/* * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2017 by Blender Foundation. * All rights reserved. */ /** \file * \ingroup draw * * \brief Hair API for render engines */ #include #include "MEM_guardedalloc.h" #include "BLI_listbase.h" #include "BLI_math_base.h" #include "BLI_math_vec_types.hh" #include "BLI_math_vector.h" #include "BLI_math_vector.hh" #include "BLI_span.hh" #include "BLI_utildefines.h" #include "DNA_curves_types.h" #include "DNA_object_types.h" #include "BKE_curves.h" #include "GPU_batch.h" #include "GPU_material.h" #include "GPU_texture.h" #include "draw_cache_impl.h" /* own include */ #include "draw_hair_private.h" /* own include */ using blender::float3; using blender::IndexRange; using blender::Span; static void curves_batch_cache_clear(Curves *curves); /* ---------------------------------------------------------------------- */ /* Hair GPUBatch Cache */ struct HairBatchCache { ParticleHairCache hair; /* settings to determine if cache is invalid */ bool is_dirty; }; /* GPUBatch cache management. */ static bool curves_batch_cache_valid(Curves *curves) { HairBatchCache *cache = static_cast(curves->batch_cache); return (cache && cache->is_dirty == false); } static void curves_batch_cache_init(Curves *curves) { HairBatchCache *cache = static_cast(curves->batch_cache); if (!cache) { cache = MEM_cnew(__func__); curves->batch_cache = cache; } else { memset(cache, 0, sizeof(*cache)); } cache->is_dirty = false; } void DRW_curves_batch_cache_validate(Curves *curves) { if (!curves_batch_cache_valid(curves)) { curves_batch_cache_clear(curves); curves_batch_cache_init(curves); } } static HairBatchCache *curves_batch_cache_get(Curves *curves) { DRW_curves_batch_cache_validate(curves); return static_cast(curves->batch_cache); } void DRW_curves_batch_cache_dirty_tag(Curves *curves, int mode) { HairBatchCache *cache = static_cast(curves->batch_cache); if (cache == nullptr) { return; } switch (mode) { case BKE_CURVES_BATCH_DIRTY_ALL: cache->is_dirty = true; break; default: BLI_assert(0); } } static void curves_batch_cache_clear(Curves *curves) { HairBatchCache *cache = static_cast(curves->batch_cache); if (!cache) { return; } particle_batch_cache_clear_hair(&cache->hair); } void DRW_curves_batch_cache_free(Curves *curves) { curves_batch_cache_clear(curves); MEM_SAFE_FREE(curves->batch_cache); } static void ensure_seg_pt_count(Curves *curves, ParticleHairCache *curves_cache) { if ((curves_cache->pos != nullptr && curves_cache->indices != nullptr) || (curves_cache->proc_point_buf != nullptr)) { return; } curves_cache->strands_len = curves->geometry.curve_size; curves_cache->elems_len = curves->geometry.point_size + curves->geometry.curve_size; curves_cache->point_len = curves->geometry.point_size; } static void curves_batch_cache_fill_segments_proc_pos(Curves *curves, GPUVertBufRaw *attr_step, GPUVertBufRaw *length_step) { /* TODO: use hair radius layer if available. */ const int curve_size = curves->geometry.curve_size; Span offsets{curves->geometry.offsets, curves->geometry.curve_size + 1}; Span positions{(float3 *)curves->geometry.position, curves->geometry.point_size}; for (const int i : IndexRange(curve_size)) { const IndexRange curve_range(offsets[i], offsets[i + 1] - offsets[i]); Span spline_positions = positions.slice(curve_range); float total_len = 0.0f; float *seg_data_first; for (const int i_spline : spline_positions.index_range()) { float *seg_data = (float *)GPU_vertbuf_raw_step(attr_step); copy_v3_v3(seg_data, spline_positions[i_spline]); if (i_spline == 0) { seg_data_first = seg_data; } else { total_len += blender::math::distance(spline_positions[i_spline - 