/* * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2004 Blender Foundation. * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): none yet. * * ***** END GPL LICENSE BLOCK ***** */ /** \file blender/editors/mesh/editmesh_select_similar.c * \ingroup edmesh */ #include "MEM_guardedalloc.h" #include "BLI_kdtree.h" #include "BLI_math.h" #include "BKE_context.h" #include "BKE_editmesh.h" #include "BKE_layer.h" #include "BKE_report.h" #include "WM_api.h" #include "WM_types.h" #include "RNA_access.h" #include "RNA_define.h" #include "ED_mesh.h" #include "ED_screen.h" #include "mesh_intern.h" /* own include */ /* -------------------------------------------------------------------- */ /** \name Select Similar (Vert/Edge/Face) Operator - common * \{ */ static const EnumPropertyItem prop_similar_compare_types[] = { {SIM_CMP_EQ, "EQUAL", 0, "Equal", ""}, {SIM_CMP_GT, "GREATER", 0, "Greater", ""}, {SIM_CMP_LT, "LESS", 0, "Less", ""}, {0, NULL, 0, NULL, NULL} }; static const EnumPropertyItem prop_similar_types[] = { {SIMVERT_NORMAL, "NORMAL", 0, "Normal", ""}, {SIMVERT_FACE, "FACE", 0, "Amount of Adjacent Faces", ""}, {SIMVERT_VGROUP, "VGROUP", 0, "Vertex Groups", ""}, {SIMVERT_EDGE, "EDGE", 0, "Amount of connecting edges", ""}, {SIMEDGE_LENGTH, "LENGTH", 0, "Length", ""}, {SIMEDGE_DIR, "DIR", 0, "Direction", ""}, {SIMEDGE_FACE, "FACE", 0, "Amount of Faces Around an Edge", ""}, {SIMEDGE_FACE_ANGLE, "FACE_ANGLE", 0, "Face Angles", ""}, {SIMEDGE_CREASE, "CREASE", 0, "Crease", ""}, {SIMEDGE_BEVEL, "BEVEL", 0, "Bevel", ""}, {SIMEDGE_SEAM, "SEAM", 0, "Seam", ""}, {SIMEDGE_SHARP, "SHARP", 0, "Sharpness", ""}, #ifdef WITH_FREESTYLE {SIMEDGE_FREESTYLE, "FREESTYLE_EDGE", 0, "Freestyle Edge Marks", ""}, #endif {SIMFACE_MATERIAL, "MATERIAL", 0, "Material", ""}, {SIMFACE_AREA, "AREA", 0, "Area", ""}, {SIMFACE_SIDES, "SIDES", 0, "Polygon Sides", ""}, {SIMFACE_PERIMETER, "PERIMETER", 0, "Perimeter", ""}, {SIMFACE_NORMAL, "NORMAL", 0, "Normal", ""}, {SIMFACE_COPLANAR, "COPLANAR", 0, "Co-planar", ""}, {SIMFACE_SMOOTH, "SMOOTH", 0, "Flat/Smooth", ""}, {SIMFACE_FACEMAP, "FACE_MAP", 0, "Face-Map", ""}, #ifdef WITH_FREESTYLE {SIMFACE_FREESTYLE, "FREESTYLE_FACE", 0, "Freestyle Face Marks", ""}, #endif {0, NULL, 0, NULL, NULL} }; static int select_similar_compare_float(const float delta, const float thresh, const int compare) { switch (compare) { case SIM_CMP_EQ: return (fabsf(delta) < thresh + FLT_EPSILON); case SIM_CMP_GT: return ((delta + thresh) > -FLT_EPSILON); case SIM_CMP_LT: return ((delta - thresh) < FLT_EPSILON); default: BLI_assert(0); return 0; } } static int select_similar_compare_int(const int delta, const int compare) { switch (compare) { case SIM_CMP_EQ: return (delta == 0); case SIM_CMP_GT: return (delta > 0); case SIM_CMP_LT: return (delta < 0); default: BLI_assert(0); return 0; } } static bool select_similar_compare_float_tree(const KDTree *tree, const float length, const float thresh, const int compare) { /* Length of the edge we want to compare against. */ float nearest_edge_length; switch (compare) { case SIM_CMP_EQ: /* Compare to the edge closest to the current edge. */ nearest_edge_length = length; break; case