/* * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2007 Blender Foundation. * All rights reserved. * * * Contributor(s): Joseph Eagar, Joshua Leung, Howard Trickey, * Campbell Barton * * ***** END GPL LICENSE BLOCK ***** */ /** \file blender/editors/mesh/editmesh_knife.c * \ingroup edmesh * * Interactive editmesh knife tool. */ #ifdef _MSC_VER # define _USE_MATH_DEFINES #endif #include "MEM_guardedalloc.h" #include "BLI_listbase.h" #include "BLI_string.h" #include "BLI_array.h" #include "BLI_alloca.h" #include "BLI_linklist.h" #include "BLI_math.h" #include "BLI_smallhash.h" #include "BLI_memarena.h" #include "BLT_translation.h" #include "BKE_bvhutils.h" #include "BKE_context.h" #include "BKE_editmesh.h" #include "BKE_editmesh_bvh.h" #include "BKE_report.h" #include "DEG_depsgraph.h" #include "GPU_immediate.h" #include "GPU_matrix.h" #include "GPU_state.h" #include "ED_screen.h" #include "ED_space_api.h" #include "ED_view3d.h" #include "ED_mesh.h" #include "WM_api.h" #include "WM_types.h" #include "DNA_object_types.h" #include "UI_interface.h" #include "UI_resources.h" #include "RNA_access.h" #include "RNA_define.h" #include "mesh_intern.h" /* own include */ /* detect isolated holes and fill them */ #define USE_NET_ISLAND_CONNECT #define KMAXDIST 10 /* max mouse distance from edge before not detecting it */ /* WARNING: knife float precision is fragile: * be careful before making changes here see: (T43229, T42864, T42459, T41164). */ #define KNIFE_FLT_EPS 0.00001f #define KNIFE_FLT_EPS_SQUARED (KNIFE_FLT_EPS * KNIFE_FLT_EPS) #define KNIFE_FLT_EPSBIG 0.0005f #define KNIFE_FLT_EPS_PX_VERT 0.5f #define KNIFE_FLT_EPS_PX_EDGE 0.05f #define KNIFE_FLT_EPS_PX_FACE 0.05f typedef struct KnifeColors { unsigned char line[3]; unsigned char edge[3]; unsigned char curpoint[3]; unsigned char curpoint_a[4]; unsigned char point[3]; unsigned char point_a[4]; } KnifeColors; /* knifetool operator */ typedef struct KnifeVert { BMVert *v; /* non-NULL if this is an original vert */ ListBase edges; ListBase faces; float co[3], cageco[3], sco[2]; /* sco is screen coordinates for cageco */ bool is_face, in_space; bool is_cut; /* along a cut created by user input (will draw too) */ } KnifeVert; typedef struct Ref { struct Ref *next, *prev; void *ref; } Ref; typedef struct KnifeEdge { KnifeVert *v1, *v2; BMFace *basef; /* face to restrict face fill to */ ListBase faces; BMEdge *e /* , *e_old */; /* non-NULL if this is an original edge */ bool is_cut; /* along a cut created by user input (will draw too) */ } KnifeEdge; typedef struct KnifeLineHit { float hit[3], cagehit[3]; float schit[2]; /* screen coordinates for cagehit */ float l; /* lambda along cut line */ float perc; /* lambda along hit line */ float m; /* depth front-to-back */ /* Exactly one of kfe, v, or f should be non-NULL, * saying whether cut line crosses and edge, * is snapped to a vert, or is in the middle of some face. */ KnifeEdge *kfe; KnifeVert *v; BMFace *f; } KnifeLineHit; typedef struct KnifePosData { float co[3]; float cage[3]; /* At most one of vert, edge, or bmface should be non-NULL, * saying whether the point is snapped to a vertex, edge, or in a face. * If none are set, this point is in space and is_space should be true. */ KnifeVert *vert; KnifeEdge *edge; BMFace *bmface; bool is_space; float mval[2]; /* mouse screen position (may be non-integral if snapped to something) */ } KnifePosData; /* struct for properties used while drawing */ typedef struct KnifeTool_OpData { ARegion *ar; /* region that knifetool was activated in */ void *draw_handle; /* for drawing preview loop */ ViewContext vc; /* note: _don't_ use 'mval', instead use the one we define below */ float mval[2]; /* mouse value with snapping applied */ //bContext *C; Scene *scene; Object *ob; BMEditMesh *em; MemArena *arena; /* reused for edge-net filling */ struct { /* cleared each use */ GSet *edge_visit; #ifdef USE_NET_ISLAND_CONNECT MemArena *arena; #endif } edgenet; GHash *origvertmap; GHash *origedgemap; GHash *kedgefacemap; GHash *facetrimap; BMBVHTree *bmbvh; BLI_mempool *kverts; BLI_mempool *kedges; float vthresh; float ethresh; /* used for drag-cutting */ KnifeLineHit *linehits; int totlinehit; /* Data for mouse-position-derived data */ KnifePosData curr; /* current point under the cursor */ KnifePosData prev; /* last added cut (a line draws from the cursor to this) */ KnifePosData init; /* the first point in the cut-list, used for closing the loop */ int totkedge, totkvert; BLI_mempool *refs; float projmat[4][4]; float projmat_inv[4][4]; /* vector along view z axis (object space, normalized) */ float proj_zaxis[3]; KnifeColors colors; /* run by the UI or not */ bool is_interactive; /* operatpr options */ bool cut_through; /* preference, can be modified at runtime (that feature may go) */ bool only_select; /* set on initialization */ bool select_result; /* set on initialization */ bool is_ortho; float ortho_extent; float ortho_extent_center[3]; float clipsta, clipend; enum { MODE_IDLE, MODE_DRAGGING, MODE_CONNECT, MODE_PANNING } mode; bool is_drag_hold; int prevmode; bool snap_midpoints; bool ignore_edge_snapping; bool ignore_vert_snapping; /* use to check if we're currently dragging an angle snapped line */ bool is_angle_snapping; bool angle_snapping; float angle; const float (*cagecos)[3]; } KnifeTool_OpData; enum { KNF_MODAL_CANCEL = 1, KNF_MODAL_CONFIRM, KNF_MODAL_MIDPOINT_ON, KNF_MODAL_MIDPOINT_OFF, KNF_MODAL_NEW_CUT, KNF_MODEL_IGNORE_SNAP_ON, KNF_MODEL_IGNORE_SNAP_OFF, KNF_MODAL_ADD_CUT, KNF_MODAL_ANGLE_SNAP_TOGGLE, KNF_MODAL_CUT_THROUGH_TOGGLE, KNF_MODAL_PANNING, KNF_MODAL_ADD_CUT_CLOSED, }; static ListBase *knife_get_face_kedges(KnifeTool_OpData *kcd, BMFace *f); static void knife_input_ray_segment(KnifeTool_OpData *kcd, const float mval[2], const float ofs, float r_origin[3], float r_dest[3]); static bool knife_verts_edge_in_face(KnifeVert *v1, KnifeVert *v2, BMFace *f); static void knifetool_free_bmbvh(KnifeTool_OpData *kcd); static int knifetool_modal(bContext *C, wmOperator *op, const wmEvent *event); static void knife_update_header(bContext *C, wmOperator *op, KnifeTool_OpData *kcd) { char header[UI_MAX_DRAW_STR]; char buf[UI_MAX_DRAW_STR]; char *p = buf; int available_len = sizeof(buf); #define WM_MODALKEY(_id) \ WM_modalkeymap_operator_items_to_string_buf(op->type, (_id), true, UI_MAX_SHORTCUT_STR, &available_len, &p) BLI_snprintf(header, sizeof(header), IFACE_("%s: confirm, %s: cancel, " "%s: start/define cut, %s: close cut, %s: new cut, " "%s: midpoint snap (%s), %s: ignore snap (%s), " "%s: angle constraint (%s), %s: cut through (%s), " "%s: panning"), WM_MODALKEY(KNF_MODAL_CONFIRM), WM_MODALKEY(KNF_MODAL_CANCEL), WM_MODALKEY(KNF_MODAL_ADD_CUT), WM_MODALKEY(KNF_MODAL_ADD_CUT_CLOSED), WM_MODALKEY(KNF_MODAL_NEW_CUT), WM_MODALKEY(KNF_MODAL_MIDPOINT_ON), WM_bool_as_string(kcd->snap_midpoints), WM_MODALKEY(KNF_MODEL_IGNORE_SNAP_ON), WM_bool_as_string(kcd->ignore_edge_snapping), WM_MODALKEY(KNF_MODAL_ANGLE_SNAP_TOGGLE), WM_bool_as_string(kcd->angle_snapping), WM_MODALKEY(KNF_MODAL_CUT_THROUGH_TOGGLE), WM_bool_as_string(kcd->cut_through), WM_MODALKEY(KNF_MODAL_PANNING)); #undef WM_MODALKEY ED_workspace_status_text(C, header); } static void knife_project_v2(const KnifeTool_OpData *kcd, const float co[3], float sco[2]) { ED_view3d_project_float_v2_m4(kcd->ar, co, sco, (float (*)[4])kcd->projmat); } /* use when lambda is in screen-space */ static void knife_interp_v3_v3v3( const KnifeTool_OpData *kcd, float r_co[3], const float v1[3], const float v2[3], float lambda_ss) { if (kcd->is_ortho) { interp_v3_v3v3(r_co, v1, v2, lambda_ss); } else { /* transform into screen-space, interp, then transform back */ float v1_ss[3], v2_ss[3]; mul_v3_project_m4_v3(v1_ss, (float (*)[4])kcd->projmat, v1); mul_v3_project_m4_v3(v2_ss, (float (*)[4])kcd->projmat, v2); interp_v3_v3v3(r_co, v1_ss, v2_ss, lambda_ss); mul_project_m4_v3((float (*)[4])kcd->projmat_inv, r_co); } } static void knife_pos_data_clear(KnifePosData *kpd) { zero_v3(kpd->co); zero_v3(kpd->cage); kpd->vert = NULL; kpd->edge = NULL; kpd->bmface = NULL; zero_v2(kpd->mval); } static ListBase *knife_empty_list(KnifeTool_OpData *kcd) { ListBase *lst; lst = BLI_memarena_alloc(kcd->arena, sizeof(ListBase)); BLI_listbase_clear(lst); return lst; } static void knife_append_list(KnifeTool_OpData *kcd, ListBase *lst, void *elem) { Ref *ref; ref = BLI_mempool_calloc(kcd->refs); ref->ref = elem; BLI_addtail(lst, ref); } static Ref *find_ref(ListBase *lb, void *ref) { Ref *ref1; for (ref1 = lb->first; ref1; ref1 = ref1->next) { if (ref1->ref == ref) return ref1; } return NULL; } static void knife_append_list_no_dup(KnifeTool_OpData *kcd, ListBase *lst, void *elem) { if (!find_ref(lst, elem)) knife_append_list(kcd, lst, elem); } static KnifeEdge *new_knife_edge(KnifeTool_OpData *kcd) { kcd->totkedge++; return BLI_mempool_calloc(kcd->kedges); } static void knife_add_to_vert_edges(KnifeTool_OpData *kcd, KnifeEdge *kfe) { knife_append_list(kcd, &kfe->v1->edges, kfe); knife_append_list(kcd, &kfe->v2->edges, kfe); } /* Add faces of an edge to a KnifeVert's faces list. No checks for dups. */ static void knife_add_edge_faces_to_vert(KnifeTool_OpData *kcd, KnifeVert *kfv, BMEdge *e) { BMIter bmiter; BMFace *f; BM_ITER_ELEM (f, &bmiter, e, BM_FACES_OF_EDGE) { knife_append_list(kcd, &kfv->faces, f); } } /* Find a face in common in the two faces lists. * If more than one, return the first; if none, return NULL */ static BMFace *knife_find_common_face(ListBase *faces1, ListBase *faces2) { Ref *ref1, *ref2; for (ref1 = faces1->first; ref1; ref1 = ref1->next) { for (ref2 = faces2->first; ref2; ref2 = ref2->next) { if (ref1->ref == ref2->ref) return (BMFace *)(ref1->ref); } } return NULL; } static KnifeVert *new_knife_vert(KnifeTool_OpData *kcd, const float co[3], const float cageco[3]) { KnifeVert *kfv = BLI_mempool_calloc(kcd->kverts); kcd->totkvert++; copy_v3_v3(kfv->co, co); copy_v3_v3(kfv->cageco, cageco); knife_project_v2(kcd, kfv->cageco, kfv->sco); return kfv; } /* get a KnifeVert wrapper for an existing BMVert */ static KnifeVert *get_bm_knife_vert(KnifeTool_OpData *kcd, BMVert *v) { KnifeVert *kfv = BLI_ghash_lookup(kcd->origvertmap, v); const float *cageco; if (!kfv) { BMIter bmiter; BMFace *f; if (BM_elem_index_get(v) >= 0) cageco = kcd->cagecos[BM_elem_index_get(v)]; else cageco = v->co; kfv = new_knife_vert(kcd, v->co, cageco); kfv->v = v; BLI_ghash_insert(kcd->origvertmap, v, kfv); BM_ITER_ELEM (f, &bmiter, v, BM_FACES_OF_VERT) { knife_append_list(kcd, &kfv->faces, f); } } return kfv; } /* get a KnifeEdge wrapper for an existing BMEdge */ static KnifeEdge *get_bm_knife_edge(KnifeTool_OpData *kcd, BMEdge *e) { KnifeEdge *kfe = BLI_ghash_lookup(kcd->origedgemap, e); if (!kfe) { BMIter bmiter; BMFace *f; kfe = new_knife_edge(kcd); kfe->e = e; kfe->v1 = get_bm_knife_vert(kcd, e->v1); kfe->v2 = get_bm_knife_vert(kcd, e->v2); knife_add_to_vert_edges(kcd, kfe); BLI_ghash_insert(kcd->origedgemap, e, kfe); BM_ITER_ELEM (f, &bmiter, e, BM_FACES_OF_EDGE) { knife_append_list(kcd, &kfe->faces, f); } } return kfe; } /* Record the index in kcd->em->looptris of first looptri triple for a given face, * given an index for some triple in that array. * This assumes that all of the triangles for a given face are contiguous * in that array (as they are by the current tesselation routines). * Actually store index + 1 in the hash, because 0 looks like "no entry" * to hash lookup routine; will reverse this in the get routine. * Doing this lazily rather than all at once for all faces. */ static void set_lowest_face_tri(KnifeTool_OpData *kcd, BMFace *f, int index) { int i; if (BLI_ghash_lookup(kcd->facetrimap, f)) return; BLI_assert(index >= 0 && index < kcd->em->tottri); BLI_assert(kcd->em->looptris[index][0]->f == f); for (i = index - 1; i >= 0; i--) { if (kcd->em->looptris[i][0]->f != f) { i++; break; } } if (i == -1) i++; BLI_ghash_insert(kcd->facetrimap, f, SET_INT_IN_POINTER(i + 1)); } /* This should only be called for faces that have had a lowest face tri set by previous function */ static int get_lowest_face_tri(KnifeTool_OpData *kcd, BMFace *f) { int ans; ans = GET_INT_FROM_POINTER(BLI_ghash_lookup(kcd->facetrimap, f)); BLI_assert(ans != 0); return ans - 1; } /* User has just clicked for first time or first time after a restart (E key). * Copy the current position data into prev. */ static void knife_start_cut(KnifeTool_OpData *kcd) { kcd->prev = kcd->curr; kcd->curr.is_space = 0; /*TODO: why do we do this? */ if (kcd->prev.vert == NULL && kcd->prev.edge == NULL) { float origin[3], origin_ofs[3]; float ofs_local[3]; negate_v3_v3(ofs_local, kcd->vc.rv3d->ofs); invert_m4_m4(kcd->ob->imat, kcd->ob->obmat); mul_m4_v3(kcd->ob->imat, ofs_local); knife_input_ray_segment(kcd, kcd->curr.mval, 1.0f, origin, origin_ofs); if (!isect_line_plane_v3(kcd->prev.cage, origin, origin_ofs, ofs_local, kcd->proj_zaxis)) { zero_v3(kcd->prev.cage); } copy_v3_v3(kcd->prev.co, kcd->prev.cage); /*TODO: do we need this? */ copy_v3_v3(kcd->curr.cage, kcd->prev.cage); copy_v3_v3(kcd->curr.co, kcd->prev.co); } } static ListBase *knife_get_face_kedges(KnifeTool_OpData *kcd, BMFace *f) { ListBase *lst = BLI_ghash_lookup(kcd->kedgefacemap, f); if (!lst) { BMIter bmiter; BMEdge *e; lst = knife_empty_list(kcd); BM_ITER_ELEM (e, &bmiter, f, BM_EDGES_OF_FACE) { knife_append_list(kcd, lst, get_bm_knife_edge(kcd, e)); } BLI_ghash_insert(kcd->kedgefacemap, f, lst); } return lst; } static void knife_edge_append_face(KnifeTool_OpData *kcd, KnifeEdge *kfe, BMFace *f) { knife_append_list(kcd, knife_get_face_kedges(kcd, f), kfe); knife_append_list(kcd, &kfe->faces, f); } static KnifeVert *knife_split_edge( KnifeTool_OpData *kcd, KnifeEdge *kfe, const float co[3], const float cageco[3], KnifeEdge **r_kfe) { KnifeEdge *newkfe = new_knife_edge(kcd); Ref *ref; BMFace *f; newkfe->v1 = kfe->v1; newkfe->v2 = new_knife_vert(kcd, co, cageco); newkfe->v2->is_cut = true; if (kfe->e) { knife_add_edge_faces_to_vert(kcd, newkfe->v2, kfe->e); } else { /* kfe cuts across an existing face. * If v1 and v2 are in multiple faces together (e.g., if they * are in doubled polys) then this arbitrarily chooses one of them */ f = knife_find_common_face(&kfe->v1->faces, &kfe->v2->faces); if (f) knife_append_list(kcd, &newkfe->v2->faces, f); } newkfe->basef = kfe->basef; ref = find_ref(&kfe->v1->edges, kfe); BLI_remlink(&kfe->v1->edges, ref); kfe->v1 = newkfe->v2; BLI_addtail(&kfe->v1->edges, ref); for (ref = kfe->faces.first; ref; ref = ref->next) knife_edge_append_face(kcd, newkfe, ref->ref); knife_add_to_vert_edges(kcd, newkfe); newkfe->is_cut = kfe->is_cut; newkfe->e = kfe->e; *r_kfe = newkfe; return newkfe->v2; } static void linehit_to_knifepos(KnifePosData *kpos, KnifeLineHit *lh) { kpos->bmface = lh->f; kpos->vert = lh->v; kpos->edge = lh->kfe; copy_v3_v3(kpos->cage, lh->cagehit); copy_v3_v3(kpos->co, lh->hit); copy_v2_v2(kpos->mval, lh->schit); } /* primary key: lambda along cut * secondary key: lambda along depth * tertiary key: pointer comparisons of verts if both snapped to verts */ static int linehit_compare(const void *vlh1, const void *vlh2) { const KnifeLineHit *lh1 = vlh1; const KnifeLineHit *lh2 = vlh2; if (lh1->l < lh2->l) return -1; else if (lh1->l > lh2->l) return 1; else { if (lh1->m < lh2->m) return -1; else if (lh1->m > lh2->m) return 1; else { if (lh1->v < lh2->v) return -1; else if (lh1->v > lh2->v) return 1; else return 0; } } } /* * Sort linehits by distance along cut line, and secondarily from * front to back (from eye), and tertiarily by snap vertex, * and remove any duplicates. */ static void prepare_linehits_for_cut(KnifeTool_OpData *kcd) { KnifeLineHit *linehits, *lhi, *lhj; int i, j, n; bool is_double = false; n = kcd->totlinehit; linehits = kcd->linehits; if (n == 0) return; qsort(linehits, n, sizeof(KnifeLineHit), linehit_compare); /* Remove any edge hits that are preceded or followed * by a vertex hit that is very near. Mark such edge hits using * l == -1 and then do another pass to actually remove. * Also remove all but one of a series of vertex hits for the same vertex. */ for (i = 0; i < n; i++) { lhi = &linehits[i]; if (lhi->v) { for (j = i - 1; j >= 0; j--) { lhj = &linehits[j]; if (!lhj->kfe || fabsf(lhi->l - lhj->l) > KNIFE_FLT_EPSBIG || fabsf(lhi->m - lhj->m) > KNIFE_FLT_EPSBIG) { break; } if (lhi->kfe == lhj->kfe) { lhj->l = -1.0f; is_double = true; } } for (j = i + 1; j < n; j++) { lhj = &linehits[j]; if (fabsf(lhi->l - lhj->l) > KNIFE_FLT_EPSBIG || fabsf(lhi->m - lhj->m) > KNIFE_FLT_EPSBIG) { break; } if ((lhj->kfe && (lhi->kfe == lhj->kfe)) || (lhi->v == lhj->v)) { lhj->l = -1.0f; is_double = true; } } } } if (is_double) { /* delete-in-place loop: copying from pos j to pos i+1 */ i = 0; j = 1; while (j < n) { lhi = &linehits[i]; lhj = &linehits[j]; if (lhj->l == -1.0f) { j++; /* skip copying this one */ } else { /* copy unless a no-op */ if (lhi->l == -1.0f) { /* could happen if linehits[0] is being deleted */ memcpy(&linehits[i], &linehits[j], sizeof(KnifeLineHit)); } else { if (i + 1 != j) memcpy(&linehits[i + 1], &linehits[j], sizeof(KnifeLineHit)); i++; } j++; } } kcd->totlinehit = i + 1; } } /* Add hit to list of hits in facehits[f], where facehits is a map, if not already there */ static void add_hit_to_facehits(KnifeTool_OpData *kcd, GHash *facehits, BMFace *f, KnifeLineHit *hit) { ListBase *lst = BLI_ghash_lookup(facehits, f); if (!lst) { lst = knife_empty_list(kcd); BLI_ghash_insert(facehits, f, lst); } knife_append_list_no_dup(kcd, lst, hit); } /** * special purpose function, if the linehit is connected to a real edge/vert * return true if \a co is outside the face. */ static bool knife_add_single_cut__is_linehit_outside_face(BMFace *f, const KnifeLineHit *lh, const float co[3]) { if (lh->v && lh->v->v) { BMLoop *l; /* side-of-loop */ if ((l = BM_face_vert_share_loop(f, lh->v->v)) && (BM_loop_point_side_of_loop_test(l, co) < 0.0f)) { return true; } } else if ((lh->kfe && lh->kfe->e)) { BMLoop *l; /* side-of-edge */ if ((l = BM_face_edge_share_loop(f, lh->kfe->e)) && (BM_loop_point_side_of_edge_test(l, co) < 0.0f)) { return true; } } return false; } static void knife_add_single_cut(KnifeTool_OpData *kcd, KnifeLineHit *lh1, KnifeLineHit *lh2, BMFace *f) { KnifeEdge *kfe, *kfe2; BMEdge *e_base; if ((lh1->v && lh1->v == lh2->v) || (lh1->kfe && lh1->kfe == lh2->kfe)) { return; } /* if the cut is on an edge, just tag that its a cut and return */ if ((lh1->v && lh2->v) && (lh1->v->v && lh2->v && lh2->v->v) && (e_base = BM_edge_exists(lh1->v->v, lh2->v->v))) { kfe = get_bm_knife_edge(kcd, e_base); kfe->is_cut = true; kfe->e = e_base; return; } else { if (knife_add_single_cut__is_linehit_outside_face(f, lh1, lh2->hit) || knife_add_single_cut__is_linehit_outside_face(f, lh2, lh1->hit)) { return; } } /* Check if edge actually lies within face (might not, if this face is concave) */ if ((lh1->v && !lh1->kfe) && (lh2->v && !lh2->kfe)) { if (!knife_verts_edge_in_face(lh1->v, lh2->v, f)) { return; } } kfe = new_knife_edge(kcd); kfe->is_cut = true; kfe->basef = f; if (lh1->v) { kfe->v1 = lh1->v; } else if (lh1->kfe) { kfe->v1 = knife_split_edge(kcd, lh1->kfe, lh1->hit, lh1->cagehit, &kfe2); lh1->v = kfe->v1; /* record the KnifeVert for this hit */ } else { BLI_assert(lh1->f); kfe->v1 = new_knife_vert(kcd, lh1->hit, lh1->cagehit); kfe->v1->is_cut = true; kfe->v1->is_face = true; knife_append_list(kcd, &kfe->v1->faces, lh1->f); lh1->v = kfe->v1; /* record the KnifeVert for this hit */ } if (lh2->v) { kfe->v2 = lh2->v; } else if (lh2->kfe) { kfe->v2 = knife_split_edge(kcd, lh2->kfe, lh2->hit, lh2->cagehit, &kfe2); lh2->v = kfe->v2; /* future uses of lh2 won't split again */ } else { BLI_assert(lh2->f); kfe->v2 = new_knife_vert(kcd, lh2->hit, lh2->cagehit); kfe->v2->is_cut = true; kfe->v2->is_face = true; knife_append_list(kcd, &kfe->v2->faces, lh2->f); lh2->v = kfe->v2; /* record the KnifeVert for this hit */ } knife_add_to_vert_edges(kcd, kfe); /* TODO: check if this is ever needed */ if (kfe->basef && !find_ref(&kfe->faces, kfe->basef)) knife_edge_append_face(kcd, kfe, kfe->basef); } /* Given a list of KnifeLineHits for one face, sorted by l * and then by m, make the required KnifeVerts and * KnifeEdges. */ static void knife_cut_face(KnifeTool_OpData *kcd, BMFace *f, ListBase *hits) { Ref *r; if (BLI_listbase_count_at_most(hits, 2) != 2) return; for (r = hits->first; r->next; r = r->next) { knife_add_single_cut(kcd, r->ref, r->next->ref, f); } } /* User has just left-clicked after the first time. * Add all knife cuts implied by line from prev to curr. * If that line crossed edges then kcd->linehits will be non-NULL. * Make all of the KnifeVerts and KnifeEdges implied by this cut. */ static void knife_add_cut(KnifeTool_OpData *kcd) { int i; GHash *facehits; BMFace *f; Ref *r; GHashIterator giter; ListBase *lst; prepare_linehits_for_cut(kcd); if (kcd->totlinehit == 0) { if (kcd->is_drag_hold == false) { kcd->prev = kcd->curr; } return; } /* make facehits: map face -> list of linehits touching it */ facehits = BLI_ghash_ptr_new("knife facehits"); for (i = 0; i < kcd->totlinehit; i++) { KnifeLineHit *lh = &kcd->linehits[i]; if (lh->f) { add_hit_to_facehits(kcd, facehits, lh->f, lh); } if (lh->v) { for (r = lh->v->faces.first; r; r = r->next) { add_hit_to_facehits(kcd, facehits, r->ref, lh); } } if (lh->kfe) { for (r = lh->kfe->faces.first; r; r = r->next) { add_hit_to_facehits(kcd, facehits, r->ref, lh); } } } /* Note: as following loop progresses, the 'v' fields of * the linehits will be filled in (as edges are split or * in-face verts are made), so it may be true that both * the v and the kfe or f fields will be non-NULL. */ GHASH_ITER (giter, facehits) { f = (BMFace *)BLI_ghashIterator_getKey(&giter); lst = (ListBase *)BLI_ghashIterator_getValue(&giter); knife_cut_face(kcd, f, lst); } /* set up for next cut */ kcd->prev = kcd->curr; if (kcd->prev.bmface) { /* was "in face" but now we have a KnifeVert it is snapped to */ KnifeLineHit *lh = &kcd->linehits[kcd->totlinehit - 1]; kcd->prev.vert = lh->v; kcd->prev.bmface = NULL; } if (kcd->is_drag_hold) { KnifeLineHit *lh = &kcd->linehits[kcd->totlinehit - 1]; linehit_to_knifepos(&kcd->prev, lh); } BLI_ghash_free(facehits, NULL, NULL); MEM_freeN(kcd->linehits); kcd->linehits = NULL; kcd->totlinehit = 0; } static void knife_finish_cut(KnifeTool_OpData *kcd) { if (kcd->linehits) { MEM_freeN(kcd->linehits); kcd->linehits = NULL; kcd->totlinehit = 0; } } static void knifetool_draw_angle_snapping(const KnifeTool_OpData *kcd) { float v1[3], v2[3]; float planes[4][4]; planes_from_projmat( (float (*)[4])kcd->projmat, planes[2], planes[0], planes[3], planes[1], NULL, NULL); /* ray-cast all planes */ { float ray_dir[3]; float ray_hit_best[2][3] = {{UNPACK3(kcd->prev.cage)}, {UNPACK3(kcd->curr.cage)}}; float lambda_best[2] = {-FLT_MAX, FLT_MAX}; int i; /* we (sometimes) need the lines to be at the same depth before projecting */ #if 0 sub_v3_v3v3(ray_dir, kcd->curr.cage, kcd->prev.cage); #else { float curr_cage_adjust[3]; float co_depth[3]; copy_v3_v3(co_depth, kcd->prev.cage); mul_m4_v3(kcd->ob->obmat, co_depth); ED_view3d_win_to_3d(kcd->vc.v3d, kcd->ar, co_depth, kcd->curr.mval, curr_cage_adjust); mul_m4_v3(kcd->ob->imat, curr_cage_adjust); sub_v3_v3v3(ray_dir, curr_cage_adjust, kcd->prev.cage); } #endif for (i = 0; i < 4; i++) { float ray_hit[3]; float lambda_test; if (isect_ray_plane_v3(kcd->prev.cage, ray_dir, planes[i], &lambda_test, false)) { madd_v3_v3v3fl(ray_hit, kcd->prev.cage, ray_dir, lambda_test); if (lambda_test < 0.0f) { if (lambda_test > lambda_best[0]) { copy_v3_v3(ray_hit_best[0], ray_hit); lambda_best[0] = lambda_test; } } else { if (lambda_test < lambda_best[1]) { copy_v3_v3(ray_hit_best[1], ray_hit); lambda_best[1] = lambda_test; } } } } copy_v3_v3(v1, ray_hit_best[0]); copy_v3_v3(v2, ray_hit_best[1]); } uint pos = GWN_vertformat_attr_add(immVertexFormat(), "pos", GWN_COMP_F32, 3, GWN_FETCH_FLOAT); immBindBuiltinProgram(GPU_SHADER_3D_UNIFORM_COLOR); immUniformThemeColor(TH_TRANSFORM); GPU_line_width(2.0); immBegin(GWN_PRIM_LINES, 2); immVertex3fv(pos, v1); immVertex3fv(pos, v2); immEnd(); immUnbindProgram(); } static void knife_init_colors(KnifeColors *colors) { /* possible BMESH_TODO: add explicit themes or calculate these by * figuring out contrasting colors with grid / edges / verts * a la UI_make_axis_color */ UI_GetThemeColor3ubv(TH_NURB_VLINE, colors->line); UI_GetThemeColor3ubv(TH_NURB_ULINE, colors->edge); UI_GetThemeColor3ubv(TH_HANDLE_SEL_VECT, colors->curpoint); UI_GetThemeColor3ubv(TH_HANDLE_SEL_VECT, colors->curpoint_a); colors->curpoint_a[3] = 102; UI_GetThemeColor3ubv(TH_ACTIVE_SPLINE, colors->point); UI_GetThemeColor3ubv(TH_ACTIVE_SPLINE, colors->point_a); colors->point_a[3] = 102; } /* modal loop selection drawing callback */ static void knifetool_draw(const bContext *UNUSED(C), ARegion *UNUSED(ar), void *arg) { const KnifeTool_OpData *kcd = arg; GPU_depth_test(false); glPolygonOffset(1.0f, 1.0f); gpuPushMatrix(); gpuMultMatrix(kcd->ob->obmat); uint pos = GWN_vertformat_attr_add(immVertexFormat(), "pos", GWN_COMP_F32, 3, GWN_FETCH_FLOAT); immBindBuiltinProgram(GPU_SHADER_3D_UNIFORM_COLOR); if (kcd->mode == MODE_DRAGGING) { if (kcd->is_angle_snapping) knifetool_draw_angle_snapping(kcd); immUniformColor3ubv(kcd->colors.line); GPU_line_width(2.0); immBegin(GWN_PRIM_LINES, 2); immVertex3fv(pos, kcd->prev.cage); immVertex3fv(pos, kcd->curr.cage); immEnd(); } if (kcd->prev.vert) { immUniformColor3ubv(kcd->colors.point); GPU_point_size(11); immBegin(GWN_PRIM_POINTS, 1); immVertex3fv(pos, kcd->prev.cage); immEnd(); } if (kcd->prev.bmface) { immUniformColor3ubv(kcd->colors.curpoint); GPU_point_size(9); immBegin(GWN_PRIM_POINTS, 1); immVertex3fv(pos, kcd->prev.cage); immEnd(); } if (kcd->curr.edge) { immUniformColor3ubv(kcd->colors.edge); GPU_line_width(2.0); immBegin(GWN_PRIM_LINES, 2); immVertex3fv(pos, kcd->curr.edge->v1->cageco); immVertex3fv(pos, kcd->curr.edge->v2->cageco); immEnd(); } else if (kcd->curr.vert) { immUniformColor3ubv(kcd->colors.point); GPU_point_size(11); immBegin(GWN_PRIM_POINTS, 1); immVertex3fv(pos, kcd->curr.cage); immEnd(); } if (kcd->curr.bmface) { immUniformColor3ubv(kcd->colors.curpoint); GPU_point_size(9); immBegin(GWN_PRIM_POINTS, 1); immVertex3fv(pos, kcd->curr.cage); immEnd(); } if (kcd->totlinehit > 0) { KnifeLineHit *lh; int i; GPU_blend(true); GPU_blend_set_func_separate(GPU_SRC_ALPHA, GPU_ONE_MINUS_SRC_ALPHA, GPU_ONE, GPU_ONE_MINUS_SRC_ALPHA); /* draw any snapped verts first */ immUniformColor4ubv(kcd->colors.point_a); GPU_point_size(11); immBeginAtMost(GWN_PRIM_POINTS, kcd->totlinehit); lh = kcd->linehits; for (i = 0; i < kcd->totlinehit; i++, lh++) { if (lh->v) { immVertex3fv(pos, lh->cagehit); } } immEnd(); /* now draw the rest */ immUniformColor4ubv(kcd->colors.curpoint_a); GPU_point_size(7); immBeginAtMost(GWN_PRIM_POINTS, kcd->totlinehit); lh = kcd->linehits; for (i = 0; i < kcd->totlinehit; i++, lh++) { if (!lh->v) { immVertex3fv(pos, lh->cagehit); } } immEnd(); GPU_blend(false); } if (kcd->totkedge > 0) { BLI_mempool_iter iter; KnifeEdge *kfe; immUniformColor3ubv(kcd->colors.line); GPU_line_width(1.0); immBeginAtMost(GWN_PRIM_LINES, BLI_mempool_len(kcd->kedges) * 2); BLI_mempool_iternew(kcd->kedges, &iter); for (kfe = BLI_mempool_iterstep(&iter); kfe; kfe = BLI_mempool_iterstep(&iter)) { if (!kfe->is_cut) continue; immVertex3fv(pos, kfe->v1->cageco); immVertex3fv(pos, kfe->v2->cageco); } immEnd(); } if (kcd->totkvert > 0) { BLI_mempool_iter iter; KnifeVert *kfv; immUniformColor3ubv(kcd->colors.point); GPU_point_size(5.0); immBeginAtMost(GWN_PRIM_POINTS, BLI_mempool_len(kcd->kverts)); BLI_mempool_iternew(kcd->kverts, &iter); for (kfv = BLI_mempool_iterstep(&iter); kfv; kfv = BLI_mempool_iterstep(&iter)) { if (!kfv->is_cut) continue; immVertex3fv(pos, kfv->cageco); } immEnd(); } immUnbindProgram(); gpuPopMatrix(); /* Reset default */ GPU_depth_test(true); } /** * Find intersection of v1-v2 with face f. * Only take intersections that are at least \a face_tol_sq (in screen space) away * from other intersection elements. * If v1-v2 is coplanar with f, call that "no intersection though * it really means "infinite number of intersections". * In such a case we should have gotten hits on edges or verts of the face. */ static bool knife_ray_intersect_face( KnifeTool_OpData *kcd, const float s[2], const float v1[3], const float v2[3], BMFace *f, const float face_tol_sq, float hit_co[3], float hit_cageco[3]) { int tottri, tri_i; float raydir[3]; float tri_norm[3], tri_plane[4]; float se1[2], se2[2]; float d, lambda; BMLoop **tri; ListBase *lst; Ref *ref; KnifeEdge *kfe; sub_v3_v3v3(raydir, v2, v1); normalize_v3(raydir); tri_i = get_lowest_face_tri(kcd, f); tottri = kcd->em->tottri; BLI_assert(tri_i >= 0 && tri_i < tottri); for (; tri_i < tottri; tri_i++) { const float *lv1, *lv2, *lv3; float ray_tri_uv[2]; tri = kcd->em->looptris[tri_i]; if (tri[0]->f != f) break; lv1 = kcd->cagecos[BM_elem_index_get(tri[0]->v)]; lv2 = kcd->cagecos[BM_elem_index_get(tri[1]->v)]; lv3 = kcd->cagecos[BM_elem_index_get(tri[2]->v)]; /* using epsilon test in case ray is directly through an internal * tesselation edge and might not hit either tesselation tri with * an exact test; * we will exclude hits near real edges by a later test */ if (isect_ray_tri_epsilon_v3(v1, raydir, lv1, lv2, lv3, &lambda, ray_tri_uv, KNIFE_FLT_EPS)) { /* check if line coplanar with tri */ normal_tri_v3(tri_norm, lv1, lv2, lv3); plane_from_point_normal_v3(tri_plane, lv1, tri_norm); if ((dist_squared_to_plane_v3(v1, tri_plane) < KNIFE_FLT_EPS) && (dist_squared_to_plane_v3(v2, tri_plane) < KNIFE_FLT_EPS)) { return