/* * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2007 Blender Foundation. * All rights reserved. * * * Contributor(s): Joseph Eagar, Joshua Leung, Howard Trickey, * Campbell Barton * * ***** END GPL LICENSE BLOCK ***** */ /** \file blender/editors/mesh/editmesh_knife.c * \ingroup edmesh */ #ifdef _MSC_VER # define _USE_MATH_DEFINES #endif #include "MEM_guardedalloc.h" #include "BLI_blenlib.h" #include "BLI_array.h" #include "BLI_math.h" #include "BLI_rand.h" #include "BLI_smallhash.h" #include "BLI_scanfill.h" #include "BLI_memarena.h" #include "BKE_DerivedMesh.h" #include "BKE_context.h" #include "BKE_depsgraph.h" #include "GPU_compatibility.h" #include "BIF_glutil.h" /* for paint cursor */ #include "ED_screen.h" #include "ED_space_api.h" #include "ED_view3d.h" #include "ED_mesh.h" #include "WM_api.h" #include "WM_types.h" #include "DNA_scene_types.h" #include "DNA_mesh_types.h" #include "DNA_object_types.h" #include "BKE_tessmesh.h" #include "UI_resources.h" #include "RNA_access.h" #include "RNA_define.h" #include "mesh_intern.h" /* this code here is kindof messy. . .I might need to eventually rework it - joeedh */ #define KMAXDIST 10 /* max mouse distance from edge before not detecting it */ #define KNIFE_FLT_EPS 0.00001f #define KNIFE_FLT_EPS_SQUARED (KNIFE_FLT_EPS * KNIFE_FLT_EPS) typedef struct KnifeColors { unsigned char line[3]; unsigned char edge[3]; unsigned char curpoint[3]; unsigned char curpoint_a[4]; unsigned char point[3]; unsigned char point_a[4]; } KnifeColors; /* knifetool operator */ typedef struct KnifeVert { BMVert *v; /* non-NULL if this is an original vert */ ListBase edges; ListBase faces; float co[3], cageco[3], sco[3]; /* sco is screen coordinates for cageco */ short flag, draw, isface, inspace; } KnifeVert; typedef struct Ref { struct Ref *next, *prev; void *ref; } Ref; typedef struct KnifeEdge { KnifeVert *v1, *v2; BMFace *basef; /* face to restrict face fill to */ ListBase faces; int draw; BMEdge *e, *oe; /* non-NULL if this is an original edge */ } KnifeEdge; typedef struct BMEdgeHit { KnifeEdge *kfe; float hit[3], cagehit[3]; float realhit[3]; /* used in midpoint mode */ float schit[3]; float l; /* lambda along cut line */ float perc; /* lambda along hit line */ KnifeVert *v; /* set if snapped to a vert */ BMFace *f; } BMEdgeHit; typedef struct KnifePosData { float co[3]; float cage[3]; /* At most one of vert, edge, or bmface should be non-NULL, * saying whether the point is snapped to a vertex, edge, or in a face. * If none are set, this point is in space and is_space should be true. */ KnifeVert *vert; KnifeEdge *edge; BMFace *bmface; int is_space; int mval[2]; /* mouse screen position */ } KnifePosData; /* struct for properties used while drawing */ typedef struct KnifeTool_OpData { ARegion *ar; /* region that knifetool was activated in */ void *draw_handle; /* for drawing preview loop */ ViewContext vc; //bContext *C; Object *ob; BMEditMesh *em; MemArena *arena; GHash *origvertmap; GHash *origedgemap; GHash *kedgefacemap; BMBVHTree *bmbvh; BLI_mempool *kverts; BLI_mempool *kedges; float vthresh; float ethresh; /* used for drag-cutting */ BMEdgeHit *linehits; int totlinehit; /* Data for mouse-position-derived data (cur) and previous click (prev) */ KnifePosData curr, prev; int totkedge, totkvert; BLI_mempool *refs; float projmat[4][4]; KnifeColors colors; /* operatpr options */ char cut_through; /* preference, can be modified at runtime (that feature may go) */ char only_select; /* set on initialization */ char select_result; /* set on initialization */ short is_ortho; float ortho_extent; float clipsta, clipend; enum { MODE_IDLE, MODE_DRAGGING, MODE_CONNECT, MODE_PANNING } mode; int snap_midpoints, prevmode, extend; int ignore_edge_snapping, ignore_vert_snapping; enum { ANGLE_FREE, ANGLE_0, ANGLE_45, ANGLE_90, ANGLE_135 } angle_snapping; float (*cagecos)[3]; } KnifeTool_OpData; static ListBase *knife_get_face_kedges(KnifeTool_OpData *kcd, BMFace *f); static void knife_input_ray_cast(KnifeTool_OpData *kcd, const int mval_i[2], float r_origin[3], float r_ray[3]); static void knife_update_header(bContext *C, KnifeTool_OpData *kcd) { #define HEADER_LENGTH 190 char header[HEADER_LENGTH]; BLI_snprintf(header, HEADER_LENGTH, "LMB: define cut lines, Return/Spacebar: confirm, Esc or RMB: cancel, E: new cut, Ctrl: midpoint snap (%s), " "Shift: ignore snap (%s), C: angle constrain (%s), Z: cut through (%s)", kcd->snap_midpoints ? "On" : "Off", kcd->ignore_edge_snapping ? "On" : "Off", kcd->angle_snapping ? "On" : "Off", kcd->cut_through ? "On" : "Off"); ED_area_headerprint(CTX_wm_area(C), header); } static void knife_project_v3(KnifeTool_OpData *kcd, const float co[3], float sco[3]) { ED_view3d_project_float_v3_m4(kcd->ar, co, sco, kcd->projmat); } static void knife_pos_data_clear(KnifePosData *kpd) { zero_v3(kpd->co); zero_v3(kpd->cage); kpd->vert = NULL; kpd->edge = NULL; kpd->bmface = NULL; kpd->mval[0] = 0; kpd->mval[1] = 0; } static ListBase *knife_empty_list(KnifeTool_OpData *kcd) { ListBase *lst; lst = BLI_memarena_alloc(kcd->arena, sizeof(ListBase)); lst->first = lst->last = NULL; return lst; } static void knife_append_list(KnifeTool_OpData *kcd, ListBase *lst, void *elem) { Ref *ref; ref = BLI_mempool_calloc(kcd->refs); ref->ref = elem; BLI_addtail(lst, ref); } static Ref *find_ref(ListBase *lb, void *ref) { Ref *ref1; for (ref1 = lb->first; ref1; ref1 = ref1->next) { if (ref1->ref == ref) return ref1; } return NULL; } static KnifeEdge *new_knife_edge(KnifeTool_OpData *kcd) { kcd->totkedge++; return BLI_mempool_calloc(kcd->kedges); } static void knife_add_to_vert_edges(KnifeTool_OpData *kcd, KnifeEdge *kfe) { knife_append_list(kcd, &kfe->v1->edges, kfe); knife_append_list(kcd, &kfe->v2->edges, kfe); } /* Add faces of an edge to a KnifeVert's faces list. No checks for dups. */ static void knife_add_edge_faces_to_vert(KnifeTool_OpData *kcd, KnifeVert *kfv, BMEdge *e) { BMIter bmiter; BMFace *f; BM_ITER_ELEM(f, &bmiter, e, BM_FACES_OF_EDGE) { knife_append_list(kcd, &kfv->faces, f); } } /* Find a face in common in the two faces lists. * If more than one, return the first; if none, return NULL */ static BMFace *knife_find_common_face(ListBase *faces1, ListBase *faces2) { Ref *ref1, *ref2; for (ref1 = faces1->first; ref1; ref1 = ref1->next) { for (ref2 = faces2->first; ref2; ref2 = ref2->next) { if (ref1->ref == ref2->ref) return (BMFace *)(ref1->ref); } } return NULL; } static KnifeVert *new_knife_vert(KnifeTool_OpData *kcd, const float co[3], float *cageco) { KnifeVert *kfv = BLI_mempool_calloc(kcd->kverts); kcd->totkvert++; copy_v3_v3(kfv->co, co); copy_v3_v3(kfv->cageco, cageco); copy_v3_v3(kfv->sco, co); knife_project_v3(kcd, kfv->co, kfv->sco); return kfv; } /* get a KnifeVert wrapper for an existing BMVert */ static KnifeVert *get_bm_knife_vert(KnifeTool_OpData *kcd, BMVert *v) { KnifeVert *kfv = BLI_ghash_lookup(kcd->origvertmap, v); if (!kfv) { BMIter bmiter; BMFace *f; kfv = new_knife_vert(kcd, v->co, kcd->cagecos[BM_elem_index_get(v)]); kfv->v = v; BLI_ghash_insert(kcd->origvertmap, v, kfv); BM_ITER_ELEM(f, &bmiter, v, BM_FACES_OF_VERT) { knife_append_list(kcd, &kfv->faces, f); } } return kfv; } /* get a KnifeEdge wrapper for an existing BMEdge */ static KnifeEdge *get_bm_knife_edge(KnifeTool_OpData *kcd, BMEdge *e) { KnifeEdge *kfe = BLI_ghash_lookup(kcd->origedgemap, e); if (!kfe) { BMIter bmiter; BMFace *f; kfe = new_knife_edge(kcd); kfe->e = e; kfe->v1 = get_bm_knife_vert(kcd, e->v1); kfe->v2 = get_bm_knife_vert(kcd, e->v2); knife_add_to_vert_edges(kcd, kfe); BLI_ghash_insert(kcd->origedgemap, e, kfe); BM_ITER_ELEM(f, &bmiter, e, BM_FACES_OF_EDGE) { knife_append_list(kcd, &kfe->faces, f); } } return kfe; } /* User has just clicked for first time or first time after a restart (E key). * Copy the current position data into prev. */ static void knife_start_cut(KnifeTool_OpData *kcd) { kcd->prev = kcd->curr; kcd->curr.is_space = 0; /*TODO: why do we do this? */ if (kcd->prev.vert == NULL && kcd->prev.edge == NULL && is_zero_v3(kcd->prev.cage)) { /* Make prevcage a point on the view ray to mouse closest to a point on model: choose vertex 0 */ float origin[3], ray[3], co[3]; BMVert *v0; knife_input_ray_cast(kcd, kcd->curr.mval, origin, ray); add_v3_v3v3(co, origin, ray); v0 = BM_vert_at_index(kcd->em->bm, 0); if (v0) { closest_to_line_v3(kcd->prev.cage, v0->co, co, origin); copy_v3_v3(kcd->prev.co, kcd->prev.cage); /*TODO: do we need this? */ copy_v3_v3(kcd->curr.cage, kcd->prev.cage); copy_v3_v3(kcd->curr.co, kcd->prev.co); } } } static ListBase *knife_get_face_kedges(KnifeTool_OpData *kcd, BMFace *f) { ListBase *lst = BLI_ghash_lookup(kcd->kedgefacemap, f); if (!lst) { BMIter bmiter; BMEdge *e; lst = knife_empty_list(kcd); BM_ITER_ELEM(e, &bmiter, f, BM_EDGES_OF_FACE) { knife_append_list(kcd, lst, get_bm_knife_edge(kcd, e)); } BLI_ghash_insert(kcd->kedgefacemap, f, lst); } return lst; } /* finds the proper face to restrict face fill to */ static void knife_find_basef(KnifeEdge *kfe) { kfe->basef = knife_find_common_face(&kfe->v1->faces, &kfe->v2->faces); } static void knife_edge_append_face(KnifeTool_OpData *kcd, KnifeEdge *kfe, BMFace *f) { knife_append_list(kcd, knife_get_face_kedges(kcd, f), kfe); knife_append_list(kcd, &kfe->faces, f); } static KnifeVert *knife_split_edge(KnifeTool_OpData *kcd, KnifeEdge *kfe, float co[3], KnifeEdge **newkfe_out) { KnifeEdge *newkfe = new_knife_edge(kcd); Ref *ref; BMFace *f; float perc, cageco[3], l12; l12 = len_v3v3(kfe->v1->co, kfe->v2->co); if (l12 < KNIFE_FLT_EPS) { copy_v3_v3(cageco, kfe->v1->cageco); } else { perc = len_v3v3(co, kfe->v1->co) / l12; interp_v3_v3v3(cageco, kfe->v1->cageco, kfe->v2->cageco, perc); } newkfe->v1 = kfe->v1; newkfe->v2 = new_knife_vert(kcd, co, cageco); newkfe->v2->draw = 1; if (kfe->e) { knife_add_edge_faces_to_vert(kcd, newkfe->v2, kfe->e); } else { /* kfe cuts across an existing face. * If v1 and