1], spline_positions[i_spline]); } seg_data[3] = total_len; } /* Assign length value. */ *(float *)GPU_vertbuf_raw_step(length_step) = total_len; if (total_len > 0.0f) { /* Divide by total length to have a [0-1] number. */ for ([[maybe_unused]] const int i_spline : spline_positions.index_range()) { seg_data_first[3] /= total_len; seg_data_first += 4; } } } } static void curves_batch_cache_ensure_procedural_pos(Curves *curves, ParticleHairCache *cache, GPUMaterial *gpu_material) { if (cache->proc_point_buf == nullptr) { /* initialize vertex format */ GPUVertFormat format = {0}; uint pos_id = GPU_vertformat_attr_add(&format, "posTime", GPU_COMP_F32, 4, GPU_FETCH_FLOAT); cache->proc_point_buf = GPU_vertbuf_create_with_format(&format); GPU_vertbuf_data_alloc(cache->proc_point_buf, cache->point_len); GPUVertBufRaw point_step; GPU_vertbuf_attr_get_raw_data(cache->proc_point_buf, pos_id, &point_step); GPUVertFormat length_format = {0}; uint length_id = GPU_vertformat_attr_add( &length_format, "hairLength", GPU_COMP_F32, 1, GPU_FETCH_FLOAT); cache->proc_length_buf = GPU_vertbuf_create_with_format(&length_format); GPU_vertbuf_data_alloc(cache->proc_length_buf, cache->strands_len); GPUVertBufRaw length_step; GPU_vertbuf_attr_get_raw_data(cache->proc_length_buf, length_id, &length_step); curves_batch_cache_fill_segments_proc_pos(curves, &point_step, &length_step); /* Create vbo immediately to bind to texture buffer. */ GPU_vertbuf_use(cache->proc_point_buf); cache->point_tex = GPU_texture_create_from_vertbuf("hair_point", cache->proc_point_buf); } if (gpu_material && cache->proc_length_buf != nullptr && cache->length_tex) { ListBase gpu_attrs = GPU_material_attributes(gpu_material); LISTBASE_FOREACH (GPUMaterialAttribute *, attr, &gpu_attrs) { if (attr->type == CD_HAIRLENGTH) { GPU_vertbuf_use(cache->proc_length_buf); cache->length_tex = GPU_texture_create_from_vertbuf("hair_length", cache->proc_length_buf); break; } } } } static void curves_batch_cache_fill_strands_data(Curves *curves, GPUVertBufRaw *data_step, GPUVertBufRaw *seg_step) { const int curve_size = curves->geometry.curve_size; Span offsets{curves->geometry.offsets, curves->geometry.curve_size + 1}; for (const int i : IndexRange(curve_size)) { const IndexRange curve_range(offsets[i], offsets[i + 1] - offsets[i]); *(uint *)GPU_vertbuf_raw_step(data_step) = curve_range.start(); *(ushort *)GPU_vertbuf_raw_step(seg_step) = curve_range.size() - 1; } } static void curves_batch_cache_ensure_procedural_strand_data(Curves *curves, ParticleHairCache *cache) { GPUVertBufRaw data_step, seg_step; GPUVertFormat format_data = {0}; uint data_id = GPU_vertformat_attr_add(&format_data, "data", GPU_COMP_U32, 1, GPU_FETCH_INT); GPUVertFormat format_seg = {0}; uint seg_id = GPU_vertformat_attr_add(&format_seg, "data", GPU_COMP_U16, 1, GPU_FETCH_INT); /* Strand Data */ cache->proc_strand_buf = GPU_vertbuf_create_with_format(&format_data); GPU_vertbuf_data_alloc(cache->proc_strand_buf, cache->strands_len); GPU_vertbuf_attr_get_raw_data(cache->proc_strand_buf, data_id, &data_step); cache->proc_strand_seg_buf = GPU_vertbuf_create_with_format(&format_seg); GPU_vertbuf_data_alloc(cache->proc_strand_seg_buf, cache->strands_len); GPU_vertbuf_attr_get_raw_data(cache->proc_strand_seg_buf, seg_id, &seg_step); curves_batch_cache_fill_strands_data(curves, &data_step, &seg_step); /* Create vbo immediately to bind to texture buffer. */ GPU_vertbuf_use(cache->proc_strand_buf); cache->strand_tex = GPU_texture_create_from_vertbuf("curves_strand", cache->proc_strand_buf); GPU_vertbuf_use(cache->proc_strand_seg_buf); cache->strand_seg_tex = GPU_texture_create_from_vertbuf("curves_strand_seg", cache->proc_strand_seg_buf); } static