false; } interp_v3_v3v3v3_uv(hit_cageco, lv1, lv2, lv3, ray_tri_uv); /* Now check that far enough away from verts and edges */ lst = knife_get_face_kedges(kcd, f); for (ref = lst->first; ref; ref = ref->next) { kfe = ref->ref; knife_project_v2(kcd, kfe->v1->cageco, se1); knife_project_v2(kcd, kfe->v2->cageco, se2); d = dist_squared_to_line_segment_v2(s, se1, se2); if (d < face_tol_sq) { return false; } } interp_v3_v3v3v3_uv(hit_co, tri[0]->v->co, tri[1]->v->co, tri[2]->v->co, ray_tri_uv); return true; } } return false; } /** * Calculate the center and maximum excursion of mesh. */ static void calc_ortho_extent(KnifeTool_OpData *kcd) { BMIter iter; BMVert *v; BMesh *bm = kcd->em->bm; float min[3], max[3]; INIT_MINMAX(min, max); if (kcd->cagecos) { minmax_v3v3_v3_array(min, max, kcd->cagecos, bm->totvert); } else { BM_ITER_MESH (v, &iter, bm, BM_VERTS_OF_MESH) { minmax_v3v3_v3(min, max, v->co); } } kcd->ortho_extent = len_v3v3(min, max) / 2; mid_v3_v3v3(kcd->ortho_extent_center, min, max); } static BMElem *bm_elem_from_knife_vert(KnifeVert *kfv, KnifeEdge **r_kfe) { BMElem *ele_test; KnifeEdge *kfe = NULL; /* vert? */ ele_test = (BMElem *)kfv->v; if (r_kfe || ele_test == NULL) { if (kfv->v == NULL) { Ref *ref; for (ref = kfv->edges.first; ref; ref = ref->next) { kfe = ref->ref; if (kfe->e) { if (r_kfe) { *r_kfe = kfe; } break; } } } } /* edge? */ if (ele_test == NULL) { if (kfe) { ele_test = (BMElem *)kfe->e; } } /* face? */ if (ele_test == NULL) { if (BLI_listbase_is_single(&kfe->faces)) { ele_test = ((Ref *)kfe->faces.first)->ref; } } return ele_test; } static BMElem *bm_elem_from_knife_edge(KnifeEdge *kfe) { BMElem *ele_test; ele_test = (BMElem *)kfe->e; if (ele_test == NULL) { ele_test = (BMElem *)kfe->basef; } return ele_test; } /* Do edges e1 and e2 go between exactly the same coordinates? */ static bool coinciding_edges(BMEdge *e1, BMEdge *e2) { const float *co11, *co12, *co21, *co22; co11 = e1->v1->co; co12 = e1->v2->co; co21 = e2->v1->co; co22 = e2->v2->co; if ((equals_v3v3(co11, co21) && equals_v3v3(co12, co22)) || (equals_v3v3(co11, co22) && equals_v3v3(co12, co21))) { return true; } else { return false; } } /* Callback used in point_is_visible to exclude hits on the faces that are the same * as or contain the hitting element (which is in user_data). * Also (see T44492) want to exclude hits on faces that butt up to the hitting element * (e.g., when you double an edge by an edge split). */ static bool bm_ray_cast_cb_elem_not_in_face_check(BMFace *f, void *user_data) { bool ans; BMEdge *e, *e2; BMIter iter; switch (((BMElem *)user_data)->head.htype) { case BM_FACE: ans = (BMFace *)user_data != f; break; case BM_EDGE: e = (BMEdge *)user_data; ans = !BM_edge_in_face(e, f); if (ans) { /* Is it a boundary edge, coincident with a split edge? */ if (BM_edge_is_boundary(e)) { BM_ITER_ELEM(e2, &iter, f, BM_EDGES_OF_FACE) { if (coinciding_edges(e, e2)) { ans = false; break; } } } } break; case BM_VERT: ans = !BM_vert_in_face((BMVert *)user_data, f); break; default: ans = true; break; } return ans; } /** * Check if \a p is visible (not clipped, not occluded by another face). * s in screen projection of p. * * \param ele_test Optional vert/edge/face to use when \a p is on the surface of the geometry, * intersecting faces matching this face (or connected when an vert/edge) will be ignored. */ static bool point_is_visible( KnifeTool_OpData *kcd, const float p[3], const float s[2], BMElem *ele_test) { BMFace *f_hit; /* If box clipping on, make sure p is not clipped */ if (kcd->vc.rv3d->rflag & RV3D_CLIPPING && ED_view3d_clipping_test(kcd->vc.rv3d, p, true)) { return false; } /* If not cutting through, make sure no face is in front of p */ if (!kcd->cut_through) { float dist; float view[3], p_ofs[3]; /* TODO: I think there's a simpler way to get the required raycast ray */ ED_view3d_unproject(kcd->vc.ar, s[0], s[1], 0.0f, view); mul_m4_v3(kcd->ob->imat, view); /* make p_ofs a little towards view, so ray doesn't hit p's face. */ sub_v3_v3(view, p); dist = normalize_v3(view); copy_v3_v3(p_ofs, p); /* avoid projecting behind the viewpoint */ if (kcd->is_ortho && (kcd->vc.rv3d->persp != RV3D_CAMOB)) { dist = kcd->vc.v3d->far * 2.0f; } if (kcd->vc.rv3d->rflag & RV3D_CLIPPING) { float view_clip[2][3]; /* note: view_clip[0] should never get clipped */ copy_v3_v3(view_clip[0], p_ofs); madd_v3_v3v3fl(view_clip[1], p_ofs, view, dist); if (clip_segment_v3_plane_n( view_clip[0], view_clip[1], kcd->vc.rv3d->clip_local, 6, view_clip[0], view_clip[1])) { dist = len_v3v3(p_ofs, view_clip[1]); } } /* see if there's a face hit between p1 and the view */ if (ele_test) { f_hit = BKE_bmbvh_ray_cast_filter( kcd->bmbvh, p_ofs, view, KNIFE_FLT_EPS, &dist, NULL, NULL, bm_ray_cast_cb_elem_not_in_face_check, ele_test); } else { f_hit = BKE_bmbvh_ray_cast( kcd->bmbvh, p_ofs, view, KNIFE_FLT_EPS, &dist, NULL, NULL); } if (f_hit) { return false; } } return true; } /* Clip the line (v1, v2) to planes perpendicular to it and distances d from * the closest point on the line to the origin */ static void clip_to_ortho_planes(float v1[3], float v2[3], const float center[3], const float d) { float closest[3], dir[3]; sub_v3_v3v3(dir, v1, v2); normalize_v3(dir); /* could be v1 or v2 */ sub_v3_v3(v1, center); project_plane_normalized_v3_v3v3(closest, v1, dir); add_v3_v3(closest, center); madd_v3_v3v3fl(v1, closest, dir, d); madd_v3_v3v3fl(v2, closest, dir, -d); } static void set_linehit_depth(KnifeTool_OpData *kcd, KnifeLineHit *lh) { lh->m = dot_m4_v3_row_z(kcd->vc.rv3d->persmatob, lh->cagehit); } /* Finds visible (or all, if cutting through) edges that intersects the current screen drag line */ static void knife_find_line_hits(KnifeTool_OpData *kcd) { SmallHash faces, kfes, kfvs; float v1[3], v2[3], v3[3], v4[3], s1[2], s2[2]; BVHTree *planetree, *tree; BVHTreeOverlap *results, *result; BMLoop **ls; BMFace *f; KnifeEdge *kfe; KnifeVert *v; ListBase *lst; Ref *ref; KnifeLineHit *linehits = NULL; BLI_array_declare(linehits); SmallHashIter hiter; KnifeLineHit hit; void *val; void **val_p; float plane_cos[12]; float s[2], se1[2], se2[2], sint[2]; float r1[3], r2[3]; float d, d1, d2, lambda; float vert_tol, vert_tol_sq; float line_tol, line_tol_sq; float face_tol, face_tol_sq; int isect_kind; unsigned int tot; int i; const bool use_hit_prev = true; const bool use_hit_curr = (kcd->is_drag_hold == false); if (kcd->linehits) { MEM_freeN(kcd->linehits); kcd->linehits = NULL; kcd->totlinehit = 0; } copy_v3_v3(v1, kcd->prev.cage); copy_v3_v3(v2, kcd->curr.cage); /* project screen line's 3d coordinates back into 2d */ knife_project_v2(kcd, v1, s1); knife_project_v2(kcd, v2, s2); if (kcd->is_interactive) { if (len_squared_v2v2(s1, s2) < 1.0f) { return; } } else { if (len_squared_v2v2(s1, s2) < KNIFE_FLT_EPS_SQUARED) { return; } } /* unproject screen line */ ED_view3d_win_to_segment(kcd->vc.depsgraph, kcd->ar, kcd->vc.v3d, s1, v1, v3, true); ED_view3d_win_to_segment(kcd->vc.depsgraph, kcd->ar, kcd->vc.v3d, s2, v2, v4, true); mul_m4_v3(kcd->ob->imat, v1); mul_m4_v3(kcd->ob->imat, v2); mul_m4_v3(kcd->ob->imat, v3); mul_m4_v3(kcd->ob->imat, v4); /* numeric error, 'v1' -> 'v2', 'v2' -> 'v4' can end up being ~2000 units apart in otho mode * (from ED_view3d_win_to_segment_clip() above) * this gives precision error; rather then solving properly * (which may involve using doubles everywhere!), * limit the distance between these points */ if (kcd->is_ortho && (kcd->vc.rv3d->persp != RV3D_CAMOB)) { if (kcd->ortho_extent == 0.0f) calc_ortho_extent(kcd); clip_to_ortho_planes(v1, v3, kcd->ortho_extent_center, kcd->ortho_extent + 10.0f); clip_to_ortho_planes(v2, v4, kcd->ortho_extent_center, kcd->ortho_extent + 10.0f); } /* First use bvh tree to find faces, knife edges, and knife verts that might * intersect the cut plane with rays v1-v3 and v2-v4. * This deduplicates the candidates before doing more expensive intersection tests. */ tree = BKE_bmbvh_tree_get(kcd->bmbvh); planetree = BLI_bvhtree_new(4, FLT_EPSILON * 4, 8, 8); copy_v3_v3(plane_cos + 0, v1); copy_v3_v3(plane_cos + 3, v2); copy_v3_v3(plane_cos + 6, v3); copy_v3_v3(plane_cos + 9, v4); BLI_bvhtree_insert(planetree, 0, plane_cos, 4); BLI_bvhtree_balance(planetree); results = BLI_bvhtree_overlap(tree, planetree, &tot, NULL, NULL); if (!results) { BLI_bvhtree_free(planetree); return; } BLI_smallhash_init(&faces); BLI_smallhash_init(&kfes); BLI_smallhash_init(&kfvs); for (i = 0, result = results; i < tot; i++, result++) { ls = (BMLoop **)kcd->em->looptris[result->indexA]; f = ls[0]->f; set_lowest_face_tri(kcd, f, result->indexA); /* occlude but never cut unselected faces (when only_select is used) */ if (kcd->only_select && !BM_elem_flag_test(f, BM_ELEM_SELECT)) { continue; } /* for faces, store index of lowest hit looptri in hash */ if (BLI_smallhash_haskey(&faces, (uintptr_t)f)) { continue; } /* don't care what the value is except that it is non-NULL, for iterator */ BLI_smallhash_insert(&faces, (uintptr_t)f, f); lst = knife_get_face_kedges(kcd, f); for (ref = lst->first; ref; ref = ref->next) { kfe = ref->ref; if (BLI_smallhash_haskey(&kfes, (uintptr_t)kfe)) continue; BLI_smallhash_insert(&kfes, (uintptr_t)kfe, kfe); v = kfe->v1; BLI_smallhash_reinsert(&kfvs, (uintptr_t)v, v); v = kfe->v2; BLI_smallhash_reinsert(&kfvs, (uintptr_t)v, v); } } /* Now go through the candidates and find intersections */ /* These tolerances, in screen space, are for intermediate hits, as ends are already snapped to screen */ if (kcd->is_interactive) { vert_tol = KNIFE_FLT_EPS_PX_VERT; line_tol = KNIFE_FLT_EPS_PX_EDGE; face_tol = KNIFE_FLT_EPS_PX_FACE; } else { /* Use 1/100th of a pixel, see T43896 (too big), T47910 (too small). * * Update, leave this as is until we investigate not using pixel coords for geometry calculations: T48023 */ vert_tol = line_tol = face_tol = 0.5f; } vert_tol_sq = vert_tol * vert_tol; line_tol_sq = line_tol * line_tol; face_tol_sq = face_tol * face_tol; /* Assume these tolerances swamp floating point rounding errors in calculations below */ /* first look for vertex hits */ for (val_p = BLI_smallhash_iternew_p(&kfvs, &hiter, (uintptr_t *)&v); val_p; val_p = BLI_smallhash_iternext_p(&hiter, (uintptr_t *)&v)) { KnifeEdge *kfe_hit = NULL; knife_project_v2(kcd, v->cageco, s); d = dist_squared_to_line_segment_v2(s, s1, s2); if ((d <= vert_tol_sq) && (point_is_visible(kcd, v->cageco, s, bm_elem_from_knife_vert(v, &kfe_hit)))) { memset(&hit, 0, sizeof(hit)); hit.v = v; /* If this isn't from an existing BMVert, it may have been added to a BMEdge originally. * knowing if the hit comes from an edge is important for edge-in-face checks later on * see: #knife_add_single_cut -> #knife_verts_edge_in_face, T42611 */ if (kfe_hit) { hit.kfe = kfe_hit; } copy_v3_v3(hit.hit, v->co); copy_v3_v3(hit.cagehit, v->cageco); copy_v2_v2(hit.schit, s); set_linehit_depth(kcd, &hit); BLI_array_append(linehits, hit); } else { /* note that these vertes aren't used */ *val_p = NULL; } } /* now edge hits; don't add if a vertex at end of edge should have hit */ for (val = BLI_smallhash_iternew(&kfes, &hiter, (uintptr_t *)&kfe); val; val = BLI_smallhash_iternext(&hiter, (uintptr_t *)&kfe)) { int kfe_verts_in_cut; /* if we intersect both verts, don't attempt to intersect the edge */ kfe_verts_in_cut = (BLI_smallhash_lookup(&kfvs, (intptr_t)kfe->v1) != NULL) + (BLI_smallhash_lookup(&kfvs, (intptr_t)kfe->v2) != NULL); if (kfe_verts_in_cut == 2) { continue; } knife_project_v2(kcd, kfe->v1->cageco, se1); knife_project_v2(kcd, kfe->v2->cageco, se2); isect_kind = (kfe_verts_in_cut) ? -1 : isect_seg_seg_v2_point(s1, s2, se1, se2, sint); if (isect_kind == -1) { /* isect_seg_seg_v2_simple doesn't do tolerance test around ends of s1-s2 */ closest_to_line_segment_v2(sint, s1, se1, se2); if (len_squared_v2v2(sint, s1) <= line_tol_sq) isect_kind = 1; else { closest_to_line_segment_v2(sint, s2, se1, se2); if (len_squared_v2v2(sint, s2) <= line_tol_sq) isect_kind = 1; } } if (isect_kind == 1) { d1 = len_v2v2(sint, se1); d2 = len_v2v2(se2, se1); if (!(d1 <= line_tol || d2 <= line_tol || fabsf(d1 - d2) <= line_tol)) { float p_cage[3], p_cage_tmp[3]; lambda = d1 / d2; /* Can't just interpolate between ends of kfe because * that doesn't work with perspective transformation. * Need to find 3d intersection of ray through sint */ knife_input_ray_segment(kcd, sint, 1.0f, r1, r2); isect_kind = isect_line_line_v3(kfe->v1->cageco, kfe->v2->cageco, r1, r2, p_cage, p_cage_tmp); if (isect_kind >= 1 && point_is_visible(kcd, p_cage, sint, bm_elem_from_knife_edge(kfe))) { memset(&hit, 0, sizeof(hit)); if (kcd->snap_midpoints) { /* choose intermediate point snap too */ mid_v3_v3v3(p_cage, kfe->v1->cageco, kfe->v2->cageco); mid_v2_v2v2(sint, se1, se2); lambda = 0.5f; } hit.kfe = kfe; transform_point_by_seg_v3( hit.hit, p_cage, kfe->v1->co, kfe->v2->co, kfe->v1->cageco, kfe->v2->cageco); copy_v3_v3(hit.cagehit, p_cage); copy_v2_v2(hit.schit, sint); hit.perc = lambda; set_linehit_depth(kcd, &hit); BLI_array_append(linehits, hit); } } } } /* now face hits; don't add if a vertex or edge in face should have hit */ for (val = BLI_smallhash_iternew(&faces, &hiter, (uintptr_t *)&f); val; val = BLI_smallhash_iternext(&hiter, (uintptr_t *)&f)) { float p[3], p_cage[3]; if (use_hit_prev && knife_ray_intersect_face(kcd, s1, v1, v3, f, face_tol_sq, p, p_cage)) { if (point_is_visible(kcd, p_cage, s1, (BMElem *)f)) { memset(&hit, 0, sizeof(hit)); hit.f = f; copy_v3_v3(hit.hit, p); copy_v3_v3(hit.cagehit, p_cage); copy_v2_v2(hit.schit, s1); set_linehit_depth(kcd, &hit); BLI_array_append(linehits, hit); } } if (use_hit_curr && knife_ray_intersect_face(kcd, s2, v2, v4, f, face_tol_sq, p, p_cage)) { if (point_is_visible(kcd, p_cage, s2, (BMElem *)f)) { memset(&hit, 0, sizeof(hit)); hit.f = f; copy_v3_v3(hit.hit, p); copy_v3_v3(hit.cagehit, p_cage); copy_v2_v2(hit.schit, s2); set_linehit_depth(kcd, &hit); BLI_array_append(linehits, hit); } } } kcd->linehits = linehits; kcd->totlinehit = BLI_array_len(linehits); /* find position along screen line, used for sorting */ for (i = 0; i < kcd->totlinehit; i++) { KnifeLineHit *lh = kcd->linehits + i; lh->l = len_v2v2(lh->schit, s1) / len_v2v2(s2, s1); } BLI_smallhash_release(&faces); BLI_smallhash_release(&kfes); BLI_smallhash_release(&kfvs); BLI_bvhtree_free(planetree); if (results) MEM_freeN(results); } static void knife_input_ray_segment(KnifeTool_OpData *kcd, const float mval[2], const float ofs, float r_origin[3], float r_origin_ofs[3]) { /* unproject to find view ray */ ED_view3d_unproject(kcd->vc.ar, mval[0], mval[1], 0.0f, r_origin); ED_view3d_unproject(kcd->vc.ar, mval[0], mval[1], ofs, r_origin_ofs); /* transform into object space */ invert_m4_m4(kcd->ob->imat, kcd->ob->obmat); mul_m4_v3(kcd->ob->imat, r_origin); mul_m4_v3(kcd->ob->imat, r_origin_ofs); } static BMFace *knife_find_closest_face(KnifeTool_OpData *kcd, float co[3], float cageco[3], bool *is_space) { BMFace *f; float dist = KMAXDIST; float origin[3]; float origin_ofs[3]; float ray[3], ray_normal[3]; /* unproject to find view ray */ knife_input_ray_segment(kcd, kcd->curr.mval, 1.0f, origin, origin_ofs); sub_v3_v3v3(ray, origin_ofs, origin); normalize_v3_v3(ray_normal, ray); f = BKE_bmbvh_ray_cast(kcd->bmbvh, origin, ray_normal, 0.0f, NULL, co, cageco); if (f && kcd->only_select && BM_elem_flag_test(f, BM_ELEM_SELECT) == 0) { f = NULL; } if (is_space) *is_space = !f; if (!f) { if (kcd->is_interactive) { /* try to use backbuffer selection method if ray casting failed */ f = EDBM_face_find_nearest(&kcd->vc, &dist); /* cheat for now; just put in the origin instead * of a true coordinate on the face. * This just puts a point 1.0f infront of the view. */ add_v3_v3v3(co, origin, ray); } } return f; } /* find the 2d screen space density of vertices within a radius. used to scale snapping * distance for picking edges/verts.*/ static int knife_sample_screen_density(KnifeTool_OpData *kcd, const float radius) { BMFace *f; bool is_space; float co[3], cageco[3], sco[2]; BLI_assert(kcd->is_interactive == true); f = knife_find_closest_face(kcd, co, cageco, &is_space); if (f && !is_space) { const float radius_sq = radius * radius; ListBase *lst; Ref *ref; float dis_sq; int c = 0; knife_project_v2(kcd, cageco, sco); lst = knife_get_face_kedges(kcd, f); for (ref = lst->first; ref; ref = ref->next) { KnifeEdge *kfe = ref->ref; int i; for (i = 0; i < 2; i++) { KnifeVert *kfv = i ? kfe->v2 : kfe->v1; knife_project_v2(kcd, kfv->cageco, kfv->sco); dis_sq = len_squared_v2v2(kfv->sco, sco); if (dis_sq < radius_sq) { if (kcd->vc.rv3d->rflag & RV3D_CLIPPING) { if (ED_view3d_clipping_test(kcd->vc.rv3d, kfv->cageco, true) == 0) { c++; } } else { c++; } } } } return c; } return 0; } /* returns snapping distance for edges/verts, scaled by the density of the * surrounding mesh (in screen space)*/ static float knife_snap_size(KnifeTool_OpData *kcd, float maxsize) { float density = (float)knife_sample_screen_density(kcd, maxsize * 2.0f); return min_ff(maxsize / (density * 0.5f), maxsize); } /* p is closest point on edge to the mouse cursor */ static KnifeEdge *knife_find_closest_edge(KnifeTool_OpData *kcd, float p[3], float cagep[3], BMFace **fptr, bool *is_space) { BMFace *f; float co[3], cageco[3], sco[2]; float maxdist; if (kcd->is_interactive) { maxdist = knife_snap_size(kcd, kcd->ethresh); if (kcd->ignore_vert_snapping) { maxdist *= 0.5f; } } else { maxdist = KNIFE_FLT_EPS; } f = knife_find_closest_face(kcd, co, cageco, NULL); *is_space = !f; kcd->curr.bmface = f; if (f) { const float maxdist_sq = maxdist * maxdist; KnifeEdge *cure = NULL; float cur_cagep[3]; ListBase *lst; Ref *ref; float dis_sq, curdis_sq = FLT_MAX; /* set p to co, in case we don't find anything, means a face cut */ copy_v3_v3(p, co); copy_v3_v3(cagep, cageco); knife_project_v2(kcd, cageco, sco); /* look through all edges associated with this face */ lst = knife_get_face_kedges(kcd, f); for (ref = lst->first; ref; ref = ref->next) { KnifeEdge *kfe = ref->ref; float test_cagep[3]; float lambda; /* project edge vertices into screen space */ knife_project_v2(kcd, kfe->v1->cageco, kfe->v1->sco); knife_project_v2(kcd, kfe->v2->cageco, kfe->v2->sco); /* check if we're close enough and calculate 'lambda' */ if (kcd->is_angle_snapping) { /* if snapping, check we're in bounds */ float sco_snap[2]; isect_line_line_v2_point(kfe->v1->sco, kfe->v2->sco, kcd->prev.mval, kcd->curr.mval, sco_snap); lambda = line_point_factor_v2(sco_snap, kfe->v1->sco, kfe->v2->sco); /* be strict about angle-snapping within edge */ if ((lambda < 0.0f - KNIFE_FLT_EPSBIG) || (lambda > 1.0f + KNIFE_FLT_EPSBIG)) { continue; } dis_sq = len_squared_v2v2(sco, sco_snap); if (dis_sq < curdis_sq && dis_sq < maxdist_sq) { /* we already have 'lambda' */ } else { continue; } } else { dis_sq = dist_squared_to_line_segment_v2(sco, kfe->v1->sco, kfe->v2->sco); if (dis_sq < curdis_sq && dis_sq < maxdist_sq) { lambda = line_point_factor_v2(sco, kfe->v1->sco, kfe->v2->sco); } else { continue; } } /* now we have 'lambda' calculated (in screen-space) */ knife_interp_v3_v3v3(kcd, test_cagep, kfe->v1->cageco, kfe->v2->cageco, lambda); if (kcd->vc.rv3d->rflag & RV3D_CLIPPING) { /* check we're in the view */ if (ED_view3d_clipping_test(kcd->vc.rv3d, test_cagep, true)) { continue; } } cure = kfe; curdis_sq = dis_sq; copy_v3_v3(cur_cagep, test_cagep); } if (fptr) *fptr = f; if (cure) { if (!kcd->ignore_edge_snapping || !