v2 are in multiple faces together (e.g., if they * are in doubled polys) then this arbitrarily chooses one of them */ f = knife_find_common_face(&kfe->v1->faces, &kfe->v2->faces); if (f) knife_append_list(kcd, &newkfe->v2->faces, f); } newkfe->basef = kfe->basef; ref = find_ref(&kfe->v1->edges, kfe); BLI_remlink(&kfe->v1->edges, ref); kfe->v1 = newkfe->v2; BLI_addtail(&kfe->v1->edges, ref); for (ref = kfe->faces.first; ref; ref = ref->next) knife_edge_append_face(kcd, newkfe, ref->ref); knife_add_to_vert_edges(kcd, newkfe); newkfe->draw = kfe->draw; newkfe->e = kfe->e; *newkfe_out = newkfe; return newkfe->v2; } /* Make a single KnifeEdge for cut from kcd->prev to kcd->curr. * and move cur data to prev. */ static void knife_add_single_cut(KnifeTool_OpData *kcd) { KnifeEdge *kfe = new_knife_edge(kcd), *kfe2 = NULL, *kfe3 = NULL; if (kcd->prev.vert && kcd->prev.vert == kcd->curr.vert) return; if (kcd->prev.edge && kcd->prev.edge == kcd->curr.edge) return; kfe->draw = 1; if (kcd->prev.vert) { kfe->v1 = kcd->prev.vert; } else if (kcd->prev.edge) { kfe->v1 = knife_split_edge(kcd, kcd->prev.edge, kcd->prev.co, &kfe2); } else { kfe->v1 = new_knife_vert(kcd, kcd->prev.co, kcd->prev.co); kfe->v1->draw = kfe->draw = !kcd->prev.is_space; kfe->v1->inspace = kcd->prev.is_space; kfe->draw = !kcd->prev.is_space; kfe->v1->isface = 1; if (kfe->v1->draw && kcd->prev.bmface) knife_append_list(kcd, &kfe->v1->faces, kcd->prev.bmface); } if (kcd->curr.vert) { kfe->v2 = kcd->curr.vert; } else if (kcd->curr.edge) { kfe->v2 = knife_split_edge(kcd, kcd->curr.edge, kcd->curr.co, &kfe3); kcd->curr.vert = kfe->v2; } else { kfe->v2 = new_knife_vert(kcd, kcd->curr.co, kcd->curr.co); kfe->v2->draw = !kcd->curr.is_space; kfe->v2->isface = 1; kfe->v2->inspace = kcd->curr.is_space; if (kfe->v2->draw && kcd->curr.bmface) knife_append_list(kcd, &kfe->v2->faces, kcd->curr.bmface); if (kcd->curr.is_space) kfe->draw = 0; kcd->curr.vert = kfe->v2; } knife_find_basef(kfe); knife_add_to_vert_edges(kcd, kfe); if (kfe->basef && !find_ref(&kfe->faces, kfe->basef)) knife_edge_append_face(kcd, kfe, kfe->basef); /* sanity check to make sure we're in the right edge/face lists */ if (kcd->curr.bmface) { if (!find_ref(&kfe->faces, kcd->curr.bmface)) { knife_edge_append_face(kcd, kfe, kcd->curr.bmface); } if (kcd->prev.bmface && kcd->prev.bmface != kcd->curr.bmface) { if (!find_ref(&kfe->faces, kcd->prev.bmface)) { knife_edge_append_face(kcd, kfe, kcd->prev.bmface); } } } /* set up for next cut */ kcd->prev = kcd->curr; } static int verge_linehit(const void *vlh1, const void *vlh2) { const BMEdgeHit *lh1 = vlh1, *lh2 = vlh2; if (lh1->l < lh2->l) return -1; else if (lh1->l > lh2->l) return 1; else return 0; } /* If there's a linehit connected (same face) as testi in range [firsti, lasti], return the first such, else -1. * If testi is out of range, look for connection to f instead, if f is non-NULL */ static int find_connected_linehit(KnifeTool_OpData *kcd, int testi, BMFace *f, int firsti, int lasti) { int i; for (i = firsti; i <= lasti; i++) { if (testi >= 0 && testi < kcd->totlinehit) { if (knife_find_common_face(&kcd->linehits[testi].kfe->faces, &kcd->linehits[i].kfe->faces)) { return i; } } else if (f) { if (find_ref(&kcd->linehits[i].kfe->faces, f)) return i; } } return -1; } /* Sort in order of distance along cut line, but take care when distances are equal */ static void knife_sort_linehits(KnifeTool_OpData *kcd) { int i, j, k, nexti, nsame; qsort(kcd->linehits, kcd->totlinehit, sizeof(BMEdgeHit), verge_linehit); /* for ranges of equal "l", swap if neccesary to make predecessor and * successor faces connected to the linehits at either end of the range */ for (i = 0; i < kcd->totlinehit - 1; i = nexti) { for (j = i + 1; j < kcd->totlinehit; j++) { if (fabsf(kcd->linehits[j].l - kcd->linehits[i].l) > KNIFE_FLT_EPS) break; } nexti = j; j--; nsame = j - i; if (nsame > 0) { /* find something connected to predecessor of equal range */ k = find_connected_linehit(kcd, i - 1, kcd->prev.bmface, i, j); if (k != -1) { if (k != i) { SWAP(BMEdgeHit, kcd->linehits[i], kcd->linehits[k]); } i++; nsame--; } if (nsame > 0) { /* find something connected to successor of equal range */ k = find_connected_linehit(kcd, j + 1, kcd->curr.bmface, i, j); if (k != -1 && k != j) { SWAP(BMEdgeHit, kcd->linehits[j], kcd->linehits[k]); } } /* rest of same range doesn't matter because we won't connect them */ } } } static void knife_add_single_cut_through(KnifeTool_OpData *kcd, KnifeVert *v1, KnifeVert *v2, BMFace *f) { KnifeEdge *kfenew; kfenew = new_knife_edge(kcd); kfenew->draw = 1; kfenew->basef = f; kfenew->v1 = v1; kfenew->v2 = v2; kfenew->draw = 1; knife_add_to_vert_edges(kcd, kfenew); if (!find_ref(&kfenew->faces, f)) knife_edge_append_face(kcd, kfenew, f); } static void knife_get_vert_faces(KnifeTool_OpData *kcd, KnifeVert *kfv, BMFace *facef, ListBase *lst) { BMIter bmiter; BMFace *f; if (kfv->isface && facef) { knife_append_list(kcd, lst, facef); } else if (kfv->v) { BM_ITER_ELEM (f, &bmiter, kfv->v, BM_FACES_OF_VERT) { knife_append_list(kcd, lst, f); } } } static void knife_get_edge_faces(KnifeTool_OpData *kcd, KnifeEdge *kfe, ListBase *lst) { BMIter bmiter; BMFace *f; if (kfe->e) { BM_ITER_ELEM (f, &bmiter, kfe->e, BM_FACES_OF_EDGE) { knife_append_list(kcd, lst, f); } } } /* BMESH_TODO: add more functionality to cut-through: * - cutting "in face" (e.g., holes) should cut in all faces, not just visible one * - perhaps improve O(n^2) algorithm used here */ static void knife_cut_through(KnifeTool_OpData *kcd) { BMEdgeHit *lh, *lh2; BMFace *f; KnifeEdge *kfe, *kfe2, *kfe3; KnifeVert *v1, *v2, *firstv = NULL, *lastv = NULL; ListBase firstfaces = {NULL, NULL}, lastfaces = {NULL, NULL}; Ref *r, *r2; KnifeEdge **splitkfe; int i, j, found; if (!kcd->totlinehit) { /* if no linehits then no interesting back face stuff to do */ knife_add_single_cut(kcd); return; } /* TODO: probably don't need to sort at all */ qsort(kcd->linehits, kcd->totlinehit, sizeof(BMEdgeHit), verge_linehit); splitkfe = MEM_callocN(kcd->totlinehit * sizeof(KnifeEdge *), "knife_cut_through"); if (kcd->prev.vert) { if (kcd->prev.vert == kcd->curr.vert) return; firstv = kcd->prev.vert; knife_get_vert_faces(kcd, firstv, kcd->prev.bmface, &firstfaces); } else if (kcd->prev.edge) { if (kcd->prev.edge == kcd->curr.edge) return; firstv = knife_split_edge(kcd, kcd->prev.edge, kcd->prev.co, &kfe3); knife_get_edge_faces(kcd, kcd->prev.edge, &firstfaces); } if (kcd->curr.vert) { lastv = kcd->curr.vert; knife_get_vert_faces(kcd, lastv, kcd->curr.bmface, &lastfaces); } else if (kcd->curr.edge) { lastv = knife_split_edge(kcd, kcd->curr.edge, kcd->curr.co, &kfe3); knife_get_edge_faces(kcd, kcd->curr.edge, &lastfaces); } if (firstv) { /* For each face incident to firstv, * find the first following linehit (if any) sharing that face and connect */ for (r = firstfaces.first; r; r = r->next) { f = r->ref; found = 0; for (j = 0, lh2 = kcd->linehits; j < kcd->totlinehit; j++, lh2++) { kfe2 = lh2->kfe; for (r2 = kfe2->faces.first; r2; r2 = r2->next) { if (r2->ref == f) { v2 = splitkfe[j] ? kfe2->v1 : knife_split_edge(kcd, kfe2, lh2->hit, &splitkfe[j]); knife_add_single_cut_through(kcd, firstv, v2, f); found = 1; break; } } } if (!found && lastv) { for (r2 = lastfaces.first; r2; r2 = r2->next) { if (r2->ref == f) { knife_add_single_cut_through(kcd, firstv, lastv, f); break; } } } } } for (i = 0, lh = kcd->linehits; i < kcd->totlinehit; i++, lh++) { kfe = lh->kfe; /* For each face attached to edge for this linehit, * find the first following linehit (if any) sharing that face and connect */ for (r = kfe->faces.first; r; r = r->next) { f = r->ref; found = 0; for (j = i + 1, lh2 = lh + 1; j < kcd->totlinehit; j++, lh2++) { kfe2 = lh2->kfe; for (r2 = kfe2->faces.first; r2; r2 = r2->next) { if (r2->ref == f) { v1 = splitkfe[i] ? kfe->v1 : knife_split_edge(kcd, kfe, lh->hit, &splitkfe[i]); v2 = splitkfe[j] ? kfe2->v1 : knife_split_edge(kcd, kfe2, lh2->hit, &splitkfe[j]); knife_add_single_cut_through(kcd, v1, v2, f); found = 1; break; } } } if (!found && lastv) { for (r2 = lastfaces.first; r2; r2 = r2->next) { if (r2->ref == f) { v1 = splitkfe[i] ? kfe->v1 : knife_split_edge(kcd, kfe, lh->hit, &splitkfe[i]); knife_add_single_cut_through(kcd, v1, lastv, f); break; } } } } } MEM_freeN(splitkfe); MEM_freeN(kcd->linehits); kcd->linehits = NULL; kcd->totlinehit = 0; /* set up for next cut */ kcd->prev = kcd->curr; } /* User has just left-clicked after the first time. * Add all knife cuts implied by line from prev to curr. * If that line crossed edges then kcd->linehits will be non-NULL. */ static void knife_add_cut(KnifeTool_OpData *kcd) { KnifePosData savcur = kcd->curr; if (kcd->cut_through) { knife_cut_through(kcd); } else if (kcd->linehits) { BMEdgeHit *lh, *lastlh, *firstlh; int i; knife_sort_linehits(kcd); lh = kcd->linehits; lastlh = firstlh = NULL; for (i = 0; i < kcd->totlinehit; i++, (lastlh = lh), lh++) { BMFace *f = lastlh ? lastlh->f : lh->f; if (lastlh && len_squared_v3v3(lastlh->hit, lh->hit) == 0.0f) { if (!firstlh) firstlh = lastlh; continue; } else if (lastlh && firstlh) { if (firstlh->v || lastlh->v) { KnifeVert *kfv = firstlh->v ? firstlh->v : lastlh->v; kcd->prev.vert = kfv; copy_v3_v3(kcd->prev.co, firstlh->hit); copy_v3_v3(kcd->prev.cage, firstlh->cagehit); kcd->prev.edge = NULL; kcd->prev.bmface = f; /* TODO: should we set prev.in_space = 0 ? */ } lastlh = firstlh = NULL; } if (len_squared_v3v3(kcd->prev.cage, lh->realhit) < KNIFE_FLT_EPS_SQUARED) continue; if (len_squared_v3v3(kcd->curr.cage, lh->realhit) < KNIFE_FLT_EPS_SQUARED) continue; /* first linehit may be down face parallel to view */ if (!lastlh && fabsf(lh->l) < KNIFE_FLT_EPS) continue; if (kcd->prev.is_space) { kcd->prev.is_space = 0; copy_v3_v3(kcd->prev.co, lh->hit); copy_v3_v3(kcd->prev.cage, lh->cagehit); kcd->prev.vert = NULL; kcd->prev.edge = lh->kfe; kcd->prev.bmface = lh->f; continue; } kcd->curr.is_space = 0; kcd->curr.edge = lh->kfe; kcd->curr.bmface = lh->f; kcd->curr.vert = lh->v; copy_v3_v3(kcd->curr.co, lh->hit); copy_v3_v3(kcd->curr.cage, lh->cagehit); /* don't draw edges down faces parallel to view */ if (lastlh && fabsf(lastlh->l - lh->l) < KNIFE_FLT_EPS) { kcd->prev = kcd->curr; continue; } knife_add_single_cut(kcd); } if (savcur.is_space) { kcd->prev = savcur; } else { kcd->curr = savcur; knife_add_single_cut(kcd); } MEM_freeN(kcd->linehits); kcd->linehits = NULL; kcd->totlinehit = 0; } else { knife_add_single_cut(kcd); } } static void knife_finish_cut(KnifeTool_OpData *UNUSED(kcd)) { } static void knifetool_draw_angle_snapping(KnifeTool_OpData *kcd) { bglMats mats; float u[3], u1[3], u2[3], v1[3], v2[3], dx, dy; double wminx, wminy, wmaxx, wmaxy; /* make u the window coords of prevcage */ view3d_get_transformation(kcd->ar, kcd->vc.rv3d, kcd->ob, &mats); gpuProject(kcd->prev.cage, mats.modelview, mats.projection, mats.viewport, u); /* make u1, u2 the points on window going through u at snap angle */ wminx = kcd->ar->winrct.xmin; wmaxx = kcd->ar->winrct.xmin + kcd->ar->winx; wminy = kcd->ar->winrct.ymin; wmaxy = kcd->ar->winrct.ymin + kcd->ar->winy; switch (kcd->angle_snapping) { case ANGLE_0: u1[0] = wminx; u2[0] = wmaxx; u1[1] = u2[1] = u[1]; break; case ANGLE_90: u1[0] = u2[0] = u[0]; u1[1] = wminy; u2[1] = wmaxy; break; case ANGLE_45: /* clip against left or bottom */ dx = u[0] - wminx; dy = u[1] - wminy; if (dy > dx) { u1[0] = wminx; u1[1] = u[1] - dx; } else { u1[0] = u[0] - dy; u1[1] = wminy; } /* clip against right or top */ dx = wmaxx - u[0]; dy = wmaxy - u[1]; if (dy > dx) { u2[0] = wmaxx; u2[1] = u[1] + dx; } else { u2[0] = u[0] + dy; u2[1] = wmaxy; } break; case ANGLE_135: /* clip against right or bottom */ dx = wmaxx - u[0]; dy = u[1] - wminy; if (dy > dx) { u1[0] = wmaxx; u1[1] = u[1] - dx; } else { u1[0] = u[0] + dy; u1[1] = wminy; } /* clip against left or top */ dx = u[0] - wminx; dy = wmaxy - u[1]; if (dy > dx) { u2[0] = wminx; u2[1] = u[1] + dx; } else { u2[0] = u[0] - dy; u2[1] = wmaxy; } break; default: return; } u1[2] = u2[2] = 0.0f; /* unproject u1 and u2 back into object space */ gpuUnProject(u1, mats.modelview, mats.projection, mats.viewport, v1); gpuUnProject(u2, mats.modelview, mats.projection, mats.viewport, v2); UI_ThemeColor(TH_TRANSFORM); glLineWidth(2.0); gpuBegin(GL_LINES); gpuVertex3fv(v1); gpuVertex3fv(v2); gpuEnd(); } static void knife_init_colors(KnifeColors *colors) { /* possible BMESH_TODO: add explicit themes or calculate these by * figuring out contrasting colors with grid / edges / verts * a la UI_make_axis_color */ UI_GetThemeColor3ubv(TH_NURB_VLINE, colors->line); UI_GetThemeColor3ubv(TH_NURB_ULINE, colors->edge); UI_GetThemeColor3ubv(TH_HANDLE_SEL_VECT, colors->curpoint); UI_GetThemeColor3ubv(TH_HANDLE_SEL_VECT, colors->curpoint_a); colors->curpoint_a[3] = 102; UI_GetThemeColor3ubv(TH_ACTIVE_SPLINE, colors->point); UI_GetThemeColor3ubv(TH_ACTIVE_SPLINE, colors->point_a); colors->point_a[3] = 102; } /* modal loop selection drawing callback */ static void knifetool_draw(const bContext *C, ARegion *UNUSED(ar), void *arg) { View3D *v3d = CTX_wm_view3d(C); KnifeTool_OpData *kcd = arg; if (v3d->zbuf) glDisable(GL_DEPTH_TEST); glPolygonOffset(1.0f, 1.0f); gpuImmediateFormat_V3(); gpuPushMatrix(); gpuMultMatrix(kcd->ob->obmat); if (kcd->mode == MODE_DRAGGING) { if (kcd->angle_snapping != ANGLE_FREE) knifetool_draw_angle_snapping(kcd); gpuCurrentColor3ubv(kcd->colors.line); glLineWidth(2.0); gpuBegin(GL_LINES); gpuVertex3fv(kcd->prev.cage); gpuVertex3fv(kcd->curr.cage); gpuEnd(); glLineWidth(1.0); } if (kcd->curr.edge) { gpuCurrentColor3ubv(kcd->colors.edge); glLineWidth(2.0); gpuBegin(GL_LINES); gpuVertex3fv(kcd->curr.edge->v1->cageco); gpuVertex3fv(kcd->curr.edge->v2->cageco); gpuEnd(); glLineWidth(1.0); } else if (kcd->curr.vert) { gpuCurrentColor3ubv(kcd->colors.point); glPointSize(11); gpuBegin(GL_POINTS); gpuVertex3fv(kcd->curr.cage); gpuEnd(); } if (kcd->curr.bmface) { gpuCurrentColor3ubv(kcd->colors.curpoint); glPointSize(9); gpuBegin(GL_POINTS); gpuVertex3fv(kcd->curr.cage); gpuEnd(); } if (kcd->totlinehit > 0) { const float vthresh4 = kcd->vthresh / 4.0f; const float vthresh4_squared = vthresh4 * vthresh4; BMEdgeHit *lh; int i; glEnable(GL_BLEND); /* draw any snapped verts first */ gpuCurrentColor4ubv(kcd->colors.point_a); glPointSize(11); gpuBegin(GL_POINTS); lh = kcd->linehits; for (i = 0; i < kcd->totlinehit; i++, lh++) { float sv1[3], sv2[3]; knife_project_v3(kcd, lh->kfe->v1->cageco, sv1); knife_project_v3(kcd, lh->kfe->v2->cageco, sv2); knife_project_v3(kcd, lh->cagehit, lh->schit); if (len_squared_v2v2(lh->schit, sv1) < vthresh4_squared) { copy_v3_v3(lh->cagehit, lh->kfe->v1->cageco); gpuVertex3fv(lh->cagehit); lh->v = lh->kfe->v1; } else if (len_squared_v2v2(lh->schit, sv2) < vthresh4_squared) { copy_v3_v3(lh->cagehit, lh->kfe->v2->cageco); gpuVertex3fv(lh->cagehit); lh->v = lh->kfe->v2; } } gpuEnd(); /* now draw the rest */ gpuCurrentColor4ubv(kcd->colors.curpoint_a); glPointSize(7); gpuBegin(GL_POINTS); lh = kcd->linehits; for (i = 0; i < kcd->totlinehit; i++, lh++) { gpuVertex3fv(lh->cagehit); } gpuEnd(); glDisable(GL_BLEND); } if (kcd->totkedge > 0) { BLI_mempool_iter iter; KnifeEdge *kfe; glLineWidth(1.0); gpuBegin(GL_LINES); BLI_mempool_iternew(kcd->kedges, &iter); for (kfe = BLI_mempool_iterstep(&iter); kfe; kfe = BLI_mempool_iterstep(&iter)) { if (!kfe->draw) continue; gpuColor3ubv(kcd->colors.line); gpuVertex3fv(kfe->v1->cageco); gpuVertex3fv(kfe->v2->cageco); } gpuEnd(); glLineWidth(1.0); } if (kcd->totkvert > 0) { BLI_mempool_iter iter; KnifeVert *kfv; glPointSize(5.0); gpuBegin(GL_POINTS); BLI_mempool_iternew(kcd->kverts, &iter); for (kfv = BLI_mempool_iterstep(&iter); kfv; kfv = BLI_mempool_iterstep(&iter)) { if (!kfv->draw) continue; gpuColor3ubv(kcd->colors.point); gpuVertex3fv(kfv->cageco); } gpuEnd(); } gpuPopMatrix(); gpuImmediateUnformat(); if (v3d->zbuf) glEnable(GL_DEPTH_TEST); } static float len_v3_tri_side_max(const float v1[3], const float v2[3], const float v3[3]) { const float s1 = len_squared_v3v3(v1, v2); const float s2 = len_squared_v3v3(v2, v3); const float s3 = len_squared_v3v3(v3, v1); return sqrtf(MAX3(s1, s2, s3)); } static BMEdgeHit *knife_edge_tri_isect(KnifeTool_OpData *kcd, BMBVHTree *bmtree, const float v1[3], const float v2[3], const float v3[3], SmallHash *ehash, bglMats *mats, int *count) { BVHTree *tree2 = BLI_bvhtree_new(3, FLT_EPSILON * 4, 8, 8), *tree = BMBVH_BVHTree(bmtree); BMEdgeHit *edges = NULL; BLI_array_declare(edges); BVHTreeOverlap *results, *result; BMLoop **ls; float cos[9], lambda; unsigned int tot = 0; int i; /* for comparing distances, error of intersection depends on triangle scale. * need to scale down before squaring for accurate comparison */ const float depsilon = (FLT_EPSILON / 2.0f) * len_v3_tri_side_max(v1, v2, v3); const float depsilon_squared = depsilon * depsilon; copy_v3_v3(cos + 0, v1); copy_v3_v3(cos + 3, v2); copy_v3_v3(cos + 6, v3); BLI_bvhtree_insert(tree2, 0, cos, 3); BLI_bvhtree_balance(tree2); result = results = BLI_bvhtree_overlap(tree, tree2, &tot); for (i = 0; i < tot; i++, result++) { float p[3]; BMLoop *l1; BMFace *hitf; ListBase *lst; Ref *ref; ls = (BMLoop **)kcd->em->looptris[result->indexA]; l1 = ls[0]; lst = knife_get_face_kedges(kcd, l1->f); for (ref = lst->first; ref; ref = ref->next) { KnifeEdge *kfe = ref->ref; if (BLI_smallhash_haskey(ehash, (intptr_t)kfe)) { continue; /* We already found a hit on this knife edge */ } if (isect_line_tri_v3(kfe->v1->cageco, kfe->v2->cageco, v1, v2, v3, &lambda, NULL)) { float no[3], view[3], sp[3]; interp_v3_v3v3(p, kfe->v1->cageco, kfe->v2->cageco, lambda); if (kcd->curr.vert && len_squared_v3v3(kcd->curr.vert->cageco, p) < depsilon_squared) { continue; } if (kcd->prev.vert && len_squared_v3v3(kcd->prev.vert->cageco, p) < depsilon_squared) { continue; } if (len_squared_v3v3(kcd->prev.cage, p) < depsilon_squared || len_squared_v3v3(kcd->curr.cage, p) < depsilon_squared) { continue; } knife_project_v3(kcd, p, sp); ED_view3d_unproject(mats, view, sp[0], sp[1], 0.0f); mul_m4_v3(kcd->ob->imat, view); if (kcd->cut_through) { hitf = FALSE; } else { /* check if this point is visible in the viewport */ float p1[3], lambda1; /* if face isn't planer, p may be behind the current tesselated tri, * so move it onto that and then a little towards eye */ if (isect_line_tri_v3(p, view, ls[0]->v->co, ls[1]->v->co, ls[2]->v->co, &lambda1, NULL)) { interp_v3_v3v3(p1, p, view, lambda1); } else { copy_v3_v3(p1, p); } sub_v3_v3(view, p1); normalize_v3(view); copy_v3_v3(no, view); mul_v3_fl(no, 0.003); /* go towards view a bit */ add_v3_v3(p1, no); /* ray cast */ hitf = BMBVH_RayCast(bmtree, p1, no, NULL, NULL); } /* ok, if visible add the new point */ if (!hitf && !BLI_smallhash_haskey(ehash, (intptr_t)kfe)) { BMEdgeHit hit; if (len_squared_v3v3(p, kcd->curr.co) < depsilon_squared || len_squared_v3v3(p, kcd->prev.co) < depsilon_squared) { continue; } hit.kfe = kfe; hit.v = NULL; knife_find_basef(kfe); hit.f = kfe->basef; hit.perc = len_v3v3(p, kfe->v1->cageco) / len_v3v3(kfe->v1->cageco, kfe->v2->cageco); copy_v3_v3(hit.cagehit, p); interp_v3_v3v3(p, kfe->v1->co, kfe->v2->co, hit.perc); copy_v3_v3(hit.realhit, p); /* BMESH_TODO: should also snap to vertices */ if (kcd->snap_midpoints) { float perc = hit.perc; /* select the closest from the edge endpoints or the midpoint */ if (perc < 0.25f) { perc = 0.0f; } else if (perc < 0.75f) { perc = 0.5f; } else { perc = 1.0f; } interp_v3_v3v3(hit.hit, kfe->v1->co, kfe->v2->co, perc); interp_v3_v3v3(hit.cagehit, kfe->v1->cageco, kfe->v2->cageco, perc); } else { copy_v3_v3(hit.hit, p); } knife_project_v3(kcd, hit.cagehit, hit.schit); BLI_array_append(edges, hit); BLI_smallhash_insert(ehash, (intptr_t)kfe, NULL); } } } } if (results) MEM_freeN(results); BLI_bvhtree_free(tree2); *count = BLI_array_count(edges); return edges; } static void knife_bgl_get_mats(KnifeTool_OpData *UNUSED(kcd), bglMats *mats) { bgl_get_mats(mats); //copy_m4_m4(mats->modelview, kcd->vc.rv3d->viewmat); //copy_m4_m4(mats->projection, kcd->vc.rv3d->winmat); } /* Calculate maximum excursion (doubled) from (0,0,0) of mesh */ static void calc_ortho_extent(KnifeTool_OpData *kcd) { BMIter iter; BMVert *v; BMesh* bm = kcd->em->bm; float max_xyz = 0.0f; int i; BM_ITER_MESH(v, &iter, bm, BM_VERTS_OF_MESH) { for (i = 0; i < 3; i++) max_xyz = max_ff(max_xyz, fabs(v->co[i])); } kcd->ortho_extent = 2 * max_xyz; } /* Finds visible (or all, if cutting through) edges that intersects the current screen drag line */ static void knife_find_line_hits(KnifeTool_OpData *kcd) { bglMats mats; BMEdgeHit *e1, *e2; SmallHash hash, *ehash = &hash; float v1[3], v2[3], v3[3], v4[4], s1[3], s2[3]; int i, c1, c2; knife_bgl_get_mats(kcd, &mats); if (kcd->linehits) { MEM_freeN(kcd->linehits); kcd->linehits = NULL; kcd->totlinehit = 0; } copy_v3_v3(v1, kcd->prev.cage); copy_v3_v3(v2, kcd->curr.cage); /* project screen line's 3d coordinates back into 2d */ knife_project_v3(kcd, v1, s1); knife_project_v3(kcd, v2, s2); if (len_v2v2(s1, s2) < 1) return; /* unproject screen line */ ED_view3d_win_to_segment_clip(kcd->ar, kcd->vc.v3d, s1, v1, v3); ED_view3d_win_to_segment_clip(kcd->ar, kcd->vc.v3d, s2, v2, v4); mul_m4_v3(kcd->ob->imat, v1); mul_m4_v3(kcd->ob->imat, v2); mul_m4_v3(kcd->ob->imat, v3); mul_m4_v3(kcd->ob->imat, v4); /* numeric error, 'v1' -> 'v2', 'v2' -> 'v4' can end up being ~2000 units apart in otho mode * (from ED_view3d_win_to_segment_clip() above) * this gives precision error in 'knife_edge_tri_isect', rather then solving properly * (which may involve using doubles everywhere!), * limit the distance between these points */ if (kcd->is_ortho) { if (kcd->ortho_extent == 0.0f) calc_ortho_extent(kcd); limit_dist_v3(v1, v3, kcd->ortho_extent + 10.0f); limit_dist_v3(v2, v4, kcd->ortho_extent + 10.0f); } BLI_smallhash_init(ehash); /* test two triangles of sceen line's plane */ e1 = knife_edge_tri_isect(kcd, kcd->bmbvh, v1, v2, v3, ehash, &mats, &c1); e2 = knife_edge_tri_isect(kcd, kcd->bmbvh, v2, v3, v4, ehash, &mats, &c2); if (c1 && c2) { e1 = MEM_reallocN(e1, sizeof(BMEdgeHit) * (c1 + c2)); memcpy(e1 + c1, e2, sizeof(BMEdgeHit) * c2); MEM_freeN(e2); } else if (c2) { e1 = e2; } kcd->linehits = e1; kcd->totlinehit = c1 + c2; /* find position along screen line, used for sorting */ for (i = 0; i < kcd->totlinehit; i++) { BMEdgeHit *lh = e1 + i; lh->l = len_v2v2(lh->schit, s1) / len_v2v2(s2, s1); } BLI_smallhash_release(ehash); } static void knife_input_ray_cast(KnifeTool_OpData *kcd, const int mval_i[2], float r_origin[3], float r_ray[3]) { bglMats mats; float mval[2], imat[3][3]; knife_bgl_get_mats(kcd, &mats); mval[0] = (float)mval_i[0]; mval[1] = (float)mval_i[1]; /* unproject to find view ray */ ED_view3d_unproject(&mats, r_origin, mval[0], mval[1], 0.0f); if (kcd->is_ortho) { negate_v3_v3(r_ray, kcd->vc.rv3d->viewinv[2]); } else { sub_v3_v3v3(r_ray, r_origin, kcd->vc.rv3d->viewinv[3]); } normalize_v3(r_ray); /* transform into object space */ invert_m4_m4(kcd->ob->imat, kcd->ob->obmat); copy_m3_m4(imat, kcd->ob->obmat); invert_m3(imat); mul_m4_v3(kcd->ob->imat, r_origin); mul_m3_v3(imat, r_ray); } static BMFace *knife_find_closest_face(KnifeTool_OpData *kcd, float co[3], float cageco[3], int *is_space) { BMFace *f; float dist = KMAXDIST; float origin[3]; float ray[3]; /* unproject to find view ray */ knife_input_ray_cast(kcd, kcd->vc.mval, origin, ray); add_v3_v3v3(co, origin, ray); f = BMBVH_RayCast(kcd->bmbvh, origin, ray, co, cageco); if (is_space) *is_space = !f; if (!f) { /* try to use backbuffer selection method if ray casting failed */ f = EDBM_face_find_nearest(&kcd->vc, &dist); /* cheat for now; just put in the origin instead * of a true coordinate on the face. * This just puts a point 1.0f infront of the view. */ add_v3_v3v3(co, origin, ray); } return f; } /* find the 2d screen space density of vertices within a radius. used to scale snapping * distance for picking edges/verts.*/ static int knife_sample_screen_density(KnifeTool_OpData *kcd, float radius) { BMFace *f; int is_space; float co[3], cageco[3], sco[3]; f = knife_find_closest_face(kcd, co, cageco, &is_space); if (f && !is_space) { ListBase *lst; Ref *ref; float dis; int c = 0; knife_project_v3(kcd, cageco, sco); lst = knife_get_face_kedges(kcd, f); for (ref = lst->first; ref; ref = ref->next) { KnifeEdge *kfe = ref->ref; int i; for (i = 0; i < 2; i++) { KnifeVert *kfv = i ? kfe->v2 : kfe->v1; knife_project_v3(kcd, kfv->cageco, kfv->sco); dis = len_v2v2(kfv->sco, sco); if (dis < radius) { if (kcd->vc.rv3d->rflag & RV3D_CLIPPING) { float vec[3]; copy_v3_v3(vec, kfv->cageco); mul_m4_v3(kcd->vc.obedit->obmat, vec); if (ED_view3d_clipping_test(kcd->vc.rv3d, vec, TRUE) == 0) { c++; } } else { c++; } } } } return c; } return 0; } /* returns snapping distance for edges/verts, scaled by the density of the * surrounding mesh (in screen space)*/ static float knife_snap_size(KnifeTool_OpData *kcd, float maxsize) { float density = (float)knife_sample_screen_density(kcd, maxsize * 2.0f); if (density < 1.0f) density = 1.0f; return min_ff(maxsize / (density * 0.5f), maxsize); } /* p is closest point on edge to the mouse cursor */ static KnifeEdge *knife_find_closest_edge(KnifeTool_OpData *kcd, float p[3], float cagep[3], BMFace **fptr, int *is_space) { BMFace *f; float co[3], cageco[3], sco[3], maxdist = knife_snap_size(kcd, kcd->ethresh); if (kcd->ignore_vert_snapping) maxdist *= 0.5f; f = knife_find_closest_face(kcd, co, cageco, NULL); *is_space = !f; /* set p to co, in case we don't find anything, means a face cut */ copy_v3_v3(p, co); copy_v3_v3(cagep, cageco); kcd->curr.bmface = f; if (f) { KnifeEdge *cure = NULL; ListBase *lst; Ref *ref; float dis, curdis = FLT_MAX; knife_project_v3(kcd, cageco, sco); /* look through all edges associated with this face */ lst = knife_get_face_kedges(kcd, f); for (ref = lst->first; ref; ref = ref->next) { KnifeEdge *kfe = ref->ref; /* project edge vertices into screen space */ knife_project_v3(kcd, kfe->v1->cageco, kfe->v1->sco); knife_project_v3(kcd, kfe->v2->cageco, kfe->v2->sco); dis = dist_to_line_segment_v2(sco, kfe->v1->sco, kfe->v2->sco); if (dis < curdis && dis < maxdist) { if (kcd->vc.rv3d->rflag & RV3D_CLIPPING) { float labda = labda_PdistVL2Dfl(sco, kfe->v1->sco, kfe->v2->sco); float vec[3]; vec[0] = kfe->v1->cageco[0] + labda * (kfe->v2->cageco[0] - kfe->v1->cageco[0]); vec[1] = kfe->v1->cageco[1] + labda * (kfe->v2->cageco[1] - kfe->v1->cageco[1]); vec[2] = kfe->v1->cageco[2] + labda * (kfe->v2->cageco[2] - kfe->v1->cageco[2]); mul_m4_v3(kcd->vc.obedit->obmat, vec); if (ED_view3d_clipping_test(kcd->vc.rv3d, vec, TRUE) == 0) { cure = kfe; curdis = dis; } } else { cure = kfe; curdis = dis; } } } if (fptr) *fptr = f; if (cure && p) { if (!kcd->ignore_edge_snapping || !(cure->e)) { KnifeVert *edgesnap = NULL; if (kcd->snap_midpoints) { mid_v3_v3v3(p, cure->v1->co, cure->v2->co); mid_v3_v3v3(cagep, cure->v1->cageco, cure->v2->cageco); } else { float d; closest_to_line_segment_v3(cagep, cageco, cure->v1->cageco, cure->v2->cageco); d = len_v3v3(cagep, cure->v1->cageco) / len_v3v3(cure->v1->cageco, cure->v2->cageco); interp_v3_v3v3(p, cure->v1->co, cure->v2->co, d); } /* update mouse coordinates to the snapped-to edge's screen coordinates * this is important for angle snap, which uses the previous mouse position */ edgesnap = new_knife_vert(kcd, p, cagep); kcd->curr.mval[0] = (int)edgesnap->sco[0]; kcd->curr.mval[1] = (int)edgesnap->sco[1]; } else { return NULL; } } return cure; } if (fptr) *fptr = NULL; return NULL; } /* find a vertex near the mouse cursor, if it exists */ static KnifeVert *knife_find_closest_vert(KnifeTool_OpData *kcd, float p[3], float cagep[3], BMFace **fptr, int *is_space) { BMFace *f; float co[3], cageco[3], sco[3], maxdist = knife_snap_size(kcd, kcd->vthresh); if (kcd->ignore_vert_snapping) maxdist *= 0.5f; f = knife_find_closest_face(kcd, co, cageco, is_space); /* set p to co, in case we don't find anything, means a face cut */ copy_v3_v3(p, co); copy_v3_v3(cagep, p); kcd->curr.bmface = f; if (f) { ListBase *lst; Ref *ref; KnifeVert *curv = NULL; float dis, curdis = FLT_MAX; knife_project_v3(kcd, cageco, sco); lst = knife_get_face_kedges(kcd, f); for (ref = lst->first; ref; ref = ref->next) { KnifeEdge *kfe = ref->ref; int i; for (i = 0; i < 2; i++) { KnifeVert *kfv = i ? kfe->v2 : kfe->v1; knife_project_v3(kcd, kfv->cageco, kfv->sco); dis = len_v2v2(kfv->sco, sco); if (dis < curdis && dis < maxdist) { if (kcd->vc.rv3d->rflag & RV3D_CLIPPING) { float vec[3]; copy_v3_v3(vec, kfv->cageco); mul_m4_v3(kcd->vc.obedit->obmat, vec); if (ED_view3d_clipping_test(kcd->vc.rv3d, vec, TRUE) == 0) { curv = kfv; curdis = dis; } } else { curv = kfv; curdis = dis; } } } } if (!kcd->ignore_vert_snapping || !