/* * Copyright 2011, Blender Foundation. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * Contributor: * Jeroen Bakker * Monique Dewanchand */ #include "COM_VariableSizeBokehBlurOperation.h" #include "BLI_math.h" #include "COM_OpenCLDevice.h" extern "C" { #include "RE_pipeline.h" } VariableSizeBokehBlurOperation::VariableSizeBokehBlurOperation() : NodeOperation() { this->addInputSocket(COM_DT_COLOR); this->addInputSocket(COM_DT_COLOR, COM_SC_NO_RESIZE); // do not resize the bokeh image. this->addInputSocket(COM_DT_VALUE); // radius this->addInputSocket(COM_DT_VALUE); // depth #ifdef COM_DEFOCUS_SEARCH this->addInputSocket(COM_DT_COLOR, COM_SC_NO_RESIZE); // inverse search radius optimization structure. #endif this->addOutputSocket(COM_DT_COLOR); this->setComplex(true); this->setOpenCL(true); this->m_inputProgram = NULL; this->m_inputBokehProgram = NULL; this->m_inputSizeProgram = NULL; this->m_inputDepthProgram = NULL; this->m_maxBlur = 32.0f; this->m_threshold = 1.0f; #ifdef COM_DEFOCUS_SEARCH this->m_inputSearchProgram = NULL; #endif } void VariableSizeBokehBlurOperation::initExecution() { this->m_inputProgram = getInputSocketReader(0); this->m_inputBokehProgram = getInputSocketReader(1); this->m_inputSizeProgram = getInputSocketReader(2); this->m_inputDepthProgram = getInputSocketReader(3); #ifdef COM_DEFOCUS_SEARCH this->m_inputSearchProgram = getInputSocketReader(4); #endif QualityStepHelper::initExecution(COM_QH_INCREASE); } void VariableSizeBokehBlurOperation::executePixel(float *color, int x, int y, MemoryBuffer *inputBuffers[], void *data) { float readColor[4]; float bokeh[4]; float tempSize[4]; float tempDepth[4]; float multiplier_accum[4] = {0.0f, 0.0f, 0.0f, 0.0f}; float color_accum[4] = {0.0f, 0.0f, 0.0f, 0.0f}; #ifdef COM_DEFOCUS_SEARCH float search[4]; this->inputSearchProgram->read(search, x/InverseSearchRadiusOperation::DIVIDER, y / InverseSearchRadiusOperation::DIVIDER, inputBuffers, NULL); int minx = search[0]; int miny = search[1]; int maxx = search[2]; int maxy = search[3]; #else int minx = MAX2(x - this->m_maxBlur, 0.0f); int miny = MAX2(y - this->m_maxBlur, 0.0f); int maxx = MIN2(x + this->m_maxBlur, m_width); int maxy = MIN2(y + this->m_maxBlur, m_height); #endif { this->m_inputSizeProgram->read(tempSize, x, y, COM_PS_NEAREST, inputBuffers); this->m_inputDepthProgram->read(tempDepth, x, y, COM_PS_NEAREST, inputBuffers); this->m_inputProgram->read(readColor, x, y, COM_PS_NEAREST, inputBuffers); add_v4_v4(color_accum, readColor); add_v4_fl(multiplier_accum, 1.0f); float sizeCenter = tempSize[0]; float centerDepth = tempDepth[0] + this->m_threshold; for (int ny = miny; ny < maxy; ny += QualityStepHelper::getStep()) { for (int nx = minx; nx < maxx; nx += QualityStepHelper::getStep()) { if (nx >= 0 && nx < this->getWidth() && ny >= 0 && ny < getHeight()) { this->m_inputDepthProgram->read(tempDepth, nx, ny, COM_PS_NEAREST, inputBuffers); if (tempDepth[0] < centerDepth) { this->m_inputSizeProgram->read(tempSize, nx, ny, COM_PS_NEAREST, inputBuffers); float size = tempSize[0]; if ((sizeCenter > this->m_threshold && size > this->m_threshold) || size <= this->m_threshold) { float dx = nx - x; float dy = ny - y; if (nx == x && ny == y) { } else if (size >= fabsf(dx) && size >= fabsf(dy)) { float u = 256 + dx * 256 / size; float v = 256 + dy * 256 / size; this->m_inputBokehProgram->read(bokeh, u, v, COM_PS_NEAREST, inputBuffers); this->m_inputProgram->read(readColor, nx, ny, COM_PS_NEAREST, inputBuffers); madd_v4_v4v4(color_accum, bokeh, readColor); add_v4_v4(multiplier_accum, bokeh); } } } } } } color[0] = color_accum[0] * (1.0f / multiplier_accum[0]); color[1] = color_accum[1] * (1.0f / multiplier_accum[1]); color[2] = color_accum[2] * (1.0f / multiplier_accum[2]); color[3] = color_accum[3] * (1.0f / multiplier_accum[3]); } } static cl_kernel defocusKernel = 0; void VariableSizeBokehBlurOperation::executeOpenCL(OpenCLDevice* device, MemoryBuffer *outputMemoryBuffer, cl_mem clOutputBuffer, MemoryBuffer **inputMemoryBuffers, list *clMemToCleanUp, list *clKernelsToCleanUp) { if (!defocusKernel) { defocusKernel = device->COM_clCreateKernel("defocusKernel", NULL); } cl_int step = this->getStep(); cl_int maxBlur = this->m_maxBlur; cl_float threshold = this->m_threshold; device->COM_clAttachMemoryBufferToKernelParameter(defocusKernel, 0, -1, clMemToCleanUp, inputMemoryBuffers, this->m_inputProgram); device->COM_clAttachMemoryBufferToKernelParameter(defocusKernel, 1, -1, clMemToCleanUp, inputMemoryBuffers, this->m_inputBokehProgram); device->COM_clAttachMemoryBufferToKernelParameter(defocusKernel, 2, 5, clMemToCleanUp, inputMemoryBuffers, this->m_inputDepthProgram); device->COM_clAttachMemoryBufferToKernelParameter(defocusKernel, 3, -1, clMemToCleanUp, inputMemoryBuffers, this->m_inputSizeProgram); device->COM_clAttachOutputMemoryBufferToKernelParameter(defocusKernel, 4, clOutputBuffer); device->COM_clAttachMemoryBufferOffsetToKernelParameter(defocusKernel, 6, outputMemoryBuffer); clSetKernelArg(defocusKernel, 7, sizeof(cl_int), &step); clSetKernelArg(defocusKernel, 8, sizeof(cl_int), &maxBlur); clSetKernelArg(defocusKernel, 9, sizeof(cl_float), &threshold); device->COM_clAttachSizeToKernelParameter(defocusKernel, 10, this); device->COM_clEnqueueRange(defocusKernel, outputMemoryBuffer, 11, this); } void VariableSizeBokehBlurOperation::deinitExecution() { this->m_inputProgram = NULL; this->m_inputBokehProgram = NULL; this->m_inputSizeProgram = NULL; this->m_inputDepthProgram = NULL; #ifdef COM_DEFOCUS_SEARCH this->m_inputSearchProgram = NULL; #endif } bool VariableSizeBokehBlurOperation::determineDependingAreaOfInterest(rcti *input, ReadBufferOperation *readOperation, rcti *output) { rcti newInput; rcti bokehInput; newInput.xmax = input->xmax + this->m_maxBlur + 2; newInput.xmin = input->xmin - this->m_maxBlur + 2; newInput.ymax = input->ymax + this->m_maxBlur - 2; newInput.ymin = input->ymin - this->m_maxBlur - 2; bokehInput.xmax = 512; bokehInput.xmin = 0; bokehInput.ymax = 512; bokehInput.ymin = 0; NodeOperation *operation = getInputOperation(2); if (operation->determineDependingAreaOfInterest(&newInput, readOperation, output) ) { return true; } operation = getInputOperation(1); if (operation->determineDependingAreaOfInterest(&bokehInput, readOperation, output) ) { return true; } operation = getInputOperation(3); if (operation->determineDependingAreaOfInterest(&newInput, readOperation, output) ) { return true; } #ifdef COM_DEFOCUS_SEARCH rcti searchInput; searchInput.xmax = (input->xmax / InverseSearchRadiusOperation::DIVIDER) + 1; searchInput.xmin = (input->xmin / InverseSearchRadiusOperation::DIVIDER) - 1; searchInput.ymax = (input->ymax / InverseSearchRadiusOperation::DIVIDER) + 1; searchInput.ymin = (input->ymin / InverseSearchRadiusOperation::DIVIDER) - 1; operation = getInputOperation(4); if (operation->determineDependingAreaOfInterest(&searchInput, readOperation, output) ) { return true; } #endif operation = getInputOperation(0); if (operation->determineDependingAreaOfInterest(&newInput, readOperation, output) ) { return true; } return false; } #ifdef COM_DEFOCUS_SEARCH // InverseSearchRadiusOperation InverseSearchRadiusOperation::InverseSearchRadiusOperation() : NodeOperation() { this->addInputSocket(COM_DT_VALUE, COM_SC_NO_RESIZE); // radius this->addInputSocket(COM_DT_VALUE, COM_SC_NO_RESIZE); // depth this->addOutputSocket(COM_DT_COLOR); this->setComplex(true); this->inputRadius = NULL; this->inputDepth = NULL; } void InverseSearchRadiusOperation::initExecution() { this->inputRadius = this->getInputSocketReader(0); this->inputDepth = this->getInputSocketReader(1); } void* InverseSearchRadiusOperation::initializeTileData(rcti *rect, MemoryBuffer **memoryBuffers) { MemoryBuffer * data = new MemoryBuffer(NULL, rect); int x, y; float width = this->inputRadius->getWidth(); float height = this->inputRadius->getHeight(); for (x = rect->xmin; x < rect->xmax ; x++) { for (y = rect->ymin; y < rect->ymax ; y++) { float[4] temp; int rx = x * DIVIDER; int ry = y * DIVIDER; this->inputRadius->read(temp, rx, ry, memoryBuffers, NULL); float centerRadius = temp[0]; this->inputDepth->read(temp, rx, ry, memoryBuffers, NULL); float centerDepth = temp[0]; t[0] = MAX2(rx - this->maxBlur, 0.0f); t[1] = MAX2(ry - this->maxBlur, 0.0f); t[2] = MIN2(rx + this->maxBlur, width); t[3] = MIN2(ry + this->maxBlur, height); int minx = t[0]; int miny = t[1]; int maxx = t[2]; int maxy = t[3]; int sminx = rx; int smaxx = rx; int sminy = ry; int smaxy = ry; for (int nx = minx ; nx < maxx ; nx ++) { for (int ny = miny ; ny < maxy ; ny ++) { this->inputRadius->read(temp, nx, ny, memoryBuffers, NULL); if (nx < rx && temp[0]) } } float t[4]; data->writePixel(x, y, t); } } return data; } void InverseSearchRadiusOperation::executePixel(float *color, int x, int y, MemoryBuffer *inputBuffers[], void *data) { MemoryBuffer *buffer = (MemoryBuffer*)data; buffer->read(color, x, y); } void InverseSearchRadiusOperation::deinitializeTileData(rcti *rect, MemoryBuffer **memoryBuffers, void *data) { if (data) { MemoryBuffer* mb = (MemoryBuffer*)data; delete mb; } } void InverseSearchRadiusOperation::deinitExecution() { this->inputRadius = NULL; this->inputDepth = NULL; } void InverseSearchRadiusOperation::determineResolution(unsigned int resolution[], unsigned int preferredResolution[]) { NodeOperation::determineResolution(resolution, preferredResolution); resolution[0] = resolution[0] / DIVIDER; resolution[1] = resolution[1] / DIVIDER; } bool InverseSearchRadiusOperation::determineDependingAreaOfInterest(rcti *input, ReadBufferOperation *readOperation, rcti *output) { rcti newRect; newRect.ymin = input->ymin*DIVIDER; newRect.ymax = input->ymax*DIVIDER; newRect.xmin = input->xmin*DIVIDER; newRect.xmax = input->xmax*DIVIDER; return NodeOperation::determineDependingAreaOfInterest(&newRect, readOperation, output); } #endif