#pragma BLENDER_REQUIRE(bsdf_common_lib.glsl) uniform sampler1D texHammersley; vec3 tangent_to_world(vec3 vector, vec3 N, vec3 T, vec3 B) { return T * vector.x + B * vector.y + N * vector.z; } #ifdef HAMMERSLEY_SIZE vec3 hammersley_3d(float i, float invsamplenbr) { vec3 Xi; /* Theta, cos(Phi), sin(Phi) */ Xi.x = i * invsamplenbr; Xi.yz = texelFetch(texHammersley, int(i), 0).rg; return Xi; } #endif /* -------------- BSDFS -------------- */ float pdf_ggx_reflect(float NH, float a2) { return NH * a2 / D_ggx_opti(NH, a2); } float pdf_hemisphere() { return 0.5 * M_1_PI; } vec3 sample_ggx(vec3 rand, float a2) { /* Theta is the cone angle. */ float z = sqrt((1.0 - rand.x) / (1.0 + a2 * rand.x - rand.x)); /* cos theta */ float r = sqrt(max(0.0, 1.0f - z * z)); /* sin theta */ float x = r * rand.y; float y = r * rand.z; /* Microfacet Normal */ return vec3(x, y, z); } vec3 sample_ggx(vec3 rand, float a2, vec3 N, vec3 T, vec3 B, out float NH) { vec3 Ht = sample_ggx(rand, a2); NH = Ht.z; return tangent_to_world(Ht, N, T, B); } #ifdef HAMMERSLEY_SIZE vec3 sample_ggx(float nsample, float inv_sample_count, float a2, vec3 N, vec3 T, vec3 B) { vec3 Xi = hammersley_3d(nsample, inv_sample_count); vec3 Ht = sample_ggx(Xi, a2); return tangent_to_world(Ht, N, T, B); } vec3 sample_hemisphere(float nsample, float inv_sample_count, vec3 N, vec3 T, vec3 B) { vec3 Xi = hammersley_3d(nsample, inv_sample_count); float z = Xi.x; /* cos theta */ float r = sqrt(max(0.0, 1.0f - z * z)); /* sin theta */ float x = r * Xi.y; float y = r * Xi.z; vec3 Ht = vec3(x, y, z); return tangent_to_world(Ht, N, T, B); } vec3 sample_cone(float nsample, float inv_sample_count, float angle, vec3 N, vec3 T, vec3 B) { vec3 Xi = hammersley_3d(nsample, inv_sample_count); float z = cos(angle * Xi.x); /* cos theta */ float r = sqrt(max(0.0, 1.0f - z * z)); /* sin theta */ float x = r * Xi.y; float y = r * Xi.z; vec3 Ht = vec3(x, y, z); return tangent_to_world(Ht, N, T, B); } #endif