/* To be compiled with common_subdiv_lib.glsl */ layout(std430, binding = 0) readonly buffer inputVertexData { PosNorLoop pos_nor[]; }; layout(std430, binding = 1) readonly buffer inputEdgeIndex { uint input_edge_index[]; }; layout(std430, binding = 2) writeonly buffer outputEdgeFactors { #ifdef GPU_AMD_DRIVER_BYTE_BUG float output_edge_fac[]; #else uint output_edge_fac[]; #endif }; void write_vec4(uint index, vec4 edge_facs) { #ifdef GPU_AMD_DRIVER_BYTE_BUG for (uint i = 0; i < 4; i++) { output_edge_fac[index + i] = edge_facs[i]; } #else /* Use same scaling as in extract_edge_fac_iter_poly_mesh. */ uint a = uint(clamp(edge_facs.x * 253.0 + 1.0, 0.0, 255.0)); uint b = uint(clamp(edge_facs.y * 253.0 + 1.0, 0.0, 255.0)); uint c = uint(clamp(edge_facs.z * 253.0 + 1.0, 0.0, 255.0)); uint d = uint(clamp(edge_facs.w * 253.0 + 1.0, 0.0, 255.0)); uint packed_edge_fac = a << 24 | b << 16 | c << 8 | d; output_edge_fac[index] = packed_edge_fac; #endif } /* From extract_mesh_vbo_edge_fac.cc, keep in sync! */ float loop_edge_factor_get(vec3 f_no, vec3 v_co, vec3 v_no, vec3 v_next_co) { vec3 evec = v_next_co - v_co; vec3 enor = normalize(cross(v_no, evec)); float d = abs(dot(enor, f_no)); /* Re-scale to the slider range. */ d *= (1.0 / 0.065); return clamp(d, 0.0, 1.0); } float compute_line_factor(uint start_loop_index, uint corner_index, vec3 face_normal) { uint vertex_index = start_loop_index + corner_index; uint edge_index = input_edge_index[vertex_index]; if (edge_index == -1 && optimal_display) { return 0.0; } /* Mod 4 so we loop back at the first vertex on the last loop index (3), but only the corner * index needs to be wrapped. */ uint next_vertex_index = start_loop_index + (corner_index + 1) % 4; vec3 vertex_pos = get_vertex_pos(pos_nor[vertex_index]); vec3 vertex_nor = get_vertex_nor(pos_nor[vertex_index]); vec3 next_vertex_pos = get_vertex_pos(pos_nor[next_vertex_index]); return loop_edge_factor_get(face_normal, vertex_pos, vertex_nor, next_vertex_pos); } void main() { /* We execute for each quad. */ uint quad_index = get_global_invocation_index(); if (quad_index >= total_dispatch_size) { return; } /* The start index of the loop is quad_index * 4. */ uint start_loop_index = quad_index * 4; /* First compute the face normal, we need it to compute the bihedral edge angle. */ vec3 v0 = get_vertex_pos(pos_nor[start_loop_index + 0]); vec3 v1 = get_vertex_pos(pos_nor[start_loop_index + 1]); vec3 v2 = get_vertex_pos(pos_nor[start_loop_index + 2]); vec3 face_normal = normalize(cross(v1 - v0, v2 - v0)); vec4 edge_facs = vec4(0.0); for (int i = 0; i < 4; i++) { edge_facs[i] = compute_line_factor(start_loop_index, i, face_normal); } #ifdef GPU_AMD_DRIVER_BYTE_BUG write_vec4(start_loop_index, edge_facs); #else /* When packed into bytes, the index is the same as for the quad. */ write_vec4(quad_index, edge_facs); #endif }