uniform sampler1D texHammersley; uniform sampler2D texJitter; uniform float sampleCount; uniform float invSampleCount; vec2 jitternoise = vec2(0.0); #ifndef UTIL_TEX #define UTIL_TEX uniform sampler2DArray utilTex; #endif /* UTIL_TEX */ void setup_noise(void) { jitternoise = texture(utilTex, vec3(gl_FragCoord.xy / LUT_SIZE, 2.0)).rg; /* Global variable */ jitternoise.g = (jitternoise.g - 0.5) * 2.0; } #ifdef HAMMERSLEY_SIZE vec3 hammersley_3d(float i, float invsamplenbr) { vec3 Xi; /* Theta, cos(Phi), sin(Phi) */ Xi.x = i * invsamplenbr; /* i/samples */ Xi.x = fract(Xi.x + jitternoise.x); int u = int(mod(i + jitternoise.y * HAMMERSLEY_SIZE, HAMMERSLEY_SIZE)); Xi.yz = texelFetch(texHammersley, u, 0).rg; return Xi; } vec3 hammersley_3d(float i) { return hammersley_3d(i, invSampleCount); } #endif /* -------------- BSDFS -------------- */ float pdf_ggx_reflect(float NH, float a2) { return NH * a2 / D_ggx_opti(NH, a2); } float pdf_hemisphere() { return 0.5 * M_1_PI; } vec3 sample_ggx(vec3 rand, float a2) { /* Theta is the aperture angle of the cone */ float z = sqrt( (1.0 - rand.x) / ( 1.0 + a2 * rand.x - rand.x ) ); /* cos theta */ float r = sqrt( 1.0 - z * z ); /* sin theta */ float x = r * rand.y; float y = r * rand.z; /* Microfacet Normal */ return vec3(x, y, z); } vec3 sample_ggx(vec3 rand, float a2, vec3 N, vec3 T, vec3 B, out float NH) { vec3 Ht = sample_ggx(rand, a2); NH = Ht.z; return tangent_to_world(Ht, N, T, B); } #ifdef HAMMERSLEY_SIZE vec3 sample_ggx(float nsample, float a2, vec3 N, vec3 T, vec3 B) { vec3 Xi = hammersley_3d(nsample); vec3 Ht = sample_ggx(Xi, a2); return tangent_to_world(Ht, N, T, B); } vec3 sample_hemisphere(float nsample, vec3 N, vec3 T, vec3 B) { vec3 Xi = hammersley_3d(nsample); float z = Xi.x; /* cos theta */ float r = sqrt( 1.0f - z*z ); /* sin theta */ float x = r * Xi.y; float y = r * Xi.z; vec3 Ht = vec3(x, y, z); return tangent_to_world(Ht, N, T, B); } #endif