(cure->e)) { KnifeVert *edgesnap = NULL; if (kcd->snap_midpoints) { mid_v3_v3v3(p, cure->v1->co, cure->v2->co); mid_v3_v3v3(cagep, cure->v1->cageco, cure->v2->cageco); } else { float lambda = line_point_factor_v3(cur_cagep, cure->v1->cageco, cure->v2->cageco); copy_v3_v3(cagep, cur_cagep); interp_v3_v3v3(p, cure->v1->co, cure->v2->co, lambda); } /* update mouse coordinates to the snapped-to edge's screen coordinates * this is important for angle snap, which uses the previous mouse position */ edgesnap = new_knife_vert(kcd, p, cagep); kcd->curr.mval[0] = edgesnap->sco[0]; kcd->curr.mval[1] = edgesnap->sco[1]; } else { return NULL; } } return cure; } if (fptr) *fptr = NULL; return NULL; } /* find a vertex near the mouse cursor, if it exists */ static KnifeVert *knife_find_closest_vert(KnifeTool_OpData *kcd, float p[3], float cagep[3], BMFace **fptr, bool *is_space) { BMFace *f; float co[3], cageco[3], sco[2]; float maxdist; if (kcd->is_interactive) { maxdist = knife_snap_size(kcd, kcd->vthresh); if (kcd->ignore_vert_snapping) { maxdist *= 0.5f; } } else { maxdist = KNIFE_FLT_EPS; } f = knife_find_closest_face(kcd, co, cageco, is_space); kcd->curr.bmface = f; if (f) { const float maxdist_sq = maxdist * maxdist; ListBase *lst; Ref *ref; KnifeVert *curv = NULL; float dis_sq, curdis_sq = FLT_MAX; /* set p to co, in case we don't find anything, means a face cut */ copy_v3_v3(p, co); copy_v3_v3(cagep, cageco); knife_project_v2(kcd, cageco, sco); lst = knife_get_face_kedges(kcd, f); for (ref = lst->first; ref; ref = ref->next) { KnifeEdge *kfe = ref->ref; int i; for (i = 0; i < 2; i++) { KnifeVert *kfv = i ? kfe->v2 : kfe->v1; knife_project_v2(kcd, kfv->cageco, kfv->sco); /* be strict about angle snapping, the vertex needs to be very close to the angle, or we ignore */ if (kcd->is_angle_snapping) { if (dist_squared_to_line_segment_v2(kfv->sco, kcd->prev.mval, kcd->curr.mval) > KNIFE_FLT_EPSBIG) { continue; } } dis_sq = len_squared_v2v2(kfv->sco, sco); if (dis_sq < curdis_sq && dis_sq < maxdist_sq) { if (kcd->vc.rv3d->rflag & RV3D_CLIPPING) { if (ED_view3d_clipping_test(kcd->vc.rv3d, kfv->cageco, true) == 0) { curv = kfv; curdis_sq = dis_sq; } } else { curv = kfv; curdis_sq = dis_sq; } } } } if (!kcd->ignore_vert_snapping || !(curv && curv->v)) { if (fptr) *fptr = f; if (curv) { copy_v3_v3(p, curv->co); copy_v3_v3(cagep, curv->cageco); /* update mouse coordinates to the snapped-to vertex's screen coordinates * this is important for angle snap, which uses the previous mouse position */ kcd->curr.mval[0] = curv->sco[0]; kcd->curr.mval[1] = curv->sco[1]; } return curv; } else { if (fptr) *fptr = f; return NULL; } } if (fptr) *fptr = NULL; return NULL; } /** * Snaps a 2d vector to an angle, relative to \a v_ref. */ static float snap_v2_angle(float r[2], const float v[2], const float v_ref[2], float angle_snap) { float m2[2][2]; float v_unit[2]; float angle, angle_delta; BLI_ASSERT_UNIT_V2(v_ref); normalize_v2_v2(v_unit, v); angle = angle_signed_v2v2(v_unit, v_ref); angle_delta = (roundf(angle / angle_snap) * angle_snap) - angle; angle_to_mat2(m2, angle_delta); mul_v2_m2v2(r, m2, v); return angle + angle_delta; } /* update both kcd->curr.mval and kcd->mval to snap to required angle */ static bool knife_snap_angle(KnifeTool_OpData *kcd) { const float dvec_ref[2] = {0.0f, 1.0f}; float dvec[2], dvec_snap[2]; float snap_step = DEG2RADF(45); sub_v2_v2v2(dvec, kcd->curr.mval, kcd->prev.mval); if (is_zero_v2(dvec)) { return false; } kcd->angle = snap_v2_angle(dvec_snap, dvec, dvec_ref, snap_step); add_v2_v2v2(kcd->curr.mval, kcd->prev.mval, dvec_snap); copy_v2_v2(kcd->mval, kcd->curr.mval); return true; } /* update active knife edge/vert pointers */ static int knife_update_active(KnifeTool_OpData *kcd) { knife_pos_data_clear(&kcd->curr); copy_v2_v2(kcd->curr.mval, kcd->mval); /* view matrix may have changed, reproject */ knife_project_v2(kcd, kcd->prev.cage, kcd->prev.mval); if (kcd->angle_snapping && (kcd->mode == MODE_DRAGGING)) { kcd->is_angle_snapping = knife_snap_angle(kcd); } else { kcd->is_angle_snapping = false; } kcd->curr.vert = knife_find_closest_vert(kcd, kcd->curr.co, kcd->curr.cage, &kcd->curr.bmface, &kcd->curr.is_space); if (!kcd->curr.vert && /* no edge snapping while dragging (edges are too sticky when cuts are immediate) */ !kcd->is_drag_hold) { kcd->curr.edge = knife_find_closest_edge(kcd, kcd->curr.co, kcd->curr.cage, &kcd->curr.bmface, &kcd->curr.is_space); } /* if no hits are found this would normally default to (0, 0, 0) so instead * get a point at the mouse ray closest to the previous point. * Note that drawing lines in `free-space` isn't properly supported * but theres no guarantee (0, 0, 0) has any geometry either - campbell */ if (kcd->curr.vert == NULL && kcd->curr.edge == NULL && kcd->curr.bmface == NULL) { float origin[3]; float origin_ofs[3]; knife_input_ray_segment(kcd, kcd->curr.mval, 1.0f, origin, origin_ofs); if (!isect_line_plane_v3(kcd->curr.cage, origin, origin_ofs, kcd->prev.cage, kcd->proj_zaxis)) { copy_v3_v3(kcd->curr.cage, kcd->prev.cage); /* should never fail! */ BLI_assert(0); } } if (kcd->mode == MODE_DRAGGING) { knife_find_line_hits(kcd); } return 1; } static int sort_verts_by_dist_cb(void *co_p, const void *cur_a_p, const void *cur_b_p) { const KnifeVert *cur_a = ((const Ref *)cur_a_p)->ref; const KnifeVert *cur_b = ((const Ref *)cur_b_p)->ref; const float *co = co_p; const float a_sq = len_squared_v3v3(co, cur_a->co); const float b_sq = len_squared_v3v3(co, cur_b->co); if (a_sq < b_sq) return -1; else if (a_sq > b_sq) return 1; else return 0; } static bool knife_verts_edge_in_face(KnifeVert *v1, KnifeVert *v2, BMFace *f) { bool v1_inside, v2_inside; bool v1_inface, v2_inface; BMLoop *l1, *l2; if (!f || !v1 || !v2) return false; l1 = v1->v ? BM_face_vert_share_loop(f, v1->v) : NULL; l2 = v2->v ? BM_face_vert_share_loop(f, v2->v) : NULL; if ((l1 && l2) && BM_loop_is_adjacent(l1, l2)) { /* boundary-case, always false to avoid edge-in-face checks below */ return false; } /* find out if v1 and v2, if set, are part of the face */ v1_inface = (l1 != NULL); v2_inface = (l2 != NULL); /* BM_face_point_inside_test uses best-axis projection so this isn't most accurate test... */ v1_inside = v1_inface ? false : BM_face_point_inside_test(f, v1->co); v2_inside = v2_inface ? false : BM_face_point_inside_test(f, v2->co); if ((v1_inface && v2_inside) || (v2_inface && v1_inside) || (v1_inside && v2_inside)) { return true; } if (v1_inface && v2_inface) { float mid[3]; /* Can have case where v1 and v2 are on shared chain between two faces. * BM_face_splits_check_legal does visibility and self-intersection tests, * but it is expensive and maybe a bit buggy, so use a simple * "is the midpoint in the face" test */ mid_v3_v3v3(mid, v1->co, v2->co); return BM_face_point_inside_test(f, mid); } return false; } static void knife_make_face_cuts(KnifeTool_OpData *kcd, BMFace *f, ListBase *kfedges) { BMesh *bm = kcd->em->bm; KnifeEdge *kfe; Ref *ref; int edge_array_len = BLI_listbase_count(kfedges); int i; BMEdge **edge_array = BLI_array_alloca(edge_array, edge_array_len); /* point to knife edges we've created edges in, edge_array aligned */ KnifeEdge **kfe_array = BLI_array_alloca(kfe_array, edge_array_len); BLI_assert(BLI_gset_len(kcd->edgenet.edge_visit) == 0); i = 0; for (ref = kfedges->first; ref; ref = ref->next) { bool is_new_edge = false; kfe = ref->ref; if (kfe->e == NULL) { if (kfe->v1->v && kfe->v2->v) { kfe->e = BM_edge_exists(kfe->v1->v, kfe->v2->v); } } if (kfe->e) { if (BM_edge_in_face(kfe->e, f)) { /* shouldn't happen, but in this case - just ignore */ continue; } } else { if (kfe->v1->v == NULL) { kfe->v1->v = BM_vert_create(bm, kfe->v1->co, NULL, 0); } if (kfe->v2->v == NULL) { kfe->v2->v = BM_vert_create(bm, kfe->v2->co, NULL, 0); } BLI_assert(kfe->e == NULL); kfe->e = BM_edge_create(bm, kfe->v1->v, kfe->v2->v, NULL, 0); if (kfe->e) { if (kcd->select_result || BM_elem_flag_test(f, BM_ELEM_SELECT)) { BM_edge_select_set(bm, kfe->e, true); } is_new_edge = true; } } BLI_assert(kfe->e); if (BLI_gset_add(kcd->edgenet.edge_visit, kfe->e)) { kfe_array[i] = is_new_edge ? kfe : 0; edge_array[i] = kfe->e; i += 1; } } if (i) { const int edge_array_len_orig = i; edge_array_len = i; #ifdef USE_NET_ISLAND_CONNECT unsigned int edge_array_holes_len; BMEdge **edge_array_holes; if (BM_face_split_edgenet_connect_islands( bm, f, edge_array, edge_array_len, true, kcd->edgenet.arena, &edge_array_holes, &edge_array_holes_len)) { if (BM_elem_flag_test(f, BM_ELEM_SELECT)) { for (i = edge_array_len; i < edge_array_holes_len; i++) { BM_edge_select_set(bm, edge_array_holes[i], true); } } edge_array_len = edge_array_holes_len; edge_array = edge_array_holes; /* owned by the arena */ } #endif { BMFace **face_arr = NULL; int face_arr_len; BM_face_split_edgenet( bm, f, edge_array, edge_array_len, &face_arr, &face_arr_len); if (face_arr) { MEM_freeN(face_arr); } } /* remove dangling edges, not essential - but nice for users */ for (i = 0; i < edge_array_len_orig; i++) { if (kfe_array[i]) { if (BM_edge_is_wire(kfe_array[i]->e)) { BM_edge_kill(bm, kfe_array[i]->e); kfe_array[i]->e = NULL; } } } #ifdef USE_NET_ISLAND_CONNECT BLI_memarena_clear(kcd->edgenet.arena); #endif } BLI_gset_clear(kcd->edgenet.edge_visit, NULL); } /* Use the network of KnifeEdges and KnifeVerts accumulated to make real BMVerts and BMEdedges */ static void knife_make_cuts(KnifeTool_OpData *kcd) { BMesh *bm = kcd->em->bm; KnifeEdge *kfe; KnifeVert *kfv; BMFace *f; BMEdge *e, *enew; ListBase *lst; Ref *ref; float pct; SmallHashIter hiter; BLI_mempool_iter iter; SmallHash fhash_, *fhash = &fhash_; SmallHash ehash_, *ehash = &ehash_; BLI_smallhash_init(fhash); BLI_smallhash_init(ehash); /* put list of cutting edges for a face into fhash, keyed by face */ BLI_mempool_iternew(kcd->kedges, &iter); for (kfe = BLI_mempool_iterstep(&iter); kfe; kfe = BLI_mempool_iterstep(&iter)) { /* select edges that lie directly on the cut */ if (kcd->select_result) { if (kfe->e && kfe->is_cut) { BM_edge_select_set(bm, kfe->e, true); } } f = kfe->basef; if (!f || kfe->e) continue; lst = BLI_smallhash_lookup(fhash, (uintptr_t)f); if (!lst) { lst = knife_empty_list(kcd); BLI_smallhash_insert(fhash, (uintptr_t)f, lst); } knife_append_list(kcd, lst, kfe); } /* put