void curves_batch_cache_ensure_procedural_final_points(ParticleHairCache *cache, int subdiv) { /* Same format as point_tex. */ GPUVertFormat format = {0}; GPU_vertformat_attr_add(&format, "pos", GPU_COMP_F32, 4, GPU_FETCH_FLOAT); cache->final[subdiv].proc_buf = GPU_vertbuf_create_with_format_ex(&format, GPU_USAGE_DEVICE_ONLY); /* Create a destination buffer for the transform feedback. Sized appropriately */ /* Those are points! not line segments. */ GPU_vertbuf_data_alloc(cache->final[subdiv].proc_buf, cache->final[subdiv].strands_res * cache->strands_len); /* Create vbo immediately to bind to texture buffer. */ GPU_vertbuf_use(cache->final[subdiv].proc_buf); cache->final[subdiv].proc_tex = GPU_texture_create_from_vertbuf("hair_proc", cache->final[subdiv].proc_buf); } static void curves_batch_cache_fill_segments_indices(Curves *curves, const int res, GPUIndexBufBuilder *elb) { const int curve_size = curves->geometry.curve_size; uint curr_point = 0; for ([[maybe_unused]] const int i : IndexRange(curve_size)) { for (int k = 0; k < res; k++) { GPU_indexbuf_add_generic_vert(elb, curr_point++); } GPU_indexbuf_add_primitive_restart(elb); } } static void curves_batch_cache_ensure_procedural_indices(Curves *curves, ParticleHairCache *cache, int thickness_res, int subdiv) { BLI_assert(thickness_res <= MAX_THICKRES); /* Cylinder strip not currently supported. */ if (cache->final[subdiv].proc_hairs[thickness_res - 1] != nullptr) { return; } int verts_per_hair = cache->final[subdiv].strands_res * thickness_res; /* +1 for primitive restart */ int element_count = (verts_per_hair + 1) * cache->strands_len; GPUPrimType prim_type = (thickness_res == 1) ? GPU_PRIM_LINE_STRIP : GPU_PRIM_TRI_STRIP; static GPUVertFormat format = {0}; GPU_vertformat_clear(&format); /* initialize vertex format */ GPU_vertformat_attr_add(&format, "dummy", GPU_COMP_U8, 1, GPU_FETCH_INT_TO_FLOAT_UNIT); GPUVertBuf *vbo = GPU_vertbuf_create_with_format(&format); GPU_vertbuf_data_alloc(vbo, 1); GPUIndexBufBuilder elb; GPU_indexbuf_init_ex(&elb, prim_type, element_count, element_count); curves_batch_cache_fill_segments_indices(curves, verts_per_hair, &elb); cache->final[subdiv].proc_hairs[thickness_res - 1] = GPU_batch_create_ex( prim_type, vbo, GPU_indexbuf_build(&elb), GPU_BATCH_OWNS_VBO | GPU_BATCH_OWNS_INDEX); } bool hair_ensure_procedural_data(Object *object, ParticleHairCache **r_hair_cache, GPUMaterial *gpu_material, int subdiv, int thickness_res) { bool need_ft_update = false; Curves *curves = static_cast(object->data); HairBatchCache *cache = curves_batch_cache_get(curves); *r_hair_cache = &cache->hair; const int steps = 2; /* TODO: don't hard-code? */ (*r_hair_cache)->final[subdiv].strands_res = 1 << (steps + subdiv); /* Refreshed on combing and simulation. */ if ((*r_hair_cache)->proc_point_buf == nullptr) { ensure_seg_pt_count(curves, &cache->hair); curves_batch_cache_ensure_procedural_pos(curves, &cache->hair, gpu_material); need_ft_update = true; } /* Refreshed if active layer or custom data changes. */ if ((*r_hair_cache)->strand_tex == nullptr) { curves_batch_cache_ensure_procedural_strand_data(curves, &cache->hair); } /* Refreshed only on subdiv count change. */ if ((*r_hair_cache)->final[subdiv].proc_buf == nullptr) { curves_batch_cache_ensure_procedural_final_points(&cache->hair, subdiv); need_ft_update = true; } if ((*r_hair_cache)->final[subdiv].proc_hairs[thickness_res - 1] == nullptr) { curves_batch_cache_ensure_procedural_indices(curves, &cache->hair, thickness_res, subdiv); } return need_ft_update; } int DRW_curves_material_count_get(Curves *curves) { return max_ii(1, curves->totcol); }