SIM_CMP_GT: /* Compare against the shortest edge. */ /* -FLT_MAX leads to some precision issues and the wrong edge being selected. * For example, in a tree with 1, 2 and 3, which is stored squared as 1, 4, 9, it returns as the nearest * length/node the "4" instead of "1". */ nearest_edge_length = -1.0f; break; case SIM_CMP_LT: /* Compare against the longest edge. */ nearest_edge_length = FLT_MAX; break; default: BLI_assert(0); return false; } KDTreeNearest nearest; float dummy[3] = {nearest_edge_length, 0.0f, 0.0f}; if (BLI_kdtree_find_nearest(tree, dummy, &nearest) != -1) { float delta = length - nearest.co[0]; return select_similar_compare_float(delta, thresh, compare); } return false; } /** \} */ /* -------------------------------------------------------------------- */ /** \name Select Similar Face * \{ */ static int similar_face_select_exec(bContext *C, wmOperator *op) { /* TODO (dfelinto) port the face modes to multi-object. */ BKE_report(op->reports, RPT_ERROR, "Select similar not supported for faces at the moment"); return OPERATOR_CANCELLED; Object *ob = CTX_data_edit_object(C); BMEditMesh *em = BKE_editmesh_from_object(ob); BMOperator bmop; /* get the type from RNA */ const int type = RNA_enum_get(op->ptr, "type"); const float thresh = RNA_float_get(op->ptr, "threshold"); const int compare = RNA_enum_get(op->ptr, "compare"); /* initialize the bmop using EDBM api, which does various ui error reporting and other stuff */ EDBM_op_init(em, &bmop, op, "similar_faces faces=%hf type=%i thresh=%f compare=%i", BM_ELEM_SELECT, type, thresh, compare); /* execute the operator */ BMO_op_exec(em->bm, &bmop); /* clear the existing selection */ EDBM_flag_disable_all(em, BM_ELEM_SELECT); /* select the output */ BMO_slot_buffer_hflag_enable(em->bm, bmop.slots_out, "faces.out", BM_FACE, BM_ELEM_SELECT, true); /* finish the operator */ if (!EDBM_op_finish(em, &bmop, op, true)) { return OPERATOR_CANCELLED; } EDBM_update_generic(em, false, false); return OPERATOR_FINISHED; } /** \} */ /* -------------------------------------------------------------------- */ /** \name Select Similar Edge * \{ */ /** * Note: This is not normal, but the edge direction itself and always in * a positive quadrant (tries z, y then x). * Therefore we need to use the entire object transformation matrix. */ static void edge_pos_direction_worldspace_get(Object *ob, BMEdge *edge, float *r_dir) { float v1[3], v2[3]; copy_v3_v3(v1, edge->v1->co); copy_v3_v3(v2, edge->v2->co); mul_m4_v3(ob->obmat, v1); mul_m4_v3(ob->obmat, v2); sub_v3_v3v3(r_dir, v1, v2); normalize_v3(r_dir); /* Make sure we have a consistent direction that can be checked regardless of * the verts order of the edges. This spares us from storing dir and -dir in the tree. */ if (fabs(r_dir[2]) < FLT_EPSILON) { if (fabs(r_dir[1]) < FLT_EPSILON) { if (r_dir[0] < 0.0f) { mul_v3_fl(r_dir, -1.0f); } } else if (r_dir[1] < 0.0f) { mul_v3_fl(r_dir, -1.0f); } } else if (r_dir[2] < 0.0f) { mul_v3_fl(r_dir, -1.0f); } } static float edge_length_squared_worldspace_get(Object *ob, BMEdge *edge) { float v1[3], v2[3]; copy_v3_v3(v1, edge->v1->co); copy_v3_v3(v2, edge->v2->co); mul_m4_v3(ob->obmat, v1); mul_m4_v3(ob->obmat, v2); return