list of splitting vertices for an edge into ehash, keyed by edge */ BLI_mempool_iternew(kcd->kverts, &iter); for (kfv = BLI_mempool_iterstep(&iter); kfv; kfv = BLI_mempool_iterstep(&iter)) { if (kfv->v) continue; /* already have a BMVert */ for (ref = kfv->edges.first; ref; ref = ref->next) { kfe = ref->ref; e = kfe->e; if (!e) continue; lst = BLI_smallhash_lookup(ehash, (uintptr_t)e); if (!lst) { lst = knife_empty_list(kcd); BLI_smallhash_insert(ehash, (uintptr_t)e, lst); } /* there can be more than one kfe in kfv's list with same e */ if (!find_ref(lst, kfv)) knife_append_list(kcd, lst, kfv); } } /* split bmesh edges where needed */ for (lst = BLI_smallhash_iternew(ehash, &hiter, (uintptr_t *)&e); lst; lst = BLI_smallhash_iternext(&hiter, (uintptr_t *)&e)) { BLI_listbase_sort_r(lst, sort_verts_by_dist_cb, e->v1->co); for (ref = lst->first; ref; ref = ref->next) { kfv = ref->ref; pct = line_point_factor_v3(kfv->co, e->v1->co, e->v2->co); kfv->v = BM_edge_split(bm, e, e->v1, &enew, pct); } } if (kcd->only_select) { EDBM_flag_disable_all(kcd->em, BM_ELEM_SELECT); } /* do cuts for each face */ for (lst = BLI_smallhash_iternew(fhash, &hiter, (uintptr_t *)&f); lst; lst = BLI_smallhash_iternext(&hiter, (uintptr_t *)&f)) { knife_make_face_cuts(kcd, f, lst); } BLI_smallhash_release(fhash); BLI_smallhash_release(ehash); } /* called on tool confirmation */ static void knifetool_finish_ex(KnifeTool_OpData *kcd) { knife_make_cuts(kcd); EDBM_selectmode_flush(kcd->em); EDBM_mesh_normals_update(kcd->em); EDBM_update_generic(kcd->em, true, true); /* re-tessellating makes this invalid, dont use again by accident */ knifetool_free_bmbvh(kcd); } static void knifetool_finish(wmOperator *op) { KnifeTool_OpData *kcd = op->customdata; knifetool_finish_ex(kcd); } static void knife_recalc_projmat(KnifeTool_OpData *kcd) { invert_m4_m4(kcd->ob->imat, kcd->ob->obmat); ED_view3d_ob_project_mat_get(kcd->ar->regiondata, kcd->ob, kcd->projmat); invert_m4_m4(kcd->projmat_inv, kcd->projmat); mul_v3_mat3_m4v3(kcd->proj_zaxis, kcd->ob->imat, kcd->vc.rv3d->viewinv[2]); normalize_v3(kcd->proj_zaxis); kcd->is_ortho = ED_view3d_clip_range_get(kcd->vc.depsgraph, kcd->vc.v3d, kcd->vc.rv3d, &kcd->clipsta, &kcd->clipend, true); } /* called when modal loop selection is done... */ static void knifetool_exit_ex(bContext *C, KnifeTool_OpData *kcd) { if (!kcd) return; if (kcd->is_interactive) { WM_cursor_modal_restore(CTX_wm_window(C)); /* deactivate the extra drawing stuff in 3D-View */ ED_region_draw_cb_exit(kcd->ar->type, kcd->draw_handle); } /* free the custom data */ BLI_mempool_destroy(kcd->refs); BLI_mempool_destroy(kcd->kverts); BLI_mempool_destroy(kcd->kedges); BLI_ghash_free(kcd->origedgemap, NULL, NULL); BLI_ghash_free(kcd->origvertmap, NULL, NULL); BLI_ghash_free(kcd->kedgefacemap, NULL, NULL); BLI_ghash_free(kcd->facetrimap, NULL, NULL); BLI_memarena_free(kcd->arena); #ifdef USE_NET_ISLAND_CONNECT BLI_memarena_free(kcd->edgenet.arena); #endif BLI_gset_free(kcd->edgenet.edge_visit, NULL); /* tag for redraw */ ED_region_tag_redraw(kcd->ar); knifetool_free_bmbvh(kcd); if (kcd->linehits) MEM_freeN(kcd->linehits); /* destroy kcd itself */ MEM_freeN(kcd); } static void knifetool_exit(bContext *C, wmOperator *op) { KnifeTool_OpData *kcd = op->customdata; knifetool_exit_ex(C, kcd); op->customdata = NULL; } static void knifetool_update_mval(KnifeTool_OpData *kcd, const float mval[2]) { knife_recalc_projmat(kcd); copy_v2_v2(kcd->mval, mval); if (knife_update_active(kcd)) { ED_region_tag_redraw(kcd->ar); } } static void knifetool_update_mval_i(KnifeTool_OpData *kcd, const int mval_i[2]) { float mval[2] = {UNPACK2(mval_i)}; knifetool_update_mval(kcd, mval); } static void knifetool_init_bmbvh(KnifeTool_OpData *kcd) { BM_mesh_elem_index_ensure(kcd->em->bm, BM_VERT); kcd->cagecos = (const float (*)[3])BKE_editmesh_vertexCos_get(kcd->vc.depsgraph, kcd->em, kcd->scene, NULL); kcd->bmbvh = BKE_bmbvh_new_from_editmesh( kcd->em, BMBVH_RETURN_ORIG | ((kcd->only_select && kcd->cut_through) ? BMBVH_RESPECT_SELECT : BMBVH_RESPECT_HIDDEN), kcd->cagecos, false); } static void knifetool_free_bmbvh(KnifeTool_OpData *kcd) { if (kcd->bmbvh) { BKE_bmbvh_free(kcd->bmbvh); kcd->bmbvh = NULL; } if (kcd->cagecos) { MEM_freeN((void *)kcd->cagecos); kcd->cagecos = NULL; } } /* called when modal loop selection gets set up... */ static void knifetool_init(bContext *C, KnifeTool_OpData *kcd, const bool only_select, const bool cut_through, const bool is_interactive) { Scene *scene = CTX_data_scene(C); Object *obedit = CTX_data_edit_object(C); /* assign the drawing handle for drawing preview line... */ kcd->scene = scene; kcd->ob = obedit; kcd->ar = CTX_wm_region(C); em_setup_viewcontext(C, &kcd->vc); kcd->em = BKE_editmesh_from_object(kcd->ob); /* cut all the way through the mesh if use_occlude_geometry button not pushed */ kcd->is_interactive = is_interactive; kcd->cut_through = cut_through; kcd->only_select = only_select; knifetool_init_bmbvh(kcd); kcd->arena = BLI_memarena_new(MEM_SIZE_OPTIMAL(1 << 15), "knife"); #ifdef USE_NET_ISLAND_CONNECT kcd->edgenet.arena = BLI_memarena_new(MEM_SIZE_OPTIMAL(1 << 15), __func__); #endif kcd->edgenet.edge_visit = BLI_gset_ptr_new(__func__); kcd->vthresh = KMAXDIST - 1; kcd->ethresh = KMAXDIST; knife_recalc_projmat(kcd); ED_region_tag_redraw(kcd->ar); kcd->refs = BLI_mempool_create(sizeof(Ref), 0, 2048, 0); kcd->kverts = BLI_mempool_create(sizeof(KnifeVert), 0, 512, BLI_MEMPOOL_ALLOW_ITER); kcd->kedges = BLI_mempool_create(sizeof(KnifeEdge), 0, 512, BLI_MEMPOOL_ALLOW_ITER); kcd->origedgemap = BLI_ghash_ptr_new("knife origedgemap"); kcd->origvertmap = BLI_ghash_ptr_new("knife origvertmap"); kcd->kedgefacemap = BLI_ghash_ptr_new("knife kedgefacemap"); kcd->facetrimap = BLI_ghash_ptr_new("knife facetrimap"); /* can't usefully select resulting edges in face mode */ kcd->select_result = (kcd->em->selectmode != SCE_SELECT_FACE); knife_pos_data_clear(&kcd->curr); knife_pos_data_clear(&kcd->prev); if (is_interactive) { kcd->draw_handle = ED_region_draw_cb_activate(kcd->ar->type, knifetool_draw, kcd, REGION_DRAW_POST_VIEW); knife_init_colors(&kcd->colors); } } static void knifetool_cancel(bContext *C, wmOperator *op) { /* this is just a wrapper around exit() */ knifetool_exit(C, op); } static int knifetool_invoke(bContext *C, wmOperator *op, const wmEvent *event) { const bool only_select = RNA_boolean_get(op->ptr, "only_selected"); const bool cut_through = !RNA_boolean_get(op->ptr, "use_occlude_geometry"); const bool wait_for_input = RNA_boolean_get(op->ptr, "wait_for_input"); KnifeTool_OpData *kcd; if (only_select) { Object *obedit = CTX_data_edit_object(C); BMEditMesh *em = BKE_editmesh_from_object(obedit); if (em->bm->totfacesel == 0) { BKE_report(op->reports, RPT_ERROR, "Selected faces required"); return OPERATOR_CANCELLED; } } view3d_operator_needs_opengl(C); /* alloc new customdata */ kcd = op->customdata = MEM_callocN(sizeof(KnifeTool_OpData), __func__); knifetool_init(C, kcd, only_select, cut_through, true); op->flag |= OP_IS_MODAL_CURSOR_REGION; /* add a modal handler for this operator - handles loop selection */ WM_cursor_modal_set(CTX_wm_window(C), BC_KNIFECURSOR); WM_event_add_modal_handler(C, op); knifetool_update_mval_i(kcd, event->mval); if (wait_for_input == false) { /* Avoid copy-paste logic. */ wmEvent event_modal = { .prevval = KM_NOTHING, .type = EVT_MODAL_MAP, .val = KNF_MODAL_ADD_CUT, }; int ret = knifetool_modal(C, op, &event_modal); BLI_assert(ret == OPERATOR_RUNNING_MODAL); UNUSED_VARS_NDEBUG(ret); } knife_update_header(C, op, kcd); return OPERATOR_RUNNING_MODAL; } wmKeyMap *knifetool_modal_keymap(wmKeyConfig *keyconf) { static const EnumPropertyItem modal_items[] = { {KNF_MODAL_CANCEL, "CANCEL", 0, "Cancel", ""}, {KNF_MODAL_CONFIRM, "CONFIRM", 0, "Confirm", ""}, {KNF_MODAL_MIDPOINT_ON, "SNAP_MIDPOINTS_ON", 0, "Snap To Midpoints On", ""}, {KNF_MODAL_MIDPOINT_OFF, "SNAP_MIDPOINTS_OFF", 0, "Snap To Midpoints Off", ""}, {KNF_MODEL_IGNORE_SNAP_ON, "IGNORE_SNAP_ON", 0, "Ignore Snapping On", ""}, {KNF_MODEL_IGNORE_SNAP_OFF, "IGNORE_SNAP_OFF", 0, "Ignore Snapping Off", ""}, {KNF_MODAL_ANGLE_SNAP_TOGGLE, "ANGLE_SNAP_TOGGLE", 0, "Toggle Angle Snapping", ""}, {KNF_MODAL_CUT_THROUGH_TOGGLE, "CUT_THROUGH_TOGGLE", 0, "Toggle Cut Through", ""}, {KNF_MODAL_NEW_CUT, "NEW_CUT", 0, "End Current Cut", ""}, {KNF_MODAL_ADD_CUT, "ADD_CUT", 0, "Add Cut", ""}, {KNF_MODAL_PANNING, "PANNING", 0, "Panning", ""}, {0, NULL, 0, NULL, NULL} }; wmKeyMap *keymap = WM_modalkeymap_get(keyconf, "Knife Tool Modal Map"); /* this function is called for each spacetype, only needs to add map once */ if (keymap && keymap->modal_items) return NULL; keymap = WM_modalkeymap_add(keyconf, "Knife Tool Modal Map", modal_items); /* items for modal map */ WM_modalkeymap_add_item(keymap, ESCKEY, KM_PRESS, KM_ANY, 0, KNF_MODAL_CANCEL); WM_modalkeymap_add_item(keymap, MIDDLEMOUSE, KM_ANY, KM_ANY, 0, KNF_MODAL_PANNING); WM_modalkeymap_add_item(keymap, LEFTMOUSE, KM_DBL_CLICK, KM_ANY, 0, KNF_MODAL_ADD_CUT_CLOSED); WM_modalkeymap_add_item(keymap, LEFTMOUSE, KM_ANY, KM_ANY, 0, KNF_MODAL_ADD_CUT); WM_modalkeymap_add_item(keymap, RIGHTMOUSE, KM_PRESS, KM_ANY, 0, KNF_MODAL_CANCEL); WM_modalkeymap_add_item(keymap, RETKEY, KM_PRESS, KM_ANY, 0, KNF_MODAL_CONFIRM); WM_modalkeymap_add_item(keymap, PADENTER, KM_PRESS, KM_ANY, 0, KNF_MODAL_CONFIRM); WM_modalkeymap_add_item(keymap, SPACEKEY, KM_PRESS, KM_ANY, 0, KNF_MODAL_CONFIRM); WM_modalkeymap_add_item(keymap, EKEY, KM_PRESS, 0, 0, KNF_MODAL_NEW_CUT); WM_modalkeymap_add_item(keymap, LEFTCTRLKEY, KM_PRESS, KM_ANY, 0, KNF_MODAL_MIDPOINT_ON); WM_modalkeymap_add_item(keymap, LEFTCTRLKEY, KM_RELEASE, KM_ANY, 0, KNF_MODAL_MIDPOINT_OFF); WM_modalkeymap_add_item(keymap, RIGHTCTRLKEY, KM_PRESS, KM_ANY, 0, KNF_MODAL_MIDPOINT_ON); WM_modalkeymap_add_item(keymap, RIGHTCTRLKEY, KM_RELEASE, KM_ANY, 