/* * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2004 by Blender Foundation. * All rights reserved. */ /** \file * \ingroup edmesh */ #include #include "MEM_guardedalloc.h" #include "DNA_key_types.h" #include "DNA_material_types.h" #include "DNA_mesh_types.h" #include "DNA_meshdata_types.h" #include "DNA_modifier_types.h" #include "DNA_object_types.h" #include "DNA_scene_types.h" #include "BLI_bitmap.h" #include "BLI_heap_simple.h" #include "BLI_linklist.h" #include "BLI_linklist_stack.h" #include "BLI_listbase.h" #include "BLI_math.h" #include "BLI_rand.h" #include "BLI_sort_utils.h" #include "BLI_string.h" #include "BKE_context.h" #include "BKE_deform.h" #include "BKE_editmesh.h" #include "BKE_key.h" #include "BKE_layer.h" #include "BKE_lib_id.h" #include "BKE_main.h" #include "BKE_material.h" #include "BKE_mesh.h" #include "BKE_report.h" #include "BKE_texture.h" #include "DEG_depsgraph.h" #include "DEG_depsgraph_build.h" #include "BLT_translation.h" #include "RNA_access.h" #include "RNA_define.h" #include "RNA_enum_types.h" #include "WM_api.h" #include "WM_types.h" #include "ED_mesh.h" #include "ED_object.h" #include "ED_outliner.h" #include "ED_screen.h" #include "ED_transform.h" #include "ED_uvedit.h" #include "ED_view3d.h" #include "RE_render_ext.h" #include "UI_interface.h" #include "UI_resources.h" #include "mesh_intern.h" /* own include */ #include "bmesh_tools.h" #define USE_FACE_CREATE_SEL_EXTEND /* -------------------------------------------------------------------- */ /** \name Subdivide Operator * \{ */ static int edbm_subdivide_exec(bContext *C, wmOperator *op) { const int cuts = RNA_int_get(op->ptr, "number_cuts"); const float smooth = RNA_float_get(op->ptr, "smoothness"); const float fractal = RNA_float_get(op->ptr, "fractal") / 2.5f; const float along_normal = RNA_float_get(op->ptr, "fractal_along_normal"); const bool use_quad_tri = !RNA_boolean_get(op->ptr, "ngon"); if (use_quad_tri && RNA_enum_get(op->ptr, "quadcorner") == SUBD_CORNER_STRAIGHT_CUT) { RNA_enum_set(op->ptr, "quadcorner", SUBD_CORNER_INNERVERT); } const int quad_corner_type = RNA_enum_get(op->ptr, "quadcorner"); const int seed = RNA_int_get(op->ptr, "seed"); ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); if (!(em->bm->totedgesel || em->bm->totfacesel)) { continue; } BM_mesh_esubdivide(em->bm, BM_ELEM_SELECT, smooth, SUBD_FALLOFF_LIN, false, fractal, along_normal, cuts, SUBDIV_SELECT_ORIG, quad_corner_type, use_quad_tri, true, false, seed); EDBM_update_generic(obedit->data, true, true); } MEM_freeN(objects); return OPERATOR_FINISHED; } /* Note, these values must match delete_mesh() event values */ static const EnumPropertyItem prop_mesh_cornervert_types[] = { {SUBD_CORNER_INNERVERT, "INNERVERT", 0, "Inner Vert", ""}, {SUBD_CORNER_PATH, "PATH", 0, "Path", ""}, {SUBD_CORNER_STRAIGHT_CUT, "STRAIGHT_CUT", 0, "Straight Cut", ""}, {SUBD_CORNER_FAN, "FAN", 0, "Fan", ""}, {0, NULL, 0, NULL, NULL}, }; void MESH_OT_subdivide(wmOperatorType *ot) { PropertyRNA *prop; /* identifiers */ ot->name = "Subdivide"; ot->description = "Subdivide selected edges"; ot->idname = "MESH_OT_subdivide"; /* api callbacks */ ot->exec = edbm_subdivide_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; /* properties */ prop = RNA_def_int(ot->srna, "number_cuts", 1, 1, 100, "Number of Cuts", "", 1, 10); /* avoid re-using last var because it can cause * _very_ high poly meshes and annoy users (or worse crash) */ RNA_def_property_flag(prop, PROP_SKIP_SAVE); RNA_def_float( ot->srna, "smoothness", 0.0f, 0.0f, 1e3f, "Smoothness", "Smoothness factor", 0.0f, 1.0f); WM_operatortype_props_advanced_begin(ot); RNA_def_boolean(ot->srna, "ngon", true, "Create N-Gons", "When disabled, newly created faces are limited to 3-4 sided