len_squared_v3v3(v1, v2); } enum { SIMEDGE_DATA_NONE = 0, SIMEDGE_DATA_TRUE = (1 << 0), SIMEDGE_DATA_FALSE = (1 << 1), SIMEDGE_DATA_ALL = (SIMEDGE_DATA_TRUE | SIMEDGE_DATA_FALSE), }; /** * Return true if we still don't know the final value for this edge data. * In other words, if we need to keep iterating over the objects or we can * just go ahead and select all the objects. */ static bool edge_data_value_set(BMEdge *edge, const int hflag, int *r_value) { if (BM_elem_flag_test(edge, hflag)) { *r_value |= SIMEDGE_DATA_TRUE; } else { *r_value |= SIMEDGE_DATA_FALSE; } return *r_value != SIMEDGE_DATA_ALL; } /* Note/TODO(dfelinto) technically SIMEDGE_FACE_ANGLE should compare the angles in world space. * Although doable this is overkill - at least for the initial multi-objects implementation. */ static int similar_edge_select_exec(bContext *C, wmOperator *op) { ViewLayer *view_layer = CTX_data_view_layer(C); /* get the type from RNA */ const int type = RNA_enum_get(op->ptr, "type"); const float thresh = RNA_float_get(op->ptr, "threshold"); const float thresh_radians = thresh * (float)M_PI + FLT_EPSILON; const int compare = RNA_enum_get(op->ptr, "compare"); if (ELEM(type, #ifdef WITH_FREESTYLE SIMEDGE_FREESTYLE, #endif SIMEDGE_CREASE, SIMEDGE_BEVEL)) { /* TODO (dfelinto) port the edge modes to multi-object. */ BKE_report(op->reports, RPT_ERROR, "Select similar edge mode not supported at the moment"); return OPERATOR_CANCELLED; } int tot_edges_selected_all = 0; uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data(view_layer, &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *ob = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(ob); tot_edges_selected_all += em->bm->totedgesel; } if (tot_edges_selected_all == 0) { BKE_report(op->reports, RPT_ERROR, "No edge selected"); MEM_freeN(objects); return OPERATOR_CANCELLED; } KDTree *tree = NULL; GSet *gset = NULL; int edge_data_value = SIMEDGE_DATA_NONE; switch (type) { case SIMEDGE_FACE_ANGLE: case SIMEDGE_LENGTH: case SIMEDGE_DIR: tree = BLI_kdtree_new(tot_edges_selected_all); break; case SIMEDGE_FACE: gset = BLI_gset_ptr_new("Select similar edge: face"); break; } int tree_index = 0; for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *ob = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(ob); BMesh *bm = em->bm; if (bm->totedgesel == 0) { continue; } BMEdge *edge; /* Mesh edge. */ BMIter iter; /* Selected edges iterator. */ BM_ITER_MESH (edge, &iter, bm, BM_EDGES_OF_MESH) { if (BM_elem_flag_test(edge, BM_ELEM_SELECT)) { switch (type) { case SIMEDGE_FACE: BLI_gset_add(gset, POINTER_FROM_INT(BM_edge_face_count(edge))); break; case SIMEDGE_DIR: { float dir[3]; edge_pos_direction_worldspace_get(ob, edge, dir); BLI_kdtree_insert(tree, tree_index++, dir); break; } case SIMEDGE_LENGTH: { float length = edge_length_squared_worldspace_get(ob, edge); float dummy[3] = {length, 0.0f, 0.0f}; BLI_kdtree_insert(tree, tree_index++, dummy); break; } case SIMEDGE_FACE_ANGLE: { if (BM_edge_face_count_at_most(edge, 2) == 2) { float angle = BM_edge_calc_face_angle(edge); float dummy[3] = {angle, 0.0f, 