(curv && curv->v)) { if (fptr) *fptr = f; if (curv && p) { copy_v3_v3(p, curv->co); copy_v3_v3(cagep, curv->cageco); /* update mouse coordinates to the snapped-to vertex's screen coordinates * this is important for angle snap, which uses the previous mouse position */ kcd->curr.mval[0] = (int)curv->sco[0]; kcd->curr.mval[1] = (int)curv->sco[1]; } return curv; } else { if (fptr) *fptr = f; return NULL; } } if (fptr) *fptr = NULL; return NULL; } static void knife_snap_angle(KnifeTool_OpData *kcd) { int dx, dy; float w, abs_tan; dx = kcd->vc.mval[0] - kcd->prev.mval[0]; dy = kcd->vc.mval[1] - kcd->prev.mval[1]; if (dx == 0 || dy == 0) return; w = (float)dy / (float)dx; abs_tan = fabsf(w); if (abs_tan <= 0.4142f) { /* tan(22.5 degrees) = 0.4142 */ kcd->angle_snapping = ANGLE_0; kcd->vc.mval[1] = kcd->prev.mval[1]; } else if (abs_tan < 2.4142f) { /* tan(67.5 degrees) = 2.4142 */ if (w > 0) { kcd->angle_snapping = ANGLE_45; kcd->vc.mval[1] = kcd->prev.mval[1] + dx; } else { kcd->angle_snapping = ANGLE_135; kcd->vc.mval[1] = kcd->prev.mval[1] - dx; } } else { kcd->angle_snapping = ANGLE_90; kcd->vc.mval[0] = kcd->prev.mval[0]; } } /* update active knife edge/vert pointers */ static int knife_update_active(KnifeTool_OpData *kcd) { if (kcd->angle_snapping != ANGLE_FREE && kcd->mode == MODE_DRAGGING) knife_snap_angle(kcd); knife_pos_data_clear(&kcd->curr); kcd->curr.mval[0] = kcd->vc.mval[0]; kcd->curr.mval[1] = kcd->vc.mval[1]; /* XXX knife_snap_angle updates the view coordinate mouse values to constrained angles, * which current mouse values are set to current mouse values are then used * for vertex and edge snap detection, without regard to the exact angle constraint */ kcd->curr.vert = knife_find_closest_vert(kcd, kcd->curr.co, kcd->curr.cage, &kcd->curr.bmface, &kcd->curr.is_space); if (!kcd->curr.vert) { kcd->curr.edge = knife_find_closest_edge(kcd, kcd->curr.co, kcd->curr.cage, &kcd->curr.bmface, &kcd->curr.is_space); } /* if no hits are found this would normally default to (0, 0, 0) so instead * get a point at the mouse ray closest to the previous point. * Note that drawing lines in `free-space` isn't properly supported * but theres no guarantee (0, 0, 0) has any geometry either - campbell */ if (kcd->curr.vert == NULL && kcd->curr.edge == NULL) { float origin[3], ray[3], co[3]; knife_input_ray_cast(kcd, kcd->vc.mval, origin, ray); add_v3_v3v3(co, origin, ray); closest_to_line_v3(kcd->curr.cage, kcd->prev.cage, co, origin); } if (kcd->mode == MODE_DRAGGING) { knife_find_line_hits(kcd); } return 1; } #define SCANFILL_CUTS 0 #if SCANFILL_CUTS #define MARK 4 #define DEL 8 #define VERT_ON_EDGE 16 #define VERT_ORIG 32 #define FACE_FLIP 64 #define BOUNDARY 128 #define FACE_NEW 256 typedef struct facenet_entry { struct facenet_entry *next, *prev; KnifeEdge *kfe; } facenet_entry; static void rnd_offset_co(float co[3], float scale) { int i; for (i = 0; i < 3; i++) { co[i] += (BLI_frand() - 0.5) * scale; } } static void remerge_faces(KnifeTool_OpData *kcd) { BMesh *bm = kcd->em->bm; SmallHash svisit, *visit = &svisit; BMIter iter; BMFace *f; BMFace **stack = NULL; BLI_array_declare(stack); BMFace **faces = NULL; BLI_array_declare(faces); BMOperator bmop; int idx; BMO_op_initf(bm, &bmop, "beautify_fill faces=%ff constrain_edges=%fe", FACE_NEW, BOUNDARY); BMO_op_exec(bm, &bmop); BMO_slot_buffer_flag_enable(bm, &bmop, "geomout", BM_FACE, FACE_NEW); BMO_op_finish(bm, &bmop); BLI_smallhash_init(visit); BM_ITER_MESH (f, &iter, bm, BM_FACES_OF_MESH) { BMIter eiter; BMEdge *e; BMFace *f2; if (!BMO_elem_flag_test(bm, f, FACE_NEW)) continue; if (BLI_smallhash_haskey(visit, (intptr_t)f)) continue; BLI_array_empty(stack); BLI_array_empty(faces); BLI_array_append(stack, f); BLI_smallhash_insert(visit, (intptr_t)f, NULL); do { f2 = BLI_array_pop(stack); BLI_array_append(faces, f2); BM_ITER_ELEM (e, &eiter, f2, BM_EDGES_OF_FACE) { BMIter fiter; BMFace *f3; if (BMO_elem_flag_test(bm, e, BOUNDARY)) continue; BM_ITER_ELEM (f3, &fiter, e, BM_FACES_OF_EDGE) { if (!BMO_elem_flag_test(bm, f3, FACE_NEW)) continue; if (BLI_smallhash_haskey(visit, (intptr_t)f3)) continue; BLI_smallhash_insert(visit, (intptr_t)f3, NULL); BLI_array_append(stack, f3); } } } while (BLI_array_count(stack) > 0); if (BLI_array_count(faces) > 0) { idx = BM_elem_index_get(faces[0]); f2 = BM_faces_join(bm, faces, BLI_array_count(faces), TRUE); if (f2) { BMO_elem_flag_enable(bm, f2, FACE_NEW); BM_elem_index_set(f2, idx); /* set_dirty! *//* BMESH_TODO, check if this is valid or not */ } } } /* BMESH_TODO, check if the code above validates the indices */ /* bm->elem_index_dirty &= ~BM_FACE; */ bm->elem_index_dirty |= BM_FACE; BLI_smallhash_release(visit); BLI_array_free(stack); BLI_array_free(faces); } /* use edgenet to fill faces. this is a bit annoying and convoluted.*/ static void knifenet_fill_faces(KnifeTool_OpData *kcd) { ScanFillContext sf_ctx; BMesh *bm = kcd->em->bm; BMIter bmiter; BLI_mempool_iter iter; BMFace *f; BMEdge *e; KnifeVert *kfv; KnifeEdge *kfe; facenet_entry *entry; ListBase *face_nets = MEM_callocN(sizeof(ListBase) * bm->totface, "face_nets"); BMFace **faces = MEM_callocN(sizeof(BMFace *) * bm->totface, "faces knife"); MemArena *arena = BLI_memarena_new(1 << 16, "knifenet_fill_faces"); SmallHash shash; int i, j, k = 0, totface = bm->totface; BMO_push(bm, NULL); bmesh_edit_begin(bm, BMO_OP_FLAG_UNTAN_MULTIRES); /* BMESH_TODO this should be valid now, leaving here until we can ensure this - campbell */ i = 0; BM_ITER_MESH (f, &bmiter, bm, BM_FACES_OF_MESH) { BM_elem_index_set(f, i); /* set_inline */ faces[i] = f; i++; } bm->elem_index_dirty &= ~BM_FACE; BM_ITER_MESH (e, &bmiter, bm, BM_EDGES_OF_MESH) { BMO_elem_flag_enable(bm, e, BOUNDARY); } /* turn knife verts into real verts, as necessary */ BLI_mempool_iternew(kcd->kverts, &iter); for (kfv = BLI_mempool_iterstep(&iter); kfv; kfv = BLI_mempool_iterstep(&iter)) { if (!kfv->v) { /* shouldn't we be at least copying the normal? - if not some comment here should explain why - campbell */ kfv->v = BM_vert_create(bm, kfv->co, NULL); kfv->flag = 1; BMO_elem_flag_enable(bm, kfv->v, DEL); } else { kfv->flag = 0; BMO_elem_flag_enable(bm, kfv->v, VERT_ORIG); } BMO_elem_flag_enable(bm, kfv->v, MARK); } /* we want to only do changed faces. first, go over new edges and add to * face net lists.*/ i = j = k = 0; BLI_mempool_iternew(kcd->kedges, &iter); for (kfe = BLI_mempool_iterstep(&iter); kfe; kfe = BLI_mempool_iterstep(&iter)) { Ref *ref; if (!kfe->v1 || !kfe->v2 || kfe->v1->inspace || kfe->v2->inspace) continue; i++; if (kfe->e && kfe->v1->v == kfe->e->v1 && kfe->v2->v == kfe->e->v2) { kfe->oe = kfe->e; continue; } j++; if (kfe->e) { kfe->oe = kfe->e; BMO_elem_flag_enable(bm, kfe->e, DEL); BMO_elem_flag_disable(bm, kfe->e, BOUNDARY); kfe->e = NULL; } kfe->e = BM_edge_create(bm, kfe->v1->v, kfe->v2->v, NULL, TRUE); BMO_elem_flag_enable(bm, kfe->e, BOUNDARY); for (ref = kfe->faces.first; ref; ref = ref->next) { f = ref->ref; entry = BLI_memarena_alloc(arena, sizeof(*entry)); entry->kfe = kfe; BLI_addtail(face_nets + BM_elem_index_get(f), entry); } } /* go over original edges, and add to faces with new geometry */ BLI_mempool_iternew(kcd->kedges, &iter); for (kfe = BLI_mempool_iterstep(&iter); kfe; kfe = BLI_mempool_iterstep(&iter)) { Ref *ref; if (!kfe->v1 || !kfe->v2 || kfe->v1->inspace || kfe->v2->inspace) continue; if (!(kfe->oe && kfe->v1->v == kfe->oe->v1 && kfe->v2->v == kfe->oe->v2)) continue; k++; BMO_elem_flag_enable(bm, kfe->e, BOUNDARY); kfe->oe = kfe->e; for (ref = kfe->faces.first; ref; ref = ref->next) { f = ref->ref; if (face_nets[BM_elem_index_get(f)].first) { entry = BLI_memarena_alloc(arena, sizeof(*entry)); entry->kfe = kfe; BLI_addtail(face_nets + BM_elem_index_get(f), entry); } } } BLI_srand(0); for (i = 0; i < totface; i++) { SmallHash *hash = &shash; ScanFillFace *sf_tri; ScanFillVert *sf_vert, *sf_vert_last; int j; float rndscale = (KNIFE_FLT_EPS / 4.0f); f = faces[i]; BLI_smallhash_init(hash); if (face_nets[i].first) BMO_elem_flag_enable(bm, f, DEL); BLI_scanfill_begin(&sf_ctx); for (entry = face_nets[i].first; entry; entry = entry->next) { if (!BLI_smallhash_haskey(hash, (intptr_t)entry->kfe->v1)) { sf_vert = BLI_scanfill_vert_add(&sf_ctx, entry->kfe->v1->v->co); sf_vert->poly_nr = 0; rnd_offset_co(sf_vert->co, rndscale); sf_vert->tmp.p = entry->kfe->v1->v; BLI_smallhash_insert(hash, (intptr_t)entry->kfe->v1, sf_vert); } if (!BLI_smallhash_haskey(hash, (intptr_t)entry->kfe->v2)) { sf_vert = BLI_scanfill_vert_add(&sf_ctx, entry->kfe->v2->v->co); sf_vert->poly_nr = 0; rnd_offset_co(sf_vert->co, rndscale); sf_vert->tmp.p = entry->kfe->v2->v; BLI_smallhash_insert(hash, (intptr_t)entry->kfe->v2, sf_vert); } } for (j = 0, entry = face_nets[i].first; entry; entry = entry->next, j++) { sf_vert_last = BLI_smallhash_lookup(hash, (intptr_t)entry->kfe->v1); sf_vert = BLI_smallhash_lookup(hash, (intptr_t)entry->kfe->v2); sf_vert->poly_nr++; sf_vert_last->poly_nr++; } for (j = 0, entry = face_nets[i].first; entry; entry = entry->next, j++) { sf_vert_last = BLI_smallhash_lookup(hash, (intptr_t)entry->kfe->v1); sf_vert = BLI_smallhash_lookup(hash, (intptr_t)entry->kfe->v2); if (sf_vert->poly_nr > 1 && sf_vert_last->poly_nr > 1) { ScanFillEdge *sf_edge; sf_edge = BLI_scanfill_edge_add(&sf_ctx, sf_vert_last, sf_vert); if (entry->kfe->oe) sf_edge->f = SF_EDGE_BOUNDARY; /* mark as original boundary edge */ BMO_elem_flag_disable(bm, entry->kfe->e->v1, DEL); BMO_elem_flag_disable(bm, entry->kfe->e->v2, DEL); } else { if (sf_vert_last->poly_nr < 2) BLI_remlink(&sf_ctx.fillvertbase, sf_vert_last); if (sf_vert->poly_nr < 2) BLI_remlink(&sf_ctx.fillvertbase, sf_vert); } } BLI_scanfill_calc(&sf_ctx, FALSE); for (sf_tri = sf_ctx.fillfacebase.first; sf_tri; sf_tri = sf_tri->next) { BMVert *v1 = sf_tri->v3->tmp.p, *v2 = sf_tri->v2->tmp.p, *v3 = sf_tri->v1->tmp.p; BMFace *f2; BMLoop *l_iter; BMVert *verts[3] = {v1, v2, v3}; if (v1 == v2 || v2 == v3 || v1 == v3) continue; if (BM_face_exists(bm, verts, 3, &f2)) continue; f2 = BM_face_create_quad_tri(bm, v1, v2, v3, NULL, NULL, FALSE); BMO_elem_flag_enable(bm, f2, FACE_NEW); l_iter = BM_FACE_FIRST_LOOP(f2); do { BMO_elem_flag_disable(bm, l_iter->e, DEL); } while ((l_iter = l_iter->next) != BM_FACE_FIRST_LOOP(f2)); BMO_elem_flag_disable(bm, f2, DEL); BM_elem_index_set(f2, i); /* set_dirty! *//* note, not 100% sure this is dirty? need to check */ BM_face_normal_update(f2); if (dot_v3v3(f->no, f2->no) < 0.0f) { BM_face_normal_flip(bm, f2); } } BLI_scanfill_end(&sf_ctx); BLI_smallhash_release(hash); } bm->elem_index_dirty |= BM_FACE; /* interpolate customdata */ BM_ITER_MESH (f, &bmiter, bm, BM_FACES_OF_MESH) { BMLoop *l1; BMFace *f2; BMIter liter1; if (!BMO_elem_flag_test(bm, f, FACE_NEW)) continue; f2 = faces[BM_elem_index_get(f)]; if (BM_elem_index_get(f) < 0 || BM_elem_index_get(f) >= totface) { fprintf(stderr, "%s: face index out of range! (bmesh internal error)\n", __func__); } BM_elem_attrs_copy(bm, bm, f2, f); BM_ITER_ELEM (l1, &liter1, f, BM_LOOPS_OF_FACE) { BM_loop_interp_from_face(bm, l1, f2, TRUE, TRUE); } } /* merge triangles back into faces */ remerge_faces(kcd); /* delete left over faces */ BMO_op_callf(bm, BMO_FLAG_DEFAULTS, "delete geom=%ff context=%i", DEL, DEL_ONLYFACES); BMO_op_callf(bm, BMO_FLAG_DEFAULTS, "delete geom=%fe context=%i", DEL, DEL_EDGES); BMO_op_callf(bm, BMO_FLAG_DEFAULTS, "delete geom=%fv context=%i", DEL, DEL_VERTS); if (face_nets) MEM_freeN(face_nets); if (faces) MEM_freeN(faces); BLI_memarena_free(arena); BMO_error_clear(bm); /* remerge_faces sometimes raises errors, so make sure to clear them */ bmesh_edit_end(bm, BMO_OP_FLAG_UNTAN_MULTIRES); BMO_pop(bm); } #else /* use direct (non-scanfill) method for cuts */ /* assuming v is on line ab, what fraction of the way is v from a to b? */ static float frac_along(const float a[3], const float b[3], const float v[3]) { float lab; lab = len_v3v3(a, b); if (lab == 0.0f) { return 0.0f; } else { return len_v3v3(a, v) / lab; } } /* sort list of kverts by fraction along edge e */ static void sort_by_frac_along(ListBase *lst, BMEdge *e) { KnifeVert *vcur, *vprev; float *v1co, *v2co; Ref *cur = NULL, *prev = NULL, *next = NULL; if (lst->first == lst->last) return; v1co = e->v1->co; v2co = e->v2->co; for (cur = ((Ref *)lst->first)->next; cur; cur = next) { next = cur->next; prev = cur->prev; BLI_remlink(lst, cur); vcur = cur->ref; while (prev) { vprev = prev->ref; if (frac_along(v1co, v2co, vprev->co) <= frac_along(v1co, v2co, vcur->co)) break; prev = prev->prev; } BLI_insertlinkafter(lst, prev, cur); } } /* The chain so far goes from an instantiated vertex to kfv (some may be reversed). * If possible, complete the chain to another instantiated vertex and return 1, else return 0. * The visited hash says which KnifeVert's have already been tried, not including kfv. */ static int find_chain_search(KnifeTool_OpData *kcd, KnifeVert *kfv, ListBase *fedges, SmallHash *visited, ListBase *chain) { Ref *r; KnifeEdge *kfe; KnifeVert *kfv_other; if (kfv->v) return TRUE; BLI_smallhash_insert(visited, (uintptr_t)kfv, NULL); /* Try all possible next edges. Could either go through fedges * (all the KnifeEdges for the face being cut) or could go through * kve->edges and restrict to cutting face and uninstantiated edges. * Not clear which is better. Let's do the first. */ for (r = fedges->first; r; r = r->next) { kfe = r->ref; kfv_other = NULL; if (kfe->v1 == kfv) kfv_other = kfe->v2; else if (kfe->v2 == kfv) kfv_other = kfe->v1; if (kfv_other && !BLI_smallhash_haskey(visited, (uintptr_t)kfv_other)) { knife_append_list(kcd, chain, kfe); if (find_chain_search(kcd, kfv_other, fedges, visited, chain)) return TRUE; BLI_remlink(chain, chain->last); } } return FALSE; } static ListBase *find_chain_from_vertex(KnifeTool_OpData *kcd, KnifeEdge *kfe, BMVert *v, ListBase *fedges) { SmallHash visited_, *visited = &visited_; ListBase *ans; int found; ans = knife_empty_list(kcd); knife_append_list(kcd, ans, kfe); found = 0; BLI_smallhash_init(visited); if (kfe->v1->v == v) { BLI_smallhash_insert(visited, (uintptr_t)(kfe->v1), NULL); found = find_chain_search(kcd, kfe->v2, fedges, visited, ans); } else { BLI_assert(kfe->v2->v == v); BLI_smallhash_insert(visited, (uintptr_t)(kfe->v2), NULL); found = find_chain_search(kcd, kfe->v1, fedges, visited, ans); } BLI_smallhash_release(visited); if (found) return ans; else return NULL; } /* Find a chain in fedges from one instantiated vertex to another. * Remove the edges in the chain from fedges and return a separate list of the chain. */ static ListBase *find_chain(KnifeTool_OpData *kcd, ListBase *fedges) { Ref *r, *ref; KnifeEdge *kfe; BMVert *v1, *v2; ListBase *ans; ans = NULL; for (r = fedges->first; r; r = r->next) { kfe = r->ref; v1 = kfe->v1->v; v2 = kfe->v2->v; if (v1 && v2) { ans = knife_empty_list(kcd); knife_append_list(kcd, ans, kfe); break; } if (v1) ans = find_chain_from_vertex(kcd, kfe, v1, fedges); else if (v2) ans = find_chain_from_vertex(kcd, kfe, v2, fedges); if (ans) break; } if (ans) { BLI_assert(BLI_countlist(ans) > 0); for (r = ans->first; r; r = r->next) { ref = find_ref(fedges, r->ref); BLI_assert(ref != NULL); BLI_remlink(fedges, ref); } } return ans; } /* The hole so far goes from kfvfirst to kfv (some may be reversed). * If possible, complete the hole back to kfvfirst and return 1, else return 0. * The visited hash says which KnifeVert's have already been tried, not including kfv or kfvfirst. */ static int find_hole_search(KnifeTool_OpData *kcd, KnifeVert *kfvfirst, KnifeVert *kfv, ListBase *fedges, SmallHash *visited, ListBase *hole) { Ref *r; KnifeEdge *kfe, *kfelast; KnifeVert *kfv_other; if (kfv == kfvfirst) return TRUE; BLI_smallhash_insert(visited, (uintptr_t)kfv, NULL); kfelast = ((Ref *)hole->last)->ref; for (r = fedges->first; r; r = r->next) { kfe = r->ref; if (kfe == kfelast) continue; if (kfe->v1->v || kfe->v2->v) continue; kfv_other = NULL; if (kfe->v1 == kfv) kfv_other = kfe->v2; else if (kfe->v2 == kfv) kfv_other = kfe->v1; if (kfv_other && !BLI_smallhash_haskey(visited, (uintptr_t)kfv_other)) { knife_append_list(kcd, hole, kfe); if (find_hole_search(kcd, kfvfirst, kfv_other, fedges, visited, hole)) return TRUE; BLI_remlink(hole, hole->last); } } return FALSE; } /* Find a hole (simple cycle with no instantiated vertices). * Remove the edges in the cycle from fedges and return a separate list of the cycle */ static ListBase *find_hole(KnifeTool_OpData *kcd, ListBase *fedges) { ListBase *ans; Ref *r, *ref; KnifeEdge *kfe; SmallHash visited_, *visited = &visited_; int found; ans = NULL; found = FALSE; for (r = fedges->first; r && !found; r = r->next) { kfe = r->ref; if (kfe->v1->v || kfe->v2->v || kfe->v1 == kfe->v2) continue; BLI_smallhash_init(visited); ans = knife_empty_list(kcd); knife_append_list(kcd, ans, kfe); found = find_hole_search(kcd, kfe->v1, kfe->v2, fedges, visited, ans); BLI_smallhash_release(visited); } if (found) { for (r = ans->first; r; r = r->next) { kfe = r->ref; ref = find_ref(fedges, r->ref); if (ref) BLI_remlink(fedges, ref); } return ans; } else { return NULL; } } /* Try to find "nice" diagonals - short, and far apart from each other. * If found, return TRUE and make a 'main chain' going across f which uses * the two diagonals and one part of the hole, and a 'side chain' that * completes the hole. */ static int find_hole_chains(KnifeTool_OpData *kcd, ListBase *hole, BMFace *f, ListBase **mainchain, ListBase **sidechain) { float **fco, **hco; BMVert **fv; KnifeVert **hv; KnifeEdge **he; Ref *r; KnifeVert *kfv, *kfvother; KnifeEdge *kfe; ListBase *chain; BMVert *v; BMIter iter; int nh, nf, i, j, k, m, ax, ay, ok, sep = 0 /* Quite warnings */, bestsep; int besti[2], bestj[2]; float d, bestd; nh = BLI_countlist(hole); nf = f->len; if (nh < 2 || nf < 3) return 0; /* Gather 2d projections of hole and face vertex coordinates. * Use best-axis projection - not completely accurate, maybe revisit */ axis_dominant_v3(&ax, &ay, f->no); hco = BLI_memarena_alloc(kcd->arena, nh * sizeof(float *)); fco = BLI_memarena_alloc(kcd->arena, nf * sizeof(float *)); hv = BLI_memarena_alloc(kcd->arena, nh * sizeof(KnifeVert *)); fv = BLI_memarena_alloc(kcd->arena, nf * sizeof(BMVert *)); he = BLI_memarena_alloc(kcd->arena, nh * sizeof(KnifeEdge *)); i = 0; kfv = NULL; kfvother = NULL; for (r = hole->first; r; r = r->next) { kfe = r->ref; he[i] = kfe; if (kfvother == NULL) { kfv = kfe->v1; } else { kfv = kfvother; BLI_assert(kfv == kfe->v1 || kfv == kfe->v2); } hco[i] = BLI_memarena_alloc(kcd->arena, 2 * sizeof(float)); hco[i][0] = kfv->co[ax]; hco[i][1] = kfv->co[ay]; hv[i] = kfv; kfvother = (kfe->v1 == kfv) ? kfe->v2 : kfe->v1; i++; } j = 0; BM_ITER_ELEM (v, &iter, f, BM_VERTS_OF_FACE) { fco[j] = BLI_memarena_alloc(kcd->arena, 2 * sizeof(float)); fco[j][0] = v->co[ax]; fco[j][1] = v->co[ay]; fv[j] = v; j++; } /* For first diagonal (m == 0), want shortest length. * For second diagonal (m == 1), want max separation of index of hole * vertex from the hole vertex used in the first diagonal, and from there * want the one with shortest length not to the same vertex as the first diagonal. */ for (m = 0; m < 2; m++) { besti[m] = -1; bestj[m] = -1; bestd = FLT_MAX; bestsep = 0; for (i = 0; i < nh; i++) { if (m == 1) { if (i == besti[0]) continue; sep = (i + nh - besti[0]) % nh; sep = MIN2(sep, nh - sep); if (sep < bestsep) continue; bestd = FLT_MAX; } for (j = 0; j < nf; j++) { if (m == 1 && j == bestj[0]) continue; d = len_squared_v2v2(hco[i], fco[j]); if (d > bestd) continue; ok = TRUE; for (k = 0; k < nh && ok; k++) { if (k == i || (k + 1) % nh == i) continue; if (isect_line_line_v2(hco[i], fco[j], hco[k], hco[(k + 1) % nh])) ok = FALSE; } if (!ok) continue; for (k = 0; k < nf && ok; k++) { if (k == j || (k + 1) % nf == j) continue; if (isect_line_line_v2(hco[i], fco[j], fco[k], fco[(k + 1) % nf])) ok = FALSE; } if (ok) { besti[m] = i; bestj[m] = j; if (m == 1) bestsep = sep; bestd = d; } } } } if (besti[0] != -1 && besti[1] != -1) { BLI_assert(besti[0] != besti[1] && bestj[0] != bestj[1]); kfe = new_knife_edge(kcd); kfe->v1 = get_bm_knife_vert(kcd, fv[bestj[0]]); kfe->v2 = hv[besti[0]]; chain = knife_empty_list(kcd); knife_append_list(kcd, chain, kfe); for (i = besti[0]; i != besti[1]; i = (i + 1) % nh) { knife_append_list(kcd, chain, he[i]); } kfe = new_knife_edge(kcd); kfe->v1 = hv[besti[1]]; kfe->v2 = get_bm_knife_vert(kcd, fv[bestj[1]]); knife_append_list(kcd, chain, kfe); *mainchain = chain; chain = knife_empty_list(kcd); for (i = besti[1]; i != besti[0]; i = (i + 1) % nh) { knife_append_list(kcd, chain, he[i]); } *sidechain = chain; return TRUE; } else { return FALSE; } } static int knife_edge_in_face(KnifeTool_OpData *UNUSED(kcd), KnifeEdge *kfe, BMFace *f) { /* BMesh *bm = kcd->em->bm; */ /* UNUSED */ BMVert *v1, *v2; BMLoop *l1, *l2, *l; float mid[3]; BMIter iter; int v1inside, v2inside; if (!f) return FALSE; v1 = kfe->v1->v; v2 = kfe->v2->v; l1 = NULL; l2 = NULL; /* find out if v1 and v2, if set, are part of the face */ BM_ITER_ELEM (l, &iter, f, BM_LOOPS_OF_FACE) { if (v1 && l->v == v1) l1 = l; if (v2 && l->v == v2) l2 = l; } /* BM_face_point_inside_test uses best-axis projection so this isn't most accurate test... */ v1inside = l1 ? 