReadBufferOperation *read_operation, rcti *output) { rcti image_input; NodeOperation *operation = get_input_operation(0); image_input.xmax = operation->get_width(); image_input.xmin = 0; image_input.ymax = operation->get_height(); image_input.ymin = 0; if (operation->determine_depending_area_of_interest(&image_input, read_operation, output)) { return true; } return false; } void *TonemapOperation::initialize_tile_data(rcti *rect) { lock_mutex(); if (cached_instance_ == nullptr) { MemoryBuffer *tile = (MemoryBuffer *)image_reader_->initialize_tile_data(rect); AvgLogLum *data = new AvgLogLum(); float *buffer = tile->get_buffer(); float lsum = 0.0f; int p = tile->get_width() * tile->get_height(); float *bc = buffer; float avl, maxl = -1e10f, minl = 1e10f; const float sc = 1.0f / p; float Lav = 0.0f; float cav[4] = {0.0f, 0.0f, 0.0f, 0.0f}; while (p--) { float L = IMB_colormanagement_get_luminance(bc); Lav += L; add_v3_v3(cav, bc); lsum += logf(MAX2(L, 0.0f) + 1e-5f); maxl = (L > maxl) ? L : maxl; minl = (L < minl) ? L : minl; bc += 4; } data->lav = Lav * sc; mul_v3_v3fl(data->cav, cav, sc); maxl = log(double(maxl) + 1e-5); minl = log(double(minl) + 1e-5); avl = lsum * sc; data->auto_key = (maxl > minl) ? ((maxl - avl) / (maxl - minl)) : 1.0f; float al = exp(double(avl)); data->al = (al == 0.0f) ? 0.0f : (data_->key / al); data->igm = (data_->gamma == 0.0f) ? 1 : (1.0f / data_->gamma); cached_instance_ = data; } unlock_mutex(); return cached_instance_; } void TonemapOperation::deinitialize_tile_data(rcti * /*rect*/, void * /*data*/) { /* pass */ } void TonemapOperation::get_area_of_interest(const int input_idx, const rcti & /*output_area*/, rcti &r_input_area) { BLI_assert(input_idx == 0); r_input_area = get_input_operation(input_idx)->get_canvas(); } struct Luminance { float sum; float color_sum[3]; float log_sum; float min; float max; int num_pixels; }; static Luminance calc_area_luminance(const MemoryBuffer *input, const rcti &area) { Luminance lum = {0}; for (const float *elem : input->get_buffer_area(area)) { const float lu = IMB_colormanagement_get_luminance(elem); lum.sum += lu; add_v3_v3(lum.color_sum, elem); lum.log_sum += logf(MAX2(lu, 0.0f) + 1e-5f); lum.max = MAX2(lu, lum.max); lum.min = MIN2(lu, lum.min); lum.num_pixels++; } return lum; } void TonemapOperation::update_memory_buffer_started(MemoryBuffer * /*output*/, const rcti & /*area*/, Span inputs) { if (cached_instance_ == nullptr) { Luminance lum = {0}; const MemoryBuffer *input = inputs[0]; exec_system_->execute_work( input->get_rect(), [=](const rcti &split) { return calc_area_luminance(input, split); }, lum, [](Luminance &join, const Luminance &chunk) { join.sum += chunk.sum; add_v3_v3(join.color_sum, chunk.color_sum); join.log_sum += chunk.log_sum; join.max = MAX2(join.max, chunk.max); join.min = MIN2(join.min, chunk.min); join.num_pixels += chunk.num_pixels; }); AvgLogLum *avg = new AvgLogLum(); avg->lav = lum.sum / lum.num_pixels; mul_v3_v3fl(avg->cav, lum.color_sum, 1.0f / lum.num_pixels); const float max_log = log(double(lum.max) + 1e-5); const float min_log = log(double(lum.min) + 1e-5); const float avg_log = lum.log_sum / lum.num_pixels; avg->auto_key = (max_log > min_log) ? ((max_log - avg_log) / (max_log - min_log)) : 1.0f; const float al = exp(double(avg_log)); avg->al = (al == 0.0f) ? 0.0f : (data_->key / al); avg->igm = (data_->gamma == 0.0f) ? 1 : (1.0f / data_->gamma); cached_instance_ = avg; } } void TonemapOperation::update_memory_buffer_partial(MemoryBuffer *output, const rcti &area, Span inputs) { AvgLogLum *avg = cached_instance_; const float igm = avg->igm; const float offset = data_->offset; for (BuffersIterator it = output->iterate_with(inputs, area); !it.is_end(); ++it) { copy_v4_v4(it.out, it.in(0)); mul_v3_fl(it.out, avg->al); float dr = it.out[0] + offset; float dg = it.out[1] + offset; float db = it.out[2] + offset; it.out[0] /= ((dr == 0.0f) ? 1.0f : dr); it.out[1] /= ((dg == 0.0f) ? 1.0f : dg); it.out[2] /= ((db == 0.0f) ? 1.0f : db); if (igm != 0.0f) { it.out[0] = powf(MAX2(it.out[0], 0.0f), igm); it.out[1] = powf(MAX2(it.out[1], 0.0f), igm); it.out[2] = powf(MAX2(it.out[2], 0.0f), igm); } } } void PhotoreceptorTonemapOperation::update_memory_buffer_partial(MemoryBuffer *output, const rcti &area, Span inputs) { AvgLogLum *avg = cached_instance_; const NodeTonemap *ntm = data_; const float f = expf(-data_->f); const float m = (ntm->m > 0.0f) ? ntm->m : (0.3f + 0.7f * powf(avg->auto_key, 1.4f)); const float ic = 1.0f - ntm->c; const float ia = 1.0f - ntm->a; for (BuffersIterator it = output->iterate_with(inputs, area); !it.is_end(); ++it) { copy_v4_v4(it.out, it.in(0)); const float L = IMB_colormanagement_get_luminance(it.out); float I_l = it.out[0] + ic * (L - it.out[0]); float I_g = avg->cav[0] + ic * (avg->lav - avg->cav[0]); float I_a = I_l + ia * (I_g - I_l); it.out[0] /= (it.out[0] + powf(f * I_a, m)); I_l = it.out[1] + ic * (L - it.out[1]); I_g = avg->cav[1] + ic * (avg->lav - avg->cav[1]); I_a = I_l + ia * (I_g - I_l); it.out[1] /= (it.out[1] + powf(f * I_a, m)); I_l = it.out[2] + ic * (L - it.out[2]); I_g = avg->cav[2] + ic * (avg->lav - avg->cav[2]); I_a = I_l + ia * (I_g - I_l); it.out[2] /= (it.out[2] + powf(f * I_a, m)); } } } // namespace blender::compositor