0.0f}; BLI_kdtree_insert(tree, tree_index++, dummy); } break; } case SIMEDGE_SEAM: if (!edge_data_value_set(edge, BM_ELEM_SEAM, &edge_data_value)) { goto selectall; } break; case SIMEDGE_SHARP: if (!edge_data_value_set(edge, BM_ELEM_SMOOTH, &edge_data_value)) { goto selectall; } break; } } } } if (tree != NULL) { BLI_kdtree_balance(tree); } for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *ob = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(ob); BMesh *bm = em->bm; bool changed = false; BMEdge *edge; /* Mesh edge. */ BMIter iter; /* Selected edges iterator. */ BM_ITER_MESH (edge, &iter, bm, BM_EDGES_OF_MESH) { if (!BM_elem_flag_test(edge, BM_ELEM_SELECT) && !BM_elem_flag_test(edge, BM_ELEM_HIDDEN)) { bool select = false; switch (type) { case SIMEDGE_FACE: { const int num_faces = BM_edge_face_count(edge); GSetIterator gs_iter; GSET_ITER(gs_iter, gset) { const int num_faces_iter = POINTER_AS_INT(BLI_gsetIterator_getKey(&gs_iter)); const int delta_i = num_faces - num_faces_iter; if (select_similar_compare_int(delta_i, compare)) { select = true; break; } } break; } case SIMEDGE_DIR: { float dir[3]; edge_pos_direction_worldspace_get(ob, edge, dir); /* We are treating the direction as coordinates, the "nearest" one will * also be the one closest to the intended direction. */ KDTreeNearest nearest; if (BLI_kdtree_find_nearest(tree, dir, &nearest) != -1) { if (angle_normalized_v3v3(dir, nearest.co) <= thresh_radians) { select = true; } } break; } case SIMEDGE_LENGTH: { float length = edge_length_squared_worldspace_get(ob, edge); if (select_similar_compare_float_tree(tree, length, thresh, compare)) { BM_edge_select_set(bm, edge, true); select = true; } break; } case SIMEDGE_FACE_ANGLE: { if (BM_edge_face_count_at_most(edge, 2) == 2) { float angle = BM_edge_calc_face_angle(edge); if (select_similar_compare_float_tree(tree, angle, thresh, SIM_CMP_EQ)) { select = true; } } break; } case SIMEDGE_SEAM: if ((BM_elem_flag_test(edge, BM_ELEM_SEAM) != 0) == ((edge_data_value & SIMEDGE_DATA_TRUE) != 0)) { select = true; } break; case SIMEDGE_SHARP: if ((BM_elem_flag_test(edge, BM_ELEM_SMOOTH) != 0) == ((edge_data_value & SIMEDGE_DATA_TRUE) != 0)) { select = true; } break; } if (select) { BM_edge_select_set(bm, edge, true); changed = true; } } } if (changed) { EDBM_selectmode_flush(em); EDBM_update_generic(em, false, false); } } if (false) { selectall: BLI_assert(ELEM(type, SIMEDGE_SEAM, SIMEDGE_SHARP)); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *ob = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(ob); BMesh *bm = em->bm; BMEdge *edge; /* Mesh edge. */ BMIter iter; /* Selected edges iterator. */ BM_ITER_MESH (edge, &iter, bm, BM_EDGES_OF_MESH) { if (!BM_elem_flag_test(edge, BM_ELEM_SELECT)) { BM_edge_select_set(bm, edge, true); } } EDBM_selectmode_flush(em); EDBM_update_generic(em, false, false); } } MEM_freeN(objects); BLI_kdtree_free(tree); if (gset != NULL) { BLI_gset_free(gset, NULL); } return OPERATOR_FINISHED; } /** \} */ /* -------------------------------------------------------------------- */ /** \name Select Similar Vert * \{ */ static int similar_vert_select_exec(bContext *C, wmOperator *op) { ViewLayer *view_layer = CTX_data_view_layer(C); /* get the type from RNA */ const int type = RNA_enum_get(op->ptr, "type"); const float thresh = RNA_float_get(op->ptr, "threshold"); const float thresh_radians = thresh * (float)M_PI + FLT_EPSILON; const int compare = RNA_enum_get(op->ptr, "compare"); if (type == SIMVERT_VGROUP) { BKE_report(op->reports, RPT_ERROR, "Select similar vertex groups not supported at the moment."); return OPERATOR_CANCELLED; } int tot_verts_selected_all = 0; uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data(view_layer, &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *ob = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(ob); tot_verts_selected_all += em->bm->totvertsel; } if (tot_verts_selected_all == 0) { BKE_report(op->reports, RPT_ERROR, "No vertex selected"); MEM_freeN(objects); return OPERATOR_CANCELLED; } KDTree *tree = NULL; GSet *gset = NULL; switch (type) { case SIMVERT_NORMAL: tree = BLI_kdtree_new(tot_verts_selected_all); break; case SIMVERT_EDGE: case SIMVERT_FACE: gset = BLI_gset_ptr_new("Select similar vertex: edge/face"); break; } int normal_tree_index = 0; for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *ob = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(ob); BMesh *bm = em->bm; invert_m4_m4(ob->imat, ob->obmat); if (bm->totvertsel == 0) { continue; } BMVert *vert; /* Mesh vertex. */ BMIter iter; /* Selected verts iterator. */ BM_ITER_MESH (vert, &iter, bm, BM_VERTS_OF_MESH) { if (BM_elem_flag_test(vert, BM_ELEM_SELECT)) { switch (type) { case SIMVERT_FACE: BLI_gset_add(gset, POINTER_FROM_INT(BM_vert_face_count(vert))); break; case SIMVERT_EDGE: BLI_gset_add(gset, POINTER_FROM_INT(BM_vert_edge_count(vert))); break; case SIMVERT_NORMAL: { float normal[3]; copy_v3_v3(normal, vert->no); mul_transposed_mat3_m4_v3(ob->imat, normal); normalize_v3(normal); BLI_kdtree_insert(tree, normal_tree_index++, normal); break; } } } } } /* Remove duplicated entries. */ if (tree != NULL) { BLI_kdtree_balance(tree); } /* Run .the BM operators. */ for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *ob = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(ob); BMesh *bm = em->bm; bool changed = false; BMVert *vert; /* Mesh vertex. */ BMIter iter; /* Selected verts iterator. */ BM_ITER_MESH (vert, &iter, bm, BM_VERTS_OF_MESH) { if (!BM_elem_flag_test(vert, BM_ELEM_SELECT) && !BM_elem_flag_test(vert, BM_ELEM_HIDDEN)) { bool select = false; switch (type) { case SIMVERT_EDGE: { const int num_edges = BM_vert_edge_count(vert); GSetIterator gs_iter; GSET_ITER(gs_iter, gset) { const int num_edges_iter = POINTER_AS_INT(BLI_gsetIterator_getKey(&gs_iter)); const int delta_i = num_edges - num_edges_iter; if (select_similar_compare_int(delta_i, compare)) { select = true; break; } } break; } case SIMVERT_FACE: { const int num_faces = BM_vert_face_count(vert); GSetIterator gs_iter; GSET_ITER(gs_iter, gset) { const int num_faces_iter = POINTER_AS_INT(BLI_gsetIterator_getKey(&gs_iter)); const int delta_i = num_faces - num_faces_iter; if (select_similar_compare_int(delta_i, compare)) { select = true; break; } } break; } case SIMVERT_NORMAL: { float