/* * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * Copyright 2016, Blender Foundation. */ /** \file * \ingroup draw_engine * * Volumetric effects rendering using frostbite approach. */ #include "DRW_render.h" #include "BLI_rand.h" #include "BLI_string_utils.h" #include "DNA_object_force_types.h" #include "DNA_smoke_types.h" #include "DNA_world_types.h" #include "BKE_modifier.h" #include "BKE_mesh.h" #include "BKE_smoke.h" #include "ED_screen.h" #include "DEG_depsgraph_query.h" #include "eevee_private.h" #include "GPU_draw.h" #include "GPU_texture.h" #include "GPU_material.h" static struct { char *volumetric_common_lib; char *volumetric_common_lights_lib; struct GPUShader *volumetric_clear_sh; struct GPUShader *scatter_sh; struct GPUShader *scatter_with_lights_sh; struct GPUShader *volumetric_integration_sh; struct GPUShader *volumetric_resolve_sh; GPUTexture *depth_src; GPUTexture *dummy_density; GPUTexture *dummy_flame; GPUTexture *dummy_scatter; GPUTexture *dummy_transmit; /* List of all smoke domains rendered within this frame. */ ListBase smoke_domains; } e_data = {NULL}; /* Engine data */ extern char datatoc_bsdf_common_lib_glsl[]; extern char datatoc_common_uniforms_lib_glsl[]; extern char datatoc_common_view_lib_glsl[]; extern char datatoc_octahedron_lib_glsl[]; extern char datatoc_irradiance_lib_glsl[]; extern char datatoc_lights_lib_glsl[]; extern char datatoc_volumetric_frag_glsl[]; extern char datatoc_volumetric_geom_glsl[]; extern char datatoc_volumetric_vert_glsl[]; extern char datatoc_volumetric_resolve_frag_glsl[]; extern char datatoc_volumetric_scatter_frag_glsl[]; extern char datatoc_volumetric_integration_frag_glsl[]; extern char datatoc_volumetric_lib_glsl[]; extern char datatoc_common_fullscreen_vert_glsl[]; #define USE_VOLUME_OPTI (GLEW_ARB_shader_image_load_store && GLEW_ARB_shading_language_420pack) static void eevee_create_shader_volumes(void) { e_data.volumetric_common_lib = BLI_string_joinN(datatoc_common_view_lib_glsl, datatoc_common_uniforms_lib_glsl, datatoc_bsdf_common_lib_glsl, datatoc_volumetric_lib_glsl); e_data.volumetric_common_lights_lib = BLI_string_joinN(datatoc_common_view_lib_glsl, datatoc_common_uniforms_lib_glsl, datatoc_bsdf_common_lib_glsl, datatoc_octahedron_lib_glsl, datatoc_irradiance_lib_glsl, datatoc_lights_lib_glsl, datatoc_volumetric_lib_glsl); e_data.volumetric_clear_sh = DRW_shader_create_with_lib(datatoc_volumetric_vert_glsl, datatoc_volumetric_geom_glsl, datatoc_volumetric_frag_glsl, e_data.volumetric_common_lib, "#define VOLUMETRICS\n" "#define CLEAR\n"); e_data.scatter_sh = DRW_shader_create_with_lib(datatoc_volumetric_vert_glsl, datatoc_volumetric_geom_glsl, datatoc_volumetric_scatter_frag_glsl, e_data.volumetric_common_lights_lib, SHADER_DEFINES "#define VOLUMETRICS\n" "#define VOLUME_SHADOW\n"); e_data.scatter_with_lights_sh = DRW_shader_create_with_lib(datatoc_volumetric_vert_glsl, datatoc_volumetric_geom_glsl, datatoc_volumetric_scatter_frag_glsl, e_data.volumetric_common_lights_lib, SHADER_DEFINES "#define VOLUMETRICS\n" "#define VOLUME_LIGHTING\n" "#define VOLUME_SHADOW\n"); e_data.volumetric_integration_sh = DRW_shader_create_with_lib( datatoc_volumetric_vert_glsl, datatoc_volumetric_geom_glsl, datatoc_volumetric_integration_frag_glsl, e_data.volumetric_common_lib, USE_VOLUME_OPTI ? "#extension GL_ARB_shader_image_load_store: enable\n" "#extension GL_ARB_shading_language_420pack: enable\n" "#define USE_VOLUME_OPTI\n" : NULL); e_data.volumetric_resolve_sh = DRW_shader_create_with_lib(datatoc_common_fullscreen_vert_glsl, NULL, datatoc_volumetric_resolve_frag_glsl, e_data.volumetric_common_lib, NULL); float color[4] = {1.0f, 1.0f, 1.0f, 1.0f}; e_data.dummy_density = DRW_texture_create_3d(1, 1, 1, GPU_RGBA8, DRW_TEX_WRAP, color); float flame = 0.0f; e_data.dummy_flame = DRW_texture_create_3d(1, 1, 1, GPU_R8, DRW_TEX_WRAP, &flame); } void EEVEE_volumes_set_jitter(EEVEE_ViewLayerData *sldata, uint current_sample) { EEVEE_CommonUniformBuffer *common_data = &sldata->common_data; double ht_point[3]; double ht_offset[3] = {0.0, 0.0}; uint ht_primes[3] = {3, 7, 2}; BLI_halton_3d(ht_primes, ht_offset, current_sample, ht_point); common_data->vol_jitter[0] = (float)ht_point[0]; common_data->vol_jitter[1] = (float)ht_point[1]; common_data->vol_jitter[2] = (float)ht_point[2]; } void EEVEE_volumes_init(EEVEE_ViewLayerData *sldata, EEVEE_Data *vedata) { EEVEE_StorageList *stl = vedata->stl; EEVEE_FramebufferList *fbl = vedata->fbl; EEVEE_TextureList *txl = vedata->txl; EEVEE_EffectsInfo *effects = stl->effects; EEVEE_CommonUniformBuffer *common_data = &sldata->common_data; const DRWContextState *draw_ctx = DRW_context_state_get(); const Scene *scene_eval = DEG_get_evaluated_scene(draw_ctx->depsgraph); const float *viewport_size = DRW_viewport_size_get(); BLI_listbase_clear(&e_data.smoke_domains); const int tile_size = scene_eval->eevee.volumetric_tile_size; /* Find Froxel Texture resolution. */ int tex_size[3]; tex_size[0] = (int)ceilf(fmaxf(1.0f, viewport_size[0] / (float)tile_size)); tex_size[1] = (int)ceilf(fmaxf(1.0f, viewport_size[1] / (float)tile_size)); tex_size[2] = max_ii(scene_eval->eevee.volumetric_samples, 1); common_data->vol_coord_scale[0] = viewport_size[0] / (float)(tile_size * tex_size[0]); common_data->vol_coord_scale[1] = viewport_size[1] / (float)(tile_size * tex_size[1]); common_data->vol_coord_scale[2] = 1.0f / viewport_size[0]; common_data->vol_coord_scale[3] = 1.0f / viewport_size[1]; /* TODO compute snap to maxZBuffer for clustered rendering */ if ((common_data->vol_tex_size[0] != tex_size[0]) || (common_data->vol_tex_size[1] != tex_size[1]) || (common_data->vol_tex_size[2] != tex_size[2])) { DRW_TEXTURE_FREE_SAFE(txl->volume_prop_scattering); DRW_TEXTURE_FREE_SAFE(txl->volume_prop_extinction); DRW_TEXTURE_FREE_SAFE(txl->volume_prop_emission); DRW_TEXTURE_FREE_SAFE(txl->volume_prop_phase); DRW_TEXTURE_FREE_SAFE(txl->volume_scatter); DRW_TEXTURE_FREE_SAFE(txl->volume_transmit); DRW_TEXTURE_FREE_SAFE(txl->volume_scatter_history); DRW_TEXTURE_FREE_SAFE(txl->volume_transmit_history); GPU_FRAMEBUFFER_FREE_SAFE(fbl->volumetric_fb); GPU_FRAMEBUFFER_FREE_SAFE(fbl->volumetric_scat_fb); GPU_FRAMEBUFFER_FREE_SAFE(fbl->volumetric_integ_fb); copy_v3_v3_int(common_data->vol_tex_size, tex_size); common_data->vol_inv_tex_size[0] = 1.0f / (float)(tex_size[0]); common_data->vol_inv_tex_size[1] = 1.0f / (float)(tex_size[1]); common_data->vol_inv_tex_size[2] = 1.0f / (float)(tex_size[2]); } /* Like frostbite's paper, 5% blend of the new frame. */ common_data->vol_history_alpha = (txl->volume_prop_scattering == NULL) ? 