0 : BM_face_point_inside_test(f, kfe->v1->co); v2inside = l2 ? 0 : BM_face_point_inside_test(f, kfe->v2->co); if ((l1 && v2inside) || (l2 && v1inside) || (v1inside && v2inside)) return TRUE; if (l1 && l2) { /* Can have case where v1 and v2 are on shared chain between two faces. * BM_face_legal_splits does visibility and self-intersection tests, * but it is expensive and maybe a bit buggy, so use a simple * "is the midpoint in the face" test */ mid_v3_v3v3(mid, kfe->v1->co, kfe->v2->co); return BM_face_point_inside_test(f, mid); } return FALSE; } /* Split face f with KnifeEdges on chain. f remains as one side, the face formed is put in *newface. * The new face will be on the left side of the chain as viewed from the normal-out side of f. */ static void knife_make_chain_cut(KnifeTool_OpData *kcd, BMFace *f, ListBase *chain, BMFace **newface) { BMesh *bm = kcd->em->bm; KnifeEdge *kfe, *kfelast; BMVert *v1, *v2; BMFace *fnew; Ref *ref; KnifeVert *kfv, *kfvprev; BMLoop *lnew, *l_iter; int i; int nco = BLI_countlist(chain) - 1; float (*cos)[3] = NULL; KnifeVert **kverts; BLI_array_fixedstack_declare(cos, BM_NGON_STACK_SIZE, nco, __func__); BLI_array_fixedstack_declare(kverts, BM_NGON_STACK_SIZE, nco, __func__); kfe = ((Ref *)chain->first)->ref; v1 = kfe->v1->v ? kfe->v1->v : kfe->v2->v; kfelast = ((Ref *)chain->last)->ref; v2 = kfelast->v2->v ? kfelast->v2->v : kfelast->v1->v; BLI_assert(v1 != NULL && v2 != NULL); kfvprev = kfe->v1->v == v1 ? kfe->v1 : kfe->v2; for (ref = chain->first, i = 0; i < nco && ref != chain->last; ref = ref->next, i++) { kfe = ref->ref; BLI_assert(kfvprev == kfe->v1 || kfvprev == kfe->v2); kfv = kfe->v1 == kfvprev ? kfe->v2 : kfe->v1; copy_v3_v3(cos[i], kfv->co); kverts[i] = kfv; kfvprev = kfv; } BLI_assert(i == nco); lnew = NULL; if (nco == 0) { /* Want to prevent creating two-sided polygons */ if (BM_edge_exists(v1, v2)) { *newface = NULL; } else { *newface = BM_face_split(bm, f, v1, v2, &lnew, NULL, TRUE); } } else { fnew = BM_face_split_n(bm, f, v1, v2, cos, nco, &lnew, NULL); *newface = fnew; if (fnew) { /* Now go through lnew chain matching up chain kv's and assign real v's to them */ for (l_iter = lnew->next, i = 0; i < nco; l_iter = l_iter->next, i++) { BLI_assert(equals_v3v3(cos[i], l_iter->v->co)); if (kcd->select_result) { BM_edge_select_set(bm, l_iter->e, TRUE); } kverts[i]->v = l_iter->v; } } } /* the select chain above doesnt account for the first loop */ if (kcd->select_result) { if (lnew) { BM_edge_select_set(bm, lnew->e, TRUE); } } BLI_array_fixedstack_free(cos); BLI_array_fixedstack_free(kverts); } static void knife_make_face_cuts(KnifeTool_OpData *kcd, BMFace *f, ListBase *kfedges) { BMesh *bm = kcd->em->bm; KnifeEdge *kfe; BMFace *fnew, *fnew2, *fhole; ListBase *chain, *hole, *sidechain; ListBase *fnew_kfedges, *fnew2_kfedges; Ref *ref, *refnext; int count, oldcount; oldcount = BLI_countlist(kfedges); while ((chain = find_chain(kcd, kfedges)) != NULL) { knife_make_chain_cut(kcd, f, chain, &fnew); if (!fnew) { return; } /* Move kfedges to fnew_kfedges if they are now in fnew. * The chain edges were removed already */ fnew_kfedges = knife_empty_list(kcd); for (ref = kfedges->first; ref; ref = refnext) { kfe = ref->ref; refnext = ref->next; if (knife_edge_in_face(kcd, kfe, fnew)) { BLI_remlink(kfedges, ref); kfe->basef = fnew; knife_append_list(kcd, fnew_kfedges, kfe); } } if (fnew_kfedges->first) knife_make_face_cuts(kcd, fnew, fnew_kfedges); /* find_chain should always remove edges if it returns TRUE, * but guard against infinite loop anyway */ count = BLI_countlist(kfedges); if (count >= oldcount) { BLI_assert(!"knife find_chain infinite loop"); return; } oldcount = count; } while ((hole = find_hole(kcd, kfedges)) != NULL) { if (find_hole_chains(kcd, hole, f, &chain, &sidechain)) { /* chain goes across f and sidechain comes back * from the second last vertex to the second vertex. */ knife_make_chain_cut(kcd, f, chain, &fnew); if (!fnew) { BLI_assert(!"knife failed hole cut"); return; } kfe = ((Ref *)sidechain->first)->ref; if (knife_edge_in_face(kcd, kfe, f)) { knife_make_chain_cut(kcd, f, sidechain, &fnew2); fhole = f; } else if (knife_edge_in_face(kcd, kfe, fnew)) { knife_make_chain_cut(kcd, fnew, sidechain, &fnew2); fhole = fnew2; } else { /* shouldn't happen except in funny edge cases */ return; } BM_face_kill(bm, fhole); /* Move kfedges to either fnew or fnew2 if appropriate. * The hole edges were removed already */ fnew_kfedges = knife_empty_list(kcd); fnew2_kfedges = knife_empty_list(kcd); for (ref = kfedges->first; ref; ref = refnext) { kfe = ref->ref; refnext = ref->next; if (knife_edge_in_face(kcd, kfe, fnew)) { BLI_remlink(kfedges, ref); kfe->basef = fnew; knife_append_list(kcd, fnew_kfedges, kfe); } else if (knife_edge_in_face(kcd, kfe, fnew2)) { BLI_remlink(kfedges, ref); kfe->basef = fnew2; knife_append_list(kcd, fnew2_kfedges, kfe); } } /* We'll skip knife edges that are in the newly formed hole. * (Maybe we shouldn't have made a hole in the first place?) */ if (fnew != fhole && fnew_kfedges->first) knife_make_face_cuts(kcd, fnew, fnew_kfedges); if (fnew2 != fhole && fnew2_kfedges->first) knife_make_face_cuts(kcd, fnew2, fnew2_kfedges); if (f == fhole) break; /* find_hole should always remove edges if it returns TRUE, * but guard against infinite loop anyway */ count = BLI_countlist(kfedges); if (count >= oldcount) { BLI_assert(!"knife find_hole infinite loop"); return; } oldcount = count; } } } /* Use the network of KnifeEdges and KnifeVerts accumulated to make real BMVerts and BMEdedges */ static void knife_make_cuts(KnifeTool_OpData *kcd) { BMesh *bm = kcd->em->bm; KnifeEdge *kfe; KnifeVert *kfv; BMFace *f; BMEdge *e, *enew; ListBase *lst; Ref *ref; float pct; SmallHashIter hiter; BLI_mempool_iter iter; SmallHash fhash_, *fhash = &fhash_; SmallHash ehash_, *ehash = &ehash_; BLI_smallhash_init(fhash); BLI_smallhash_init(ehash); /* put list of cutting edges for a face into fhash, keyed by face */ BLI_mempool_iternew(kcd->kedges, &iter); for (kfe = BLI_mempool_iterstep(&iter); kfe; kfe = BLI_mempool_iterstep(&iter)) { f = kfe->basef; if (!f || kfe->e) continue; lst = BLI_smallhash_lookup(fhash, (uintptr_t)f); if (!lst) { lst = knife_empty_list(kcd); BLI_smallhash_insert(fhash, (uintptr_t)f, lst); } knife_append_list(kcd, lst, kfe); } /* put list of splitting vertices for an edge into ehash, keyed by edge */ BLI_mempool_iternew(kcd->kverts, &iter); for (kfv = BLI_mempool_iterstep(&iter); kfv; kfv = BLI_mempool_iterstep(&iter)) { if (kfv->v) continue; /* already have a BMVert */ for (ref = kfv->edges.first; ref; ref = ref->next) { kfe = ref->ref; e = kfe->e; if (!e) continue; lst = BLI_smallhash_lookup(ehash, (uintptr_t)e); if (!lst) { lst = knife_empty_list(kcd); BLI_smallhash_insert(ehash, (uintptr_t)e, lst); } /* there can be more than one kfe in kfv's list with same e */ if (!find_ref(lst, kfv)) knife_append_list(kcd, lst, kfv); } } /* split bmesh edges where needed */ for (lst = BLI_smallhash_iternew(ehash, &hiter, (uintptr_t *)&e); lst; lst = BLI_smallhash_iternext(&hiter, (uintptr_t *)&e)) { sort_by_frac_along(lst, e); for (ref = lst->first; ref; ref = ref->next) { kfv = ref->ref; pct = frac_along(e->v1->co, e->v2->co, kfv->co); kfv->v = BM_edge_split(bm, e, e->v1, &enew, pct); } } if (kcd->only_select) { EDBM_flag_disable_all(kcd->em, BM_ELEM_SELECT); } /* do cuts for each face */ for (lst = BLI_smallhash_iternew(fhash, &hiter, (uintptr_t *)&f); lst; lst = BLI_smallhash_iternext(&hiter, (uintptr_t *)&f)) { knife_make_face_cuts(kcd, f, lst); } BLI_smallhash_release(fhash); BLI_smallhash_release(ehash); } #endif /* called on tool confirmation */ static void knifetool_finish(bContext *C, wmOperator *op) { KnifeTool_OpData *kcd = op->customdata; #if SCANFILL_CUTS knifenet_fill_faces(kcd); #else knife_make_cuts(kcd); #endif EDBM_mesh_normals_update(kcd->em); EDBM_update_generic(C, kcd->em, TRUE); } /* copied from paint_image.c */ static int project_knife_view_clip(View3D *v3d, RegionView3D *rv3d, float *clipsta, float *clipend) { int orth = ED_view3d_clip_range_get(v3d, rv3d, clipsta, clipend); if (orth) { /* only needed for ortho */ float fac = 2.0f / ((*clipend) - (*clipsta)); *clipsta *= fac; *clipend *= fac; } return orth; } static void knife_recalc_projmat(KnifeTool_OpData *kcd) { invert_m4_m4(kcd->ob->imat, kcd->ob->obmat); ED_view3d_ob_project_mat_get(kcd->ar->regiondata, kcd->ob, kcd->projmat); //mult_m4_m4m4(kcd->projmat, kcd->vc.rv3d->winmat, kcd->vc.rv3d->viewmat); kcd->is_ortho = project_knife_view_clip(kcd->vc.v3d, kcd->vc.rv3d, &kcd->clipsta, &kcd->clipend); } /* called when modal loop selection is done... */ static void knifetool_exit(bContext *C, wmOperator *op) { KnifeTool_OpData *kcd = op->customdata; if (!kcd) return; WM_cursor_restore(CTX_wm_window(C)); /* deactivate the extra drawing stuff in 3D-View */ ED_region_draw_cb_exit(kcd->ar->type, kcd->draw_handle); /* free the custom data */ BLI_mempool_destroy(kcd->refs); BLI_mempool_destroy(kcd->kverts); BLI_mempool_destroy(kcd->kedges); BLI_ghash_free(kcd->origedgemap, NULL, NULL); BLI_ghash_free(kcd->origvertmap, NULL, NULL); BLI_ghash_free(kcd->kedgefacemap, NULL, NULL); BMBVH_FreeBVH(kcd->bmbvh); BLI_memarena_free(kcd->arena); /* tag for redraw */ ED_region_tag_redraw(kcd->ar); if (kcd->cagecos) MEM_freeN(kcd->cagecos); if (kcd->linehits) MEM_freeN(kcd->linehits); /* destroy kcd itself */ MEM_freeN(kcd); op->customdata = NULL; } static