0, KNF_MODAL_MIDPOINT_OFF); WM_modalkeymap_add_item(keymap, LEFTSHIFTKEY, KM_PRESS, KM_ANY, 0, KNF_MODEL_IGNORE_SNAP_ON); WM_modalkeymap_add_item(keymap, LEFTSHIFTKEY, KM_RELEASE, KM_ANY, 0, KNF_MODEL_IGNORE_SNAP_OFF); WM_modalkeymap_add_item(keymap, RIGHTSHIFTKEY, KM_PRESS, KM_ANY, 0, KNF_MODEL_IGNORE_SNAP_ON); WM_modalkeymap_add_item(keymap, RIGHTSHIFTKEY, KM_RELEASE, KM_ANY, 0, KNF_MODEL_IGNORE_SNAP_OFF); WM_modalkeymap_add_item(keymap, CKEY, KM_PRESS, 0, 0, KNF_MODAL_ANGLE_SNAP_TOGGLE); WM_modalkeymap_add_item(keymap, ZKEY, KM_PRESS, 0, 0, KNF_MODAL_CUT_THROUGH_TOGGLE); WM_modalkeymap_assign(keymap, "MESH_OT_knife_tool"); return keymap; } static int knifetool_modal(bContext *C, wmOperator *op, const wmEvent *event) { Object *obedit = CTX_data_edit_object(C); KnifeTool_OpData *kcd = op->customdata; bool do_refresh = false; if (!obedit || obedit->type != OB_MESH || BKE_editmesh_from_object(obedit) != kcd->em) { knifetool_exit(C, op); ED_workspace_status_text(C, NULL); return OPERATOR_FINISHED; } em_setup_viewcontext(C, &kcd->vc); kcd->ar = kcd->vc.ar; view3d_operator_needs_opengl(C); ED_view3d_init_mats_rv3d(obedit, kcd->vc.rv3d); /* needed to initialize clipping */ if (kcd->mode == MODE_PANNING) kcd->mode = kcd->prevmode; /* handle modal keymap */ if (event->type == EVT_MODAL_MAP) { switch (event->val) { case KNF_MODAL_CANCEL: /* finish */ ED_region_tag_redraw(kcd->ar); knifetool_exit(C, op); ED_workspace_status_text(C, NULL); return OPERATOR_CANCELLED; case KNF_MODAL_CONFIRM: /* finish */ ED_region_tag_redraw(kcd->ar); knifetool_finish(op); knifetool_exit(C, op); ED_workspace_status_text(C, NULL); return OPERATOR_FINISHED; case KNF_MODAL_MIDPOINT_ON: kcd->snap_midpoints = true; knife_recalc_projmat(kcd); knife_update_active(kcd); knife_update_header(C, op, kcd); ED_region_tag_redraw(kcd->ar); do_refresh = true; break; case KNF_MODAL_MIDPOINT_OFF: kcd->snap_midpoints = false; knife_recalc_projmat(kcd); knife_update_active(kcd); knife_update_header(C, op, kcd); ED_region_tag_redraw(kcd->ar); do_refresh = true; break; case KNF_MODEL_IGNORE_SNAP_ON: ED_region_tag_redraw(kcd->ar); kcd->ignore_vert_snapping = kcd->ignore_edge_snapping = true; knife_update_header(C, op, kcd); do_refresh = true; break; case KNF_MODEL_IGNORE_SNAP_OFF: ED_region_tag_redraw(kcd->ar); kcd->ignore_vert_snapping = kcd->ignore_edge_snapping = false; knife_update_header(C, op, kcd); do_refresh = true; break; case KNF_MODAL_ANGLE_SNAP_TOGGLE: kcd->angle_snapping = !kcd->angle_snapping; knife_update_header(C, op, kcd); do_refresh = true; break; case KNF_MODAL_CUT_THROUGH_TOGGLE: kcd->cut_through = !kcd->cut_through; knife_update_header(C, op, kcd); do_refresh = true; break; case KNF_MODAL_NEW_CUT: ED_region_tag_redraw(kcd->ar); knife_finish_cut(kcd); kcd->mode = MODE_IDLE; break; case KNF_MODAL_ADD_CUT: knife_recalc_projmat(kcd); /* get the value of the event which triggered this one */ if (event->prevval != KM_RELEASE) { if (kcd->mode == MODE_DRAGGING) { knife_add_cut(kcd); } else if (kcd->mode != MODE_PANNING) { knife_start_cut(kcd); kcd->mode = MODE_DRAGGING; kcd->init = kcd->curr; } /* freehand drawing is incompatible with cut-through */ if (kcd->cut_through == false) { kcd->is_drag_hold = true; } } else { kcd->is_drag_hold = false; /* needed because the last face 'hit' is ignored when dragging */ knifetool_update_mval(kcd, kcd->curr.mval); } ED_region_tag_redraw(kcd->ar); break; case KNF_MODAL_ADD_CUT_CLOSED: if (kcd->mode == MODE_DRAGGING) { /* shouldn't be possible with default key-layout, just incase... */ if (kcd->is_drag_hold) { kcd->is_drag_hold = false; knifetool_update_mval(kcd, kcd->curr.mval); } kcd->prev = kcd->curr; kcd->curr = kcd->init; knife_project_v2(kcd, kcd->curr.cage, kcd->curr.mval); knifetool_update_mval(kcd, kcd->curr.mval); knife_add_cut(kcd); /* KNF_MODAL_NEW_CUT */ knife_finish_cut(kcd); kcd->mode = MODE_IDLE; } break; case KNF_MODAL_PANNING: if (event->val != KM_RELEASE) { if (kcd->mode != MODE_PANNING) { kcd->prevmode = kcd->mode; kcd->mode = MODE_PANNING; } } else { kcd->mode = kcd->prevmode; } ED_region_tag_redraw(kcd->ar); return OPERATOR_PASS_THROUGH; } } else { /* non-modal-mapped events */ switch (event->type) { case MOUSEPAN: case MOUSEZOOM: case MOUSEROTATE: case WHEELUPMOUSE: case WHEELDOWNMOUSE: return OPERATOR_PASS_THROUGH; case MOUSEMOVE: /* mouse moved somewhere to select another loop */ if (kcd->mode != MODE_PANNING) { knifetool_update_mval_i(kcd, event->mval); if (kcd->is_drag_hold) { if (kcd->totlinehit >= 2) { knife_add_cut(kcd); } } } break; } } if (kcd->mode == MODE_DRAGGING) { op->flag &= ~OP_IS_MODAL_CURSOR_REGION; } else { op->flag |= OP_IS_MODAL_CURSOR_REGION; } if (do_refresh) { /* we don't really need to update mval, * but this happens to be the best way to refresh at the moment */ knifetool_update_mval_i(kcd, event->mval); } /* keep going until the user confirms */ return OPERATOR_RUNNING_MODAL; } void MESH_OT_knife_tool(wmOperatorType *ot) { /* description */ ot->name = "Knife Topology Tool"; ot->idname = "MESH_OT_knife_tool"; ot->description = "Cut new topology"; /* callbacks */ ot->invoke = knifetool_invoke; ot->modal = knifetool_modal; ot->cancel = knifetool_cancel; ot->poll = ED_operator_editmesh_view3d; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO | OPTYPE_BLOCKING; /* properties */ PropertyRNA *prop; RNA_def_boolean(ot->srna, "use_occlude_geometry", true, "Occlude Geometry", "Only cut the front most geometry"); RNA_def_boolean(ot->srna, "only_selected", false, "Only Selected", "Only cut selected geometry"); prop = RNA_def_boolean(ot->srna, "wait_for_input", true, "Wait for Input", ""); RNA_def_property_flag(prop, PROP_HIDDEN | PROP_SKIP_SAVE); } /* -------------------------------------------------------------------- */ /* Knife tool as a utility function * that can be used for internal slicing operations */ static bool edbm_mesh_knife_point_isect(LinkNode *polys, const float cent_ss[2]) { LinkNode *p = polys; int isect = 0; while (p) { const float (*mval_fl)[2] = p->link; const int mval_tot = MEM_allocN_len(mval_fl) / sizeof(*mval_fl); isect += (int)isect_point_poly_v2(cent_ss, mval_fl, mval_tot - 1, false); p = p->next; } if (isect % 2) { return true; } return false; } /** * \param use_tag When set, tag all faces inside the polylines. */ void EDBM_mesh_knife(bContext *C, LinkNode *polys, bool use_tag, bool cut_through) { KnifeTool_OpData *kcd; view3d_operator_needs_opengl(C); /* init */ { const bool only_select = false; const bool is_interactive = false; /* can enable for testing */ kcd = MEM_callocN(sizeof(KnifeTool_OpData), __func__); knifetool_init(C, kcd, only_select, cut_through, is_interactive); kcd->ignore_edge_snapping = true; kcd->ignore_vert_snapping = true; if (use_tag) { BM_mesh_elem_hflag_enable_all(kcd->em->bm, BM_EDGE, BM_ELEM_TAG, false); } } /* execute */ { LinkNode *p = polys; knife_recalc_projmat(kcd); while (p) { const float (*mval_fl)[2] = p->link; const int mval_tot = MEM_allocN_len(mval_fl) / sizeof(*mval_fl); int i; for (i = 0; i < mval_tot; i++) { knifetool_update_mval(kcd, mval_fl[i]); if (i == 0) { knife_start_cut(kcd); kcd->mode = MODE_DRAGGING; } else { knife_add_cut(kcd); } } knife_finish_cut(kcd); kcd->mode = MODE_IDLE; p = p->next; } } /* finish */ { knifetool_finish_ex(kcd); /* tag faces inside! */ if (use_tag) { BMesh *bm = kcd->em->bm; float projmat[4][4]; BMEdge *e; BMIter iter; bool keep_search; /* freed on knifetool_finish_ex, but we need again to check if points are visible */ if (kcd->cut_through == false) { knifetool_init_bmbvh(kcd); } ED_view3d_ob_project_mat_get(kcd->ar->regiondata, kcd->ob, projmat); /* use face-loop tag to store if we have intersected */ #define F_ISECT_IS_UNKNOWN(f) BM_elem_flag_test(BM_FACE_FIRST_LOOP(f), BM_ELEM_TAG) #define F_ISECT_SET_UNKNOWN(f) BM_elem_flag_enable(BM_FACE_FIRST_LOOP(f), BM_ELEM_TAG) #define F_ISECT_SET_OUTSIDE(f) BM_elem_flag_disable(BM_FACE_FIRST_LOOP(f), BM_ELEM_TAG) { BMFace *f; BM_ITER_MESH (f, &iter, bm, BM_FACES_OF_MESH) { F_ISECT_SET_UNKNOWN(f); BM_elem_flag_disable(f, BM_ELEM_TAG); } } /* tag all faces linked to cut edges */ BM_ITER_MESH (e, &iter, bm, BM_EDGES_OF_MESH) { /* check are we tagged?, then we are an original face */ if (BM_elem_flag_test(e, BM_ELEM_TAG) == false) { BMFace *f; BMIter fiter; BM_ITER_ELEM (f, &fiter, e, BM_FACES_OF_EDGE) { float cent[3], cent_ss[2]; BM_face_calc_point_in_face(f, cent); knife_project_v2(kcd, cent, cent_ss); if (edbm_mesh_knife_point_isect(polys, cent_ss)) { BM_elem_flag_enable(f, BM_ELEM_TAG); } } } } /* expand tags for faces which are not cut, but are inside the polys */ do { BMFace *f; keep_search = false; BM_ITER_MESH (f, &iter, bm, BM_FACES_OF_MESH) { if (BM_elem_flag_test(f, BM_ELEM_TAG) == false && (F_ISECT_IS_UNKNOWN(f))) { /* am I connected to a tagged face via an un-tagged edge (ie, not across a cut) */ BMLoop *l_first = BM_FACE_FIRST_LOOP(f); BMLoop *l_iter = l_first; bool found = false; do { if (BM_elem_flag_test(l_iter->e, BM_ELEM_TAG) != false) { /* now check if the adjacent faces is tagged */ BMLoop *l_radial_iter = l_iter->radial_next; if (l_radial_iter != l_iter) { do { if (BM_elem_flag_test(l_radial_iter->f, BM_ELEM_TAG)) { found = true; } } while ((l_radial_iter = l_radial_iter->radial_next) != l_iter && (found == false)); } } } while ((l_iter = l_iter->next) != l_first && (found == false)); if (found) { float cent[3], cent_ss[2]; BM_face_calc_point_in_face(f, cent); knife_project_v2(kcd, cent, cent_ss); if ((kcd->cut_through || point_is_visible(kcd, cent, cent_ss, (BMElem *)f)) && edbm_mesh_knife_point_isect(polys, cent_ss)) { BM_elem_flag_enable(f, BM_ELEM_TAG); keep_search = true; } else { /* don't loose time on this face again, set it as outside */ F_ISECT_SET_OUTSIDE(f); } } } } } while (keep_search); #undef F_ISECT_IS_UNKNOWN #undef F_ISECT_SET_UNKNOWN #undef F_ISECT_SET_OUTSIDE } knifetool_exit_ex(C, kcd); kcd = NULL; } }