#define NO_OBJECT_ID uint(0) #define EPSILON 0.00001 #define M_PI 3.14159265358979323846 #define CAVITY_BUFFER_RANGE 4.0 /* 4x4 bayer matrix prepared for 8bit UNORM precision error. */ #define P(x) (((x + 0.5) * (1.0 / 16.0) - 0.5) * (1.0 / 255.0)) const vec4 dither_mat4x4[4] = vec4[4](vec4(P(0.0), P(8.0), P(2.0), P(10.0)), vec4(P(12.0), P(4.0), P(14.0), P(6.0)), vec4(P(3.0), P(11.0), P(1.0), P(9.0)), vec4(P(15.0), P(7.0), P(13.0), P(5.0))); float bayer_dither_noise() { ivec2 tx1 = ivec2(gl_FragCoord.xy) % 4; ivec2 tx2 = ivec2(gl_FragCoord.xy) % 2; return dither_mat4x4[tx1.x][tx1.y]; } #ifdef WORKBENCH_ENCODE_NORMALS # define WB_Normal vec2 /* From http://aras-p.info/texts/CompactNormalStorage.html * Using Method #4: Spheremap Transform */ vec3 workbench_normal_decode(WB_Normal enc) { vec2 fenc = enc.xy * 4.0 - 2.0; float f = dot(fenc, fenc); float g = sqrt(1.0 - f / 4.0); vec3 n; n.xy = fenc * g; n.z = 1 - f / 2; return n; } /* From http://aras-p.info/texts/CompactNormalStorage.html * Using Method #4: Spheremap Transform */ WB_Normal workbench_normal_encode(vec3 n) { float p = sqrt(n.z * 8.0 + 8.0); n.xy = clamp(n.xy / p + 0.5, 0.0, 1.0); return n.xy; } #else # define WB_Normal vec3 /* Well just do nothing... */ # define workbench_normal_encode(a) (a) # define workbench_normal_decode(a) (a) #endif /* WORKBENCH_ENCODE_NORMALS */ /* Encoding into the alpha of a RGBA8 UNORM texture. */ #define TARGET_BITCOUNT 8u #define METALLIC_BITS 3u /* Metallic channel is less important. */ #define ROUGHNESS_BITS (TARGET_BITCOUNT - METALLIC_BITS) #define TOTAL_BITS (METALLIC_BITS + ROUGHNESS_BITS) /* Encode 2 float into 1 with the desired precision. */ float workbench_float_pair_encode(float v1, float v2) { // const uint total_mask = ~(0xFFFFFFFFu << TOTAL_BITS); // const uint v1_mask = ~(0xFFFFFFFFu << ROUGHNESS_BITS); // const uint v2_mask = ~(0xFFFFFFFFu << METALLIC_BITS); /* Same as above because some compiler are dumb af. and think we use mediump int. */ const int total_mask = 0xFF; const int v1_mask = 0x1F; const int v2_mask = 0x7; int iv1 = int(v1 * float(v1_mask)); int iv2 = int(v2 * float(v2_mask)) << int(ROUGHNESS_BITS); return float(iv1 | iv2) * (1.0 / float(total_mask)); } void workbench_float_pair_decode(float data, out float v1, out float v2) { // const uint total_mask = ~(0xFFFFFFFFu << TOTAL_BITS); // const uint v1_mask = ~(0xFFFFFFFFu << ROUGHNESS_BITS); // const uint v2_mask = ~(0xFFFFFFFFu << METALLIC_BITS); /* Same as above because some compiler are dumb af. and think we use mediump int. */ const int total_mask = 0xFF; const int v1_mask = 0x1F; const int v2_mask = 0x7; int idata = int(data * float(total_mask)); v1 = float(idata & v1_mask) * (1.0 / float(v1_mask)); v2 = float(idata >> int(ROUGHNESS_BITS)) * (1.0 / float(v2_mask)); } float calculate_transparent_weight(float z, float alpha) { #if 0 /* Eq 10 : Good for surfaces with varying opacity (like particles) */ float a = min(1.0, alpha * 10.0) + 0.01; float b = -gl_FragCoord.z * 0.95 + 1.0; float w = a * a * a * 3e2 * b * b * b; #else /* Eq 7 put more emphasis on surfaces closer to the view. */ // float w = 10.0 / (1e-5 + pow(abs(z) / 5.0, 2.0) + pow(abs(z) / 200.0, 6.0)); /* Eq 7 */ // float w = 10.0 / (1e-5 + pow(abs(z) / 10.0, 3.0) + pow(abs(z) / 200.0, 6.0)); /* Eq 8 */ // float w = 10.0 / (1e-5 + pow(abs(z) / 200.0, 4.0)); /* Eq 9 */ /* Same as eq 7, but optimized. */ float a = abs(z) / 5.0; float b = abs(z) / 200.0; b *= b; float w = 10.0 / ((1e-5 + a * a) + b * (b * b)); /* Eq 7 */ #endif return alpha * clamp(w, 1e-2, 3e2); } /* Special function only to be used with calculate_transparent_weight(). */ float linear_zdepth(float depth, vec4 viewvecs[3], mat4 proj_mat) { if (proj_mat[3][3] == 0.0) { float d = 2.0 * depth - 1.0; return -proj_mat[3][2] / (d + proj_mat[2][2]); } else { /* Return depth from near plane. */ return depth * viewvecs[1].z; } } vec3 view_vector_from_screen_uv(vec2 uv, vec4 viewvecs[3], mat4 proj_mat) { return (proj_mat[3][3] == 0.0) ? normalize(viewvecs[0].xyz + vec3(uv, 0.0) * viewvecs[1].xyz) : vec3(0.0, 0.0, 1.0); } vec2 matcap_uv_compute(vec3 I, vec3 N, bool flipped) { /* Quick creation of an orthonormal basis */ float a = 1.0 / (1.0 + I.z); float b = -I.x * I.y * a; vec3 b1 = vec3(1.0 - I.x * I.x * a, b, -I.x); vec3 b2 = vec3(b, 1.0 - I.y * I.y * a, -I.y); vec2 matcap_uv = vec2(dot(b1, N), dot(b2, N)); if (flipped) { matcap_uv.x = -matcap_uv.x; } return matcap_uv * 0.496 + 0.5; } vec4 workbench_sample_texture(sampler2D image, vec2 coord, bool nearest_sampling, bool premultiplied) { vec2 tex_size = vec2(textureSize(image, 0).xy); /* TODO(fclem) We could do the same with sampler objects. * But this is a quick workaround instead of messing with the GPUTexture itself. */ vec2 uv = nearest_sampling ? (floor(coord * tex_size) + 0.5) / tex_size : coord; vec4 color = texture(image, uv); /* Unpremultiply if stored multiplied, since straight alpha is expected by shaders. */ if (premultiplied && !(color.a == 0.0 || color.a == 1.0)) { color.rgb = color.rgb / color.a; } return color; }