0.0f : 0.95f; /* Temporal Super sampling jitter */ uint ht_primes[3] = {3, 7, 2}; uint current_sample = 0; /* If TAA is in use do not use the history buffer. */ bool do_taa = ((effects->enabled_effects & EFFECT_TAA) != 0); if (draw_ctx->evil_C != NULL) { struct wmWindowManager *wm = CTX_wm_manager(draw_ctx->evil_C); do_taa = do_taa && (ED_screen_animation_no_scrub(wm) == NULL); } if (do_taa) { common_data->vol_history_alpha = 0.0f; current_sample = effects->taa_current_sample - 1; effects->volume_current_sample = -1; } else if (DRW_state_is_image_render()) { const uint max_sample = (ht_primes[0] * ht_primes[1] * ht_primes[2]); current_sample = effects->volume_current_sample = (effects->volume_current_sample + 1) % max_sample; if (current_sample != max_sample - 1) { DRW_viewport_request_redraw(); } } EEVEE_volumes_set_jitter(sldata, current_sample); float integration_start = scene_eval->eevee.volumetric_start; float integration_end = scene_eval->eevee.volumetric_end; common_data->vol_light_clamp = scene_eval->eevee.volumetric_light_clamp; common_data->vol_shadow_steps = (float)scene_eval->eevee.volumetric_shadow_samples; if ((scene_eval->eevee.flag & SCE_EEVEE_VOLUMETRIC_SHADOWS) == 0) { common_data->vol_shadow_steps = 0; } /* Update view_vecs */ float invproj[4][4], winmat[4][4]; DRW_view_winmat_get(NULL, winmat, false); DRW_view_winmat_get(NULL, invproj, true); EEVEE_update_viewvecs(invproj, winmat, sldata->common_data.view_vecs); if (DRW_view_is_persp_get(NULL)) { float sample_distribution = scene_eval->eevee.volumetric_sample_distribution; sample_distribution = 4.0f * (max_ff(1.0f - sample_distribution, 1e-2f)); const float clip_start = common_data->view_vecs[0][2]; /* Negate */ float near = integration_start = min_ff(-integration_start, clip_start - 1e-4f); float far = integration_end = min_ff(-integration_end, near - 1e-4f); common_data->vol_depth_param[0] = (far - near * exp2(1.0f / sample_distribution)) / (far - near); common_data->vol_depth_param[1] = (1.0f - common_data->vol_depth_param[0]) / near; common_data->vol_depth_param[2] = sample_distribution; } else { const float clip_start = common_data->view_vecs[0][2]; const float clip_end = clip_start + common_data->view_vecs[1][2]; integration_start = min_ff(integration_end, clip_start); integration_end = max_ff(-integration_end, clip_end); common_data->vol_depth_param[0] = integration_start; common_data->vol_depth_param[1] = integration_end; common_data->vol_depth_param[2] = 1.0f / (integration_end - integration_start); } /* Disable clamp if equal to 0. */ if (common_data->vol_light_clamp == 0.0) { common_data->vol_light_clamp = FLT_MAX; } common_data->vol_use_lights = (scene_eval->eevee.flag & SCE_EEVEE_VOLUMETRIC_LIGHTS) != 0; if (!e_data.dummy_scatter) { float scatter[4] = {0.0f, 0.0f, 0.0f, 0.0f}; float transmit[4] = {1.0f, 1.0f, 1.0f, 1.0f}; e_data.dummy_scatter = DRW_texture_create_3d(1, 1, 1, GPU_RGBA8, DRW_TEX_WRAP, scatter); e_data.dummy_transmit = DRW_texture_create_3d(1, 1, 1, GPU_RGBA8, DRW_TEX_WRAP, transmit); } } void EEVEE_volumes_cache_init(EEVEE_ViewLayerData *sldata, EEVEE_Data *vedata) { EEVEE_PassList *psl = vedata->psl; EEVEE_StorageList *stl = vedata->stl; EEVEE_EffectsInfo *effects = stl->effects; EEVEE_CommonUniformBuffer *common_data = &sldata->common_data; const DRWContextState *draw_ctx = DRW_context_state_get(); Scene *scene = draw_ctx->scene; DRWShadingGroup *grp = NULL; /* Shaders */ if (!e_data.scatter_sh) { eevee_create_shader_volumes(); } /* Quick breakdown of the Volumetric rendering: * * The rendering is separated in 4 stages: * * - Material Parameters : we collect volume properties of * all participating media in the scene and store them in * a 3D texture aligned with the 3D frustum. * This is done in 2 passes, one that clear the texture * and/or evaluate the world volumes, and the 2nd one that * additively render object volumes. * * - Light Scattering : the volume properties then are sampled * and light scattering is evaluated for each cell of the * volume texture. Temporal super-sampling (if enabled) occurs here. * * - Volume Integration : the scattered light and extinction is * integrated (accumulated) along the view-rays. The result is stored * for every cell in another texture. * * - Full-screen Resolve : From the previous stage, we get two * 3D textures that contains integrated scattered light and extinction * for "every" positions in the frustum. We only need to sample * them and blend the scene color with those factors. This also * work for alpha blended materials. */ /* World pass is not additive as it also clear the buffer. */ DRW_PASS_CREATE(psl->volumetric_world_ps, DRW_STATE_WRITE_COLOR); DRW_PASS_CREATE(psl->volumetric_objects_ps, DRW_STATE_WRITE_COLOR | DRW_STATE_BLEND_ADD); /* World Volumetric */ struct World *wo = scene->world; if (wo != NULL && wo->use_nodes && wo->nodetree && !LOOK_DEV_STUDIO_LIGHT_ENABLED(draw_ctx->v3d)) { struct GPUMaterial *mat = EEVEE_material_world_volume_get(scene, wo); if (GPU_material_use_domain_volume(mat)) { grp = DRW_shgroup_material_create(mat, psl->volumetric_world_ps); } if (grp) { DRW_shgroup_uniform_block(grp, "common_block", sldata->common_ubo); /* TODO (fclem): remove those (need to clean the GLSL files). */ DRW_shgroup_uniform_block(grp, "grid_block", sldata->grid_ubo); DRW_shgroup_uniform_block(grp, "probe_block", sldata->probe_ubo); DRW_shgroup_uniform_block(grp, "planar_block", sldata->planar_ubo); DRW_shgroup_uniform_block(grp, "light_block", sldata->light_ubo); DRW_shgroup_uniform_block(grp, "shadow_block", sldata->shadow_ubo); /* Fix principle volumetric not working with world materials. */ DRW_shgroup_uniform_texture(grp, "sampdensity", e_data.dummy_density); DRW_shgroup_uniform_texture(grp, "sampflame", e_data.dummy_flame); DRW_shgroup_uniform_vec2_copy(grp, "unftemperature", (float[2]){0.0f, 1.0f}); DRW_shgroup_call_procedural_triangles(grp, NULL, common_data->vol_tex_size[2]); effects->enabled_effects |= (EFFECT_VOLUMETRIC | EFFECT_POST_BUFFER); } } if (grp == NULL) { /* If no world or volume material is present just clear the buffer with this drawcall */ grp = DRW_shgroup_create(e_data.volumetric_clear_sh, psl->volumetric_world_ps); DRW_shgroup_uniform_block(grp, "common_block", sldata->common_ubo); DRW_shgroup_call_procedural_triangles(grp, NULL, common_data->vol_tex_size[2]); } } typedef struct EEVEE_InstanceVolumeMatrix { DrawData dd; float volume_mat[4][4]; } EEVEE_InstanceVolumeMatrix; void EEVEE_volumes_cache_object_add(EEVEE_ViewLayerData *sldata, EEVEE_Data *vedata, Scene *scene, Object *ob) { const DRWContextState *draw_ctx = DRW_context_state_get(); static float white[3] = {1.0f, 1.0f, 1.0f}; float *texcoloc = NULL; float *texcosize = NULL; struct ModifierData *md = NULL; Material *ma = give_current_material(ob, 1); if (ma == NULL) { return; } struct GPUMaterial *mat = EEVEE_material_mesh_volume_get(scene, ma); eGPUMaterialStatus status = GPU_material_status(mat); if (status == GPU_MAT_QUEUED) { vedata->stl->g_data->queued_shaders_count++; } /* If shader failed to compile or is currently compiling. */ if (status != GPU_MAT_SUCCESS) { return; } DRWShadingGroup *grp = DRW_shgroup_material_create(mat, vedata->psl->volumetric_objects_ps); BKE_mesh_texspace_get_reference((struct Mesh *)ob->data, NULL, &texcoloc, &texcosize); /* TODO(fclem) remove those "unnecessary" UBOs */ DRW_shgroup_uniform_block(grp, "planar_block", sldata->planar_ubo); DRW_shgroup_uniform_block(grp, "probe_block", sldata->probe_ubo); DRW_shgroup_uniform_block(grp, "shadow_block", sldata->shadow_ubo); DRW_shgroup_uniform_block(grp, "light_block", sldata->light_ubo); DRW_shgroup_uniform_block(grp, "grid_block", sldata->grid_ubo); DRW_shgroup_uniform_block(grp, "common_block", sldata->common_ubo); DRW_shgroup_uniform_vec3(grp, "volumeOrcoLoc", texcoloc, 1); DRW_shgroup_uniform_vec3(grp, "volumeOrcoSize", texcosize, 1); /* Smoke Simulation */ if (((ob->base_flag & BASE_FROM_DUPLI) == 0) && (md = modifiers_findByType(ob, eModifierType_Smoke)) && (modifier_isEnabled(scene, md, eModifierMode_Realtime)) && ((SmokeModifierData *)md)->domain != NULL) { SmokeModifierData *smd = (SmokeModifierData *)md; SmokeDomainSettings *sds = smd->domain; /* Don't show smoke before simulation starts, this could be made an option in the future. */ const bool show_smoke = ((int)DEG_get_ctime(draw_ctx->depsgraph) >= sds->point_cache[0]->startframe); if (sds->fluid && show_smoke) { const bool show_highres = BKE_smoke_show_highres(scene, sds); if (!sds->wt || !show_highres) { GPU_create_smoke(smd, 0); } else if (sds->wt && show_highres) { GPU_create_smoke(smd, 1); } BLI_addtail(&e_data.smoke_domains, BLI_genericNodeN(smd)); } DRW_shgroup_uniform_texture_ref( grp, "sampdensity", sds->tex ? &sds->tex : &e_data.dummy_density); DRW_shgroup_uniform_texture_ref( grp, "sampflame", sds->tex_flame ? &sds->tex_flame : &e_data.dummy_flame); /* Constant Volume color. */ bool use_constant_color = ((sds->active_fields & SM_ACTIVE_COLORS) == 0 && (sds->active_fields & SM_ACTIVE_COLOR_SET) != 0); DRW_shgroup_uniform_vec3( grp, "volumeColor", (use_constant_color) ? sds->active_color : white, 1); /* Output is such that 0..1 maps to 0..1000K */ DRW_shgroup_uniform_vec2(grp, "unftemperature", &sds->flame_ignition, 1); } else { DRW_shgroup_uniform_texture(grp, "sampdensity", e_data.dummy_density); DRW_shgroup_uniform_texture(grp, "sampflame", e_data.dummy_flame); DRW_shgroup_uniform_vec3(grp, "volumeColor", white, 1); DRW_shgroup_uniform_vec2(grp, "unftemperature", (float[2]){0.0f, 1.0f}, 1); } /* TODO Reduce to number of slices intersecting. */ /* TODO Preemptive culling. */ DRW_shgroup_call_procedural_triangles(grp, ob, sldata->common_data.vol_tex_size[2]); vedata->stl->effects->enabled_effects |= (EFFECT_VOLUMETRIC | EFFECT_POST_BUFFER); } void EEVEE_volumes_cache_finish(EEVEE_ViewLayerData *sldata, EEVEE_Data *vedata) { EEVEE_PassList *psl = vedata->psl; EEVEE_TextureList *txl = vedata->txl; EEVEE_EffectsInfo *effects = vedata->stl->effects; LightCache *lcache = vedata->stl->g_data->light_cache; EEVEE_CommonUniformBuffer *common_data = &sldata->common_data; if ((effects->enabled_effects & EFFECT_VOLUMETRIC) != 0) { DRWShadingGroup *grp; struct GPUShader *sh; DRW_PASS_CREATE(psl->volumetric_scatter_ps, DRW_STATE_WRITE_COLOR); sh = (common_data->vol_use_lights) ? e_data.scatter_with_lights_sh : e_data.scatter_sh; grp = DRW_shgroup_create(sh, psl->volumetric_scatter_ps); DRW_shgroup_uniform_texture_ref(grp, "irradianceGrid", &lcache->grid_tx.tex); DRW_shgroup_uniform_texture_ref(grp, "shadowCubeTexture", &sldata->shadow_cube_pool); DRW_shgroup_uniform_texture_ref(grp, "shadowCascadeTexture", &sldata->shadow_cascade_pool); DRW_shgroup_uniform_texture_ref(grp, "volumeScattering", &txl->volume_prop_scattering); DRW_shgroup_uniform_texture_ref(grp, "volumeExtinction", &txl->volume_prop_extinction); DRW_shgroup_uniform_texture_ref(grp, "volumeEmission", &txl->volume_prop_emission); DRW_shgroup_uniform_texture_ref(grp, "volumePhase", &txl->volume_prop_phase); DRW_shgroup_uniform_texture_ref(grp, "historyScattering", &txl->volume_scatter_history); DRW_shgroup_uniform_texture_ref(grp, "historyTransmittance", &txl->volume_transmit_history); DRW_shgroup_uniform_block(grp, "light_block", sldata->light_ubo); DRW_shgroup_uniform_block(grp, "shadow_block", sldata->shadow_ubo); DRW_shgroup_uniform_block(grp, "common_block", sldata->common_ubo); DRW_shgroup_call_procedural_triangles(grp, NULL, common_data->vol_tex_size[2]); DRW_PASS_CREATE(psl->volumetric_integration_ps, DRW_STATE_WRITE_COLOR); grp = DRW_shgroup_create(e_data.volumetric_integration_sh, psl->volumetric_integration_ps); DRW_shgroup_uniform_texture_ref(grp, "volumeScattering", &txl->volume_scatter); DRW_shgroup_uniform_texture_ref(grp, "volumeExtinction", &txl->volume_transmit); DRW_shgroup_uniform_block(grp, "common_block", sldata->common_ubo); DRW_shgroup_call_procedural_triangles( grp, NULL, USE_VOLUME_OPTI ? 1 : common_data->vol_tex_size[2]); DRW_PASS_CREATE(psl->volumetric_resolve_ps, DRW_STATE_WRITE_COLOR | DRW_STATE_BLEND_CUSTOM); grp = DRW_shgroup_create(e_data.volumetric_resolve_sh, psl->volumetric_resolve_ps); DRW_shgroup_uniform_texture_ref(grp, "inScattering", &txl->volume_scatter); DRW_shgroup_uniform_texture_ref(grp, "inTransmittance", &txl->volume_transmit); DRW_shgroup_uniform_texture_ref(grp, "inSceneDepth", &e_data.depth_src); DRW_shgroup_uniform_block(grp, "common_block", sldata->common_ubo); DRW_shgroup_call_procedural_triangles(grp, NULL, 1); } } void EEVEE_volumes_draw_init(EEVEE_ViewLayerData *sldata, EEVEE_Data *vedata) { EEVEE_FramebufferList *fbl = vedata->fbl; EEVEE_TextureList *txl = vedata->txl; EEVEE_EffectsInfo *effects = vedata->stl->effects; EEVEE_CommonUniformBuffer *common_data = &sldata->common_data; if ((effects->enabled_effects & EFFECT_VOLUMETRIC) != 0) { int *tex_size = common_data->vol_tex_size; if (txl->volume_prop_scattering == NULL) { /* Volume properties: We evaluate all volumetric objects * and store their final properties