void cage_mapped_verts_callback(void *userData, int index, const float co[3], const float UNUSED(no_f[3]), const short UNUSED(no_s[3])) { void **data = userData; BMEditMesh *em = data[0]; float (*cagecos)[3] = data[1]; SmallHash *hash = data[2]; if (index >= 0 && index < em->bm->totvert && !BLI_smallhash_haskey(hash, index)) { BLI_smallhash_insert(hash, index, NULL); copy_v3_v3(cagecos[index], co); } } static void knifetool_update_mval(KnifeTool_OpData *kcd, int mval[2]) { knife_recalc_projmat(kcd); kcd->vc.mval[0] = mval[0]; kcd->vc.mval[1] = mval[1]; if (knife_update_active(kcd)) { ED_region_tag_redraw(kcd->ar); } } /* called when modal loop selection gets set up... */ static int knifetool_init(bContext *C, wmOperator *op, int UNUSED(do_cut)) { KnifeTool_OpData *kcd; Scene *scene = CTX_data_scene(C); Object *obedit = CTX_data_edit_object(C); DerivedMesh *cage, *final; SmallHash shash; void *data[3]; const short only_select = RNA_boolean_get(op->ptr, "only_selected"); /* alloc new customdata */ kcd = op->customdata = MEM_callocN(sizeof(KnifeTool_OpData), "knifetool Modal Op Data"); /* assign the drawing handle for drawing preview line... */ kcd->ob = obedit; kcd->ar = CTX_wm_region(C); kcd->draw_handle = ED_region_draw_cb_activate(kcd->ar->type, knifetool_draw, kcd, REGION_DRAW_POST_VIEW); em_setup_viewcontext(C, &kcd->vc); kcd->em = BMEdit_FromObject(kcd->ob); BM_mesh_elem_index_ensure(kcd->em->bm, BM_VERT); cage = editbmesh_get_derived_cage_and_final(scene, obedit, kcd->em, &final, CD_MASK_DERIVEDMESH); kcd->cagecos = MEM_callocN(sizeof(float) * 3 * kcd->em->bm->totvert, "knife cagecos"); data[0] = kcd->em; data[1] = kcd->cagecos; data[2] = &shash; BLI_smallhash_init(&shash); cage->foreachMappedVert(cage, cage_mapped_verts_callback, data); BLI_smallhash_release(&shash); kcd->bmbvh = BMBVH_NewBVH(kcd->em, (BMBVH_USE_CAGE | BMBVH_RETURN_ORIG) | (only_select ? BMBVH_RESPECT_SELECT : BMBVH_RESPECT_HIDDEN), scene, obedit); kcd->arena = BLI_memarena_new(1 << 15, "knife"); kcd->vthresh = KMAXDIST - 1; kcd->ethresh = KMAXDIST; kcd->extend = 1; knife_recalc_projmat(kcd); ED_region_tag_redraw(kcd->ar); kcd->refs = BLI_mempool_create(sizeof(Ref), 1, 2048, 0); kcd->kverts = BLI_mempool_create(sizeof(KnifeVert), 1, 512, BLI_MEMPOOL_ALLOW_ITER); kcd->kedges = BLI_mempool_create(sizeof(KnifeEdge), 1, 512, BLI_MEMPOOL_ALLOW_ITER); kcd->origedgemap = BLI_ghash_ptr_new("knife origedgemap"); kcd->origvertmap = BLI_ghash_ptr_new("knife origvertmap"); kcd->kedgefacemap = BLI_ghash_ptr_new("knife origvertmap"); /* cut all the way through the mesh if use_occlude_geometry button not pushed */ kcd->cut_through = !RNA_boolean_get(op->ptr, "use_occlude_geometry"); kcd->only_select = only_select; /* can't usefully select resulting edges in face mode */ kcd->select_result = (kcd->em->selectmode != SCE_SELECT_FACE); knife_pos_data_clear(&kcd->curr); knife_pos_data_clear(&kcd->prev); knife_init_colors(&kcd->colors); return 1; } static int knifetool_cancel(bContext *C, wmOperator *op) { /* this is just a wrapper around exit() */ knifetool_exit(C, op); return OPERATOR_CANCELLED; } static int knifetool_invoke(bContext *C, wmOperator *op, wmEvent *evt) { KnifeTool_OpData *kcd; view3d_operator_needs_opengl(C); if (!knifetool_init(C, op, 0)) return OPERATOR_CANCELLED; /* add a modal handler for this operator - handles loop selection */ WM_cursor_modal(CTX_wm_window(C), BC_KNIFECURSOR); WM_event_add_modal_handler(C, op); kcd = op->customdata; knifetool_update_mval(kcd, evt->mval); knife_update_header(C, kcd); return OPERATOR_RUNNING_MODAL; } enum { KNF_MODAL_CANCEL = 1, KNF_MODAL_CONFIRM, KNF_MODAL_MIDPOINT_ON, KNF_MODAL_MIDPOINT_OFF, KNF_MODAL_NEW_CUT, KNF_MODEL_IGNORE_SNAP_ON, KNF_MODEL_IGNORE_SNAP_OFF, KNF_MODAL_ADD_CUT, KNF_MODAL_ANGLE_SNAP_TOGGLE, KNF_MODAL_CUT_THROUGH_TOGGLE }; wmKeyMap *knifetool_modal_keymap(wmKeyConfig *keyconf) { static EnumPropertyItem modal_items[] = { {KNF_MODAL_CANCEL, "CANCEL", 0, "Cancel", ""}, {KNF_MODAL_CONFIRM, "CONFIRM", 0, "Confirm", ""}, {KNF_MODAL_MIDPOINT_ON, "SNAP_MIDPOINTS_ON", 0, "Snap To Midpoints On", ""}, {KNF_MODAL_MIDPOINT_OFF, "SNAP_MIDPOINTS_OFF", 0, "Snap To Midpoints Off", ""}, {KNF_MODEL_IGNORE_SNAP_ON, "IGNORE_SNAP_ON", 0, "Ignore Snapping On", ""}, {KNF_MODEL_IGNORE_SNAP_OFF, "IGNORE_SNAP_OFF", 0, "Ignore Snapping Off", ""}, {KNF_MODAL_ANGLE_SNAP_TOGGLE, "ANGLE_SNAP_TOGGLE", 0, "Toggle Angle Snapping", ""}, {KNF_MODAL_CUT_THROUGH_TOGGLE, "CUT_THROUGH_TOGGLE", 0, "Toggle Cut Through", ""}, {KNF_MODAL_NEW_CUT, "NEW_CUT", 0, "End Current Cut", ""}, {KNF_MODAL_ADD_CUT, "ADD_CUT", 0, "Add Cut", ""}, {0, NULL, 0, NULL, NULL} }; wmKeyMap *keymap = WM_modalkeymap_get(keyconf, "Knife Tool Modal Map"); /* this function is called for each spacetype, only needs to add map once */ if (keymap && keymap->modal_items) return NULL; keymap = WM_modalkeymap_add(keyconf, "Knife Tool Modal Map", modal_items); /* items for modal map */ WM_modalkeymap_add_item(keymap, ESCKEY, KM_PRESS, KM_ANY, 0, KNF_MODAL_CANCEL); WM_modalkeymap_add_item(keymap, LEFTMOUSE, KM_PRESS, KM_ANY, 0, KNF_MODAL_ADD_CUT); WM_modalkeymap_add_item(keymap, RIGHTMOUSE, KM_PRESS, KM_ANY, 0, KNF_MODAL_CANCEL); WM_modalkeymap_add_item(keymap, RETKEY, KM_PRESS, KM_ANY, 0, KNF_MODAL_CONFIRM); WM_modalkeymap_add_item(keymap, PADENTER, KM_PRESS, KM_ANY, 0, KNF_MODAL_CONFIRM); WM_modalkeymap_add_item(keymap, SPACEKEY, KM_PRESS, KM_ANY, 0, KNF_MODAL_CONFIRM); WM_modalkeymap_add_item(keymap, EKEY, KM_PRESS, 0, 0, KNF_MODAL_NEW_CUT); WM_modalkeymap_add_item(keymap, LEFTCTRLKEY, KM_PRESS, KM_ANY, 0, KNF_MODAL_MIDPOINT_ON); WM_modalkeymap_add_item(keymap, LEFTCTRLKEY, KM_RELEASE, KM_ANY, 0, KNF_MODAL_MIDPOINT_OFF); WM_modalkeymap_add_item(keymap, RIGHTCTRLKEY, KM_PRESS, KM_ANY, 0, KNF_MODAL_MIDPOINT_ON); WM_modalkeymap_add_item(keymap, RIGHTCTRLKEY, KM_RELEASE, KM_ANY, 0, KNF_MODAL_MIDPOINT_OFF); WM_modalkeymap_add_item(keymap, LEFTSHIFTKEY, KM_PRESS, KM_ANY, 0, KNF_MODEL_IGNORE_SNAP_ON); WM_modalkeymap_add_item(keymap, LEFTSHIFTKEY, KM_RELEASE, KM_ANY, 0, KNF_MODEL_IGNORE_SNAP_OFF); WM_modalkeymap_add_item(keymap, RIGHTSHIFTKEY, KM_PRESS, KM_ANY, 0, KNF_MODEL_IGNORE_SNAP_ON); WM_modalkeymap_add_item(keymap, RIGHTSHIFTKEY, KM_RELEASE, KM_ANY, 0, KNF_MODEL_IGNORE_SNAP_OFF); WM_modalkeymap_add_item(keymap, CKEY, KM_PRESS, 0, 0, KNF_MODAL_ANGLE_SNAP_TOGGLE); WM_modalkeymap_add_item(keymap, ZKEY, KM_PRESS, 0, 0, KNF_MODAL_CUT_THROUGH_TOGGLE); WM_modalkeymap_assign(keymap, "MESH_OT_knife_tool"); return keymap; } static int knifetool_modal(bContext *C, wmOperator *op, wmEvent *event) { Object *obedit = CTX_data_edit_object(C); KnifeTool_OpData *kcd = op->customdata; if (!obedit || obedit->type != OB_MESH || BMEdit_FromObject(obedit) != kcd->em) { knifetool_exit(C, op); ED_area_headerprint(CTX_wm_area(C), NULL); return OPERATOR_FINISHED; } view3d_operator_needs_opengl(C); if (kcd->mode == MODE_PANNING) kcd->mode = kcd->prevmode; /* handle modal keymap */ if (event->type == EVT_MODAL_MAP) { switch (event->val) { case KNF_MODAL_CANCEL: /* finish */ ED_region_tag_redraw(kcd->ar); knifetool_exit(C, op); ED_area_headerprint(CTX_wm_area(C), NULL); return OPERATOR_CANCELLED; case KNF_MODAL_CONFIRM: /* finish */ ED_region_tag_redraw(kcd->ar); knifetool_finish(C, op); knifetool_exit(C, op); ED_area_headerprint(CTX_wm_area(C), NULL); return OPERATOR_FINISHED; case KNF_MODAL_MIDPOINT_ON: kcd->snap_midpoints = 1; knife_recalc_projmat(kcd); knife_update_active(kcd); knife_update_header(C, kcd); ED_region_tag_redraw(kcd->ar); break; case KNF_MODAL_MIDPOINT_OFF: kcd->snap_midpoints = 0; knife_recalc_projmat(kcd); knife_update_active(kcd); knife_update_header(C, kcd); ED_region_tag_redraw(kcd->ar); break; case KNF_MODEL_IGNORE_SNAP_ON: ED_region_tag_redraw(kcd->ar); kcd->ignore_vert_snapping = kcd->ignore_edge_snapping = 1; knife_update_header(C, kcd); break; case KNF_MODEL_IGNORE_SNAP_OFF: ED_region_tag_redraw(kcd->ar); kcd->ignore_vert_snapping = kcd->ignore_edge_snapping = 0; knife_update_header(C, kcd); break; case KNF_MODAL_ANGLE_SNAP_TOGGLE: kcd->angle_snapping = !kcd->angle_snapping; knife_update_header(C, kcd); break; case KNF_MODAL_CUT_THROUGH_TOGGLE: kcd->cut_through = !kcd->cut_through; knifetool_update_mval(kcd, event->mval); /* refresh knife path */ knife_update_header(C, kcd); break; case KNF_MODAL_NEW_CUT: ED_region_tag_redraw(kcd->ar); knife_finish_cut(kcd); kcd->mode = MODE_IDLE; break; case KNF_MODAL_ADD_CUT: knife_recalc_projmat(kcd); if (kcd->mode == MODE_DRAGGING) { knife_add_cut(kcd); if (!kcd->extend) { knife_finish_cut(kcd); kcd->mode = MODE_IDLE; } } else if (kcd->mode != MODE_PANNING) { knife_start_cut(kcd); kcd->mode = MODE_DRAGGING; } ED_region_tag_redraw(kcd->ar); break; } } else { /* non-modal-mapped events */ switch (event->type) { case WHEELUPMOUSE: case WHEELDOWNMOUSE: return OPERATOR_PASS_THROUGH; case MIDDLEMOUSE: if (event->val != KM_RELEASE) { if (kcd->mode != MODE_PANNING) kcd->prevmode = kcd->mode; kcd->mode = MODE_PANNING; } else { kcd->mode = kcd->prevmode; } ED_region_tag_redraw(kcd->ar); return OPERATOR_PASS_THROUGH; case MOUSEMOVE: /* mouse moved somewhere to select another loop */ if (kcd->mode != MODE_PANNING) { knifetool_update_mval(kcd, event->mval); } break; } } /* keep going until the user confirms */ return OPERATOR_RUNNING_MODAL; } void MESH_OT_knife_tool(wmOperatorType *ot) { /* description */ ot->name = "Knife Topology Tool"; ot->idname = "MESH_OT_knife_tool"; ot->description = "Cut new topology"; /* callbacks */ ot->invoke = knifetool_invoke; ot->modal = knifetool_modal; ot->cancel = knifetool_cancel; ot->poll = ED_operator_editmesh_view3d; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO | OPTYPE_BLOCKING; RNA_def_boolean(ot->srna, "use_occlude_geometry", TRUE, "Occlude Geometry", "Only cut the front most geometry"); RNA_def_boolean(ot->srna, "only_selected", FALSE, "Only Selected", "Only cut selected geometry"); }