normal[3]; copy_v3_v3(normal, vert->no); mul_transposed_mat3_m4_v3(ob->imat, normal); normalize_v3(normal); /* We are treating the normals as coordinates, the "nearest" one will * also be the one closest to the angle. */ KDTreeNearest nearest; if (BLI_kdtree_find_nearest(tree, normal, &nearest) != -1) { if (angle_normalized_v3v3(normal, nearest.co) <= thresh_radians) { select = true; } } break; } } if (select) { BM_vert_select_set(bm, vert, true); changed = true; } } } if (changed) { EDBM_selectmode_flush(em); EDBM_update_generic(em, false, false); } } MEM_freeN(objects); BLI_kdtree_free(tree); if (gset != NULL) { BLI_gset_free(gset, NULL); } return OPERATOR_FINISHED; } /** \} */ /* -------------------------------------------------------------------- */ /** \name Select Similar Operator * \{ */ static int edbm_select_similar_exec(bContext *C, wmOperator *op) { ToolSettings *ts = CTX_data_tool_settings(C); PropertyRNA *prop = RNA_struct_find_property(op->ptr, "threshold"); const int type = RNA_enum_get(op->ptr, "type"); if (!RNA_property_is_set(op->ptr, prop)) { RNA_property_float_set(op->ptr, prop, ts->select_thresh); } else { ts->select_thresh = RNA_property_float_get(op->ptr, prop); } if (type < 100) return similar_vert_select_exec(C, op); else if (type < 200) return similar_edge_select_exec(C, op); else return similar_face_select_exec(C, op); } static const EnumPropertyItem *select_similar_type_itemf( bContext *C, PointerRNA *UNUSED(ptr), PropertyRNA *UNUSED(prop), bool *r_free) { Object *obedit; if (!C) /* needed for docs and i18n tools */ return prop_similar_types; obedit = CTX_data_edit_object(C); if (obedit && obedit->type == OB_MESH) { EnumPropertyItem *item = NULL; int a, totitem = 0; BMEditMesh *em = BKE_editmesh_from_object(obedit); if (em->selectmode & SCE_SELECT_VERTEX) { for (a = SIMVERT_NORMAL; a < SIMEDGE_LENGTH; a++) { RNA_enum_items_add_value(&item, &totitem, prop_similar_types, a); } } else if (em->selectmode & SCE_SELECT_EDGE) { for (a = SIMEDGE_LENGTH; a < SIMFACE_MATERIAL; a++) { RNA_enum_items_add_value(&item, &totitem, prop_similar_types, a); } } else if (em->selectmode & SCE_SELECT_FACE) { #ifdef WITH_FREESTYLE const int a_end = SIMFACE_FREESTYLE; #else const int a_end = SIMFACE_FACEMAP; #endif for (a = SIMFACE_MATERIAL; a <= a_end; a++) { RNA_enum_items_add_value(&item, &totitem, prop_similar_types, a); } } RNA_enum_item_end(&item, &totitem); *r_free = true; return item; } return prop_similar_types; } void MESH_OT_select_similar(wmOperatorType *ot) { PropertyRNA *prop; /* identifiers */ ot->name = "Select Similar"; ot->idname = "MESH_OT_select_similar"; ot->description = "Select similar vertices, edges or faces by property types"; /* api callbacks */ ot->invoke = WM_menu_invoke; ot->exec = edbm_select_similar_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; /* properties */ prop = ot->prop = RNA_def_enum(ot->srna, "type", prop_similar_types, SIMVERT_NORMAL, "Type", ""); RNA_def_enum_funcs(prop, select_similar_type_itemf); RNA_def_enum(ot->srna, "compare", prop_similar_compare_types, SIM_CMP_EQ, "Compare", ""); RNA_def_float(ot->srna, "threshold", 0.0f, 0.0f, 1.0f, "Threshold", "", 0.0f, 1.0f); } /** \} */