into each froxel */ txl->volume_prop_scattering = DRW_texture_create_3d( tex_size[0], tex_size[1], tex_size[2], GPU_R11F_G11F_B10F, DRW_TEX_FILTER, NULL); txl->volume_prop_extinction = DRW_texture_create_3d( tex_size[0], tex_size[1], tex_size[2], GPU_R11F_G11F_B10F, DRW_TEX_FILTER, NULL); txl->volume_prop_emission = DRW_texture_create_3d( tex_size[0], tex_size[1], tex_size[2], GPU_R11F_G11F_B10F, DRW_TEX_FILTER, NULL); txl->volume_prop_phase = DRW_texture_create_3d( tex_size[0], tex_size[1], tex_size[2], GPU_RG16F, DRW_TEX_FILTER, NULL); /* Volume scattering: We compute for each froxel the * Scattered light towards the view. We also resolve temporal * super sampling during this stage. */ txl->volume_scatter = DRW_texture_create_3d( tex_size[0], tex_size[1], tex_size[2], GPU_R11F_G11F_B10F, DRW_TEX_FILTER, NULL); txl->volume_transmit = DRW_texture_create_3d( tex_size[0], tex_size[1], tex_size[2], GPU_R11F_G11F_B10F, DRW_TEX_FILTER, NULL); /* Final integration: We compute for each froxel the * amount of scattered light and extinction coef at this * given depth. We use these textures as double buffer * for the volumetric history. */ txl->volume_scatter_history = DRW_texture_create_3d( tex_size[0], tex_size[1], tex_size[2], GPU_R11F_G11F_B10F, DRW_TEX_FILTER, NULL); txl->volume_transmit_history = DRW_texture_create_3d( tex_size[0], tex_size[1], tex_size[2], GPU_R11F_G11F_B10F, DRW_TEX_FILTER, NULL); } GPU_framebuffer_ensure_config(&fbl->volumetric_fb, {GPU_ATTACHMENT_NONE, GPU_ATTACHMENT_TEXTURE(txl->volume_prop_scattering), GPU_ATTACHMENT_TEXTURE(txl->volume_prop_extinction), GPU_ATTACHMENT_TEXTURE(txl->volume_prop_emission), GPU_ATTACHMENT_TEXTURE(txl->volume_prop_phase)}); GPU_framebuffer_ensure_config(&fbl->volumetric_scat_fb, {GPU_ATTACHMENT_NONE, GPU_ATTACHMENT_TEXTURE(txl->volume_scatter), GPU_ATTACHMENT_TEXTURE(txl->volume_transmit)}); GPU_framebuffer_ensure_config(&fbl->volumetric_integ_fb, {GPU_ATTACHMENT_NONE, GPU_ATTACHMENT_TEXTURE(txl->volume_scatter_history), GPU_ATTACHMENT_TEXTURE(txl->volume_transmit_history)}); } else { DRW_TEXTURE_FREE_SAFE(txl->volume_prop_scattering); DRW_TEXTURE_FREE_SAFE(txl->volume_prop_extinction); DRW_TEXTURE_FREE_SAFE(txl->volume_prop_emission); DRW_TEXTURE_FREE_SAFE(txl->volume_prop_phase); DRW_TEXTURE_FREE_SAFE(txl->volume_scatter); DRW_TEXTURE_FREE_SAFE(txl->volume_transmit); DRW_TEXTURE_FREE_SAFE(txl->volume_scatter_history); DRW_TEXTURE_FREE_SAFE(txl->volume_transmit_history); GPU_FRAMEBUFFER_FREE_SAFE(fbl->volumetric_fb); GPU_FRAMEBUFFER_FREE_SAFE(fbl->volumetric_scat_fb); GPU_FRAMEBUFFER_FREE_SAFE(fbl->volumetric_integ_fb); } effects->volume_scatter = e_data.dummy_scatter; effects->volume_transmit = e_data.dummy_transmit; } void EEVEE_volumes_compute(EEVEE_ViewLayerData *sldata, EEVEE_Data *vedata) { EEVEE_PassList *psl = vedata->psl; EEVEE_TextureList *txl = vedata->txl; EEVEE_FramebufferList *fbl = vedata->fbl; EEVEE_StorageList *stl = vedata->stl; EEVEE_EffectsInfo *effects = stl->effects; if ((effects->enabled_effects & EFFECT_VOLUMETRIC) != 0) { DRW_stats_group_start("Volumetrics"); /* We sample the shadow-maps using shadow sampler. We need to enable Comparison mode. * TODO(fclem) avoid this by using sampler objects.*/ GPU_texture_bind(sldata->shadow_cube_pool, 0); GPU_texture_compare_mode(sldata->shadow_cube_pool, true); GPU_texture_unbind(sldata->shadow_cube_pool); GPU_texture_bind(sldata->shadow_cascade_pool, 0); GPU_texture_compare_mode(sldata->shadow_cascade_pool, true); GPU_texture_unbind(sldata->shadow_cascade_pool); GPU_framebuffer_bind(fbl->volumetric_fb); DRW_draw_pass(psl->volumetric_world_ps); DRW_draw_pass(psl->volumetric_objects_ps); GPU_framebuffer_bind(fbl->volumetric_scat_fb); DRW_draw_pass(psl->volumetric_scatter_ps); if (USE_VOLUME_OPTI) { int tex_scatter = GPU_texture_opengl_bindcode(txl->volume_scatter_history); int tex_transmit = GPU_texture_opengl_bindcode(txl->volume_transmit_history); /* TODO(fclem) Encapsulate these GL calls into DRWManager. */ glMemoryBarrier(GL_SHADER_IMAGE_ACCESS_BARRIER_BIT); /* Subtlety here! we need to tell the GL that the texture is layered (GL_TRUE) * in order to bind the full 3D texture and not just a 2D slice. */ glBindImageTexture(0, tex_scatter, 0, GL_TRUE, 0, GL_WRITE_ONLY, GL_R11F_G11F_B10F); glBindImageTexture(1, tex_transmit, 0, GL_TRUE, 0, GL_WRITE_ONLY, GL_R11F_G11F_B10F); GPU_framebuffer_bind(fbl->volumetric_fb); } else { GPU_framebuffer_bind(fbl->volumetric_integ_fb); } DRW_draw_pass(psl->volumetric_integration_ps); if (USE_VOLUME_OPTI) { glMemoryBarrier(GL_SHADER_IMAGE_ACCESS_BARRIER_BIT); glBindImageTexture(0, 0, 0, GL_TRUE, 0, GL_WRITE_ONLY, GL_R11F_G11F_B10F); glBindImageTexture(1, 0, 0, GL_TRUE, 0, GL_WRITE_ONLY, GL_R11F_G11F_B10F); } SWAP(struct GPUFrameBuffer *, fbl->volumetric_scat_fb, fbl->volumetric_integ_fb); SWAP(GPUTexture *, txl->volume_scatter, txl->volume_scatter_history); SWAP(GPUTexture *, txl->volume_transmit, txl->volume_transmit_history); effects->volume_scatter = txl->volume_scatter; effects->volume_transmit = txl->volume_transmit; /* Restore */ GPU_framebuffer_bind(fbl->main_fb); DRW_stats_group_end(); } } void EEVEE_volumes_resolve(EEVEE_ViewLayerData *UNUSED(sldata), EEVEE_Data *vedata) { EEVEE_PassList *psl = vedata->psl; EEVEE_FramebufferList *fbl = vedata->fbl; EEVEE_StorageList *stl = vedata->stl; EEVEE_EffectsInfo *effects = stl->effects; if ((effects->enabled_effects & EFFECT_VOLUMETRIC) != 0) { DefaultTextureList *dtxl = DRW_viewport_texture_list_get(); e_data.depth_src = dtxl->depth; /* Apply for opaque geometry. */ GPU_framebuffer_bind(fbl->main_color_fb); DRW_draw_pass(psl->volumetric_resolve_ps); /* Restore. */ GPU_framebuffer_bind(fbl->main_fb); } } void EEVEE_volumes_free_smoke_textures(void) { /* Free Smoke Textures after rendering */ for (LinkData *link = e_data.smoke_domains.first; link; link = link->next) { SmokeModifierData *smd = (SmokeModifierData *)link->data; GPU_free_smoke(smd); } BLI_freelistN(&e_data.smoke_domains); } void EEVEE_volumes_free(void) { MEM_SAFE_FREE(e_data.volumetric_common_lib); MEM_SAFE_FREE(e_data.volumetric_common_lights_lib); DRW_TEXTURE_FREE_SAFE(e_data.dummy_scatter); DRW_TEXTURE_FREE_SAFE(e_data.dummy_transmit); DRW_TEXTURE_FREE_SAFE(e_data.dummy_density); DRW_TEXTURE_FREE_SAFE(e_data.dummy_flame); DRW_SHADER_FREE_SAFE(e_data.volumetric_clear_sh); DRW_SHADER_FREE_SAFE(e_data.scatter_sh); DRW_SHADER_FREE_SAFE(e_data.scatter_with_lights_sh); DRW_SHADER_FREE_SAFE(e_data.volumetric_integration_sh); DRW_SHADER_FREE_SAFE(e_data.volumetric_resolve_sh); }