faces"); RNA_def_enum( ot->srna, "quadcorner", prop_mesh_cornervert_types, SUBD_CORNER_STRAIGHT_CUT, "Quad Corner Type", "How to subdivide quad corners (anything other than Straight Cut will prevent ngons)"); RNA_def_float(ot->srna, "fractal", 0.0f, 0.0f, 1e6f, "Fractal", "Fractal randomness factor", 0.0f, 1000.0f); RNA_def_float(ot->srna, "fractal_along_normal", 0.0f, 0.0f, 1.0f, "Along Normal", "Apply fractal displacement along normal only", 0.0f, 1.0f); RNA_def_int(ot->srna, "seed", 0, 0, INT_MAX, "Random Seed", "Seed for the random number generator", 0, 255); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Edge Ring Subdivide Operator * * Bridge code shares props. * * \{ */ struct EdgeRingOpSubdProps { int interp_mode; int cuts; float smooth; int profile_shape; float profile_shape_factor; }; static void mesh_operator_edgering_props(wmOperatorType *ot, const int cuts_min, const int cuts_default) { /* Note, these values must match delete_mesh() event values */ static const EnumPropertyItem prop_subd_edgering_types[] = { {SUBD_RING_INTERP_LINEAR, "LINEAR", 0, "Linear", ""}, {SUBD_RING_INTERP_PATH, "PATH", 0, "Blend Path", ""}, {SUBD_RING_INTERP_SURF, "SURFACE", 0, "Blend Surface", ""}, {0, NULL, 0, NULL, NULL}, }; PropertyRNA *prop; prop = RNA_def_int( ot->srna, "number_cuts", cuts_default, 0, 1000, "Number of Cuts", "", cuts_min, 64); RNA_def_property_flag(prop, PROP_SKIP_SAVE); RNA_def_enum(ot->srna, "interpolation", prop_subd_edgering_types, SUBD_RING_INTERP_PATH, "Interpolation", "Interpolation method"); RNA_def_float( ot->srna, "smoothness", 1.0f, 0.0f, 1e3f, "Smoothness", "Smoothness factor", 0.0f, 2.0f); /* profile-shape */ RNA_def_float(ot->srna, "profile_shape_factor", 0.0f, -1e3f, 1e3f, "Profile Factor", "How much intermediary new edges are shrunk/expanded", -2.0f, 2.0f); prop = RNA_def_property(ot->srna, "profile_shape", PROP_ENUM, PROP_NONE); RNA_def_property_enum_items(prop, rna_enum_proportional_falloff_curve_only_items); RNA_def_property_enum_default(prop, PROP_SMOOTH); RNA_def_property_ui_text(prop, "Profile Shape", "Shape of the profile"); RNA_def_property_translation_context(prop, BLT_I18NCONTEXT_ID_CURVE); /* Abusing id_curve :/ */ } static void mesh_operator_edgering_props_get(wmOperator *op, struct EdgeRingOpSubdProps *op_props) { op_props->interp_mode = RNA_enum_get(op->ptr, "interpolation"); op_props->cuts = RNA_int_get(op->ptr, "number_cuts"); op_props->smooth = RNA_float_get(op->ptr, "smoothness"); op_props->profile_shape = RNA_enum_get(op->ptr, "profile_shape"); op_props->profile_shape_factor = RNA_float_get(op->ptr, "profile_shape_factor"); } static int edbm_subdivide_edge_ring_exec(bContext *C, wmOperator *op) { ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); struct EdgeRingOpSubdProps op_props; mesh_operator_edgering_props_get(op, &op_props); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); if (em->bm->totedgesel == 0) { continue; } if (!EDBM_op_callf(em, op, "subdivide_edgering edges=%he interp_mode=%i cuts=%i smooth=%f " "profile_shape=%i profile_shape_factor=%f", BM_ELEM_SELECT, op_props.interp_mode, op_props.cuts, op_props.smooth, op_props.profile_shape, op_props.profile_shape_factor)) { continue; } EDBM_update_generic(obedit->data, true, true); } MEM_freeN(objects); return OPERATOR_FINISHED; } void MESH_OT_subdivide_edgering(wmOperatorType *ot) { /* identifiers */ ot->name = "Subdivide Edge-Ring"; ot->description = "Subdivide perpendicular edges to the selected edge ring"; ot->idname = "MESH_OT_subdivide_edgering"; /* api callbacks */ ot->exec = edbm_subdivide_edge_ring_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; /* properties */ mesh_operator_edgering_props(ot, 1, 10); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Un-Subdivide Operator * \{ */ static int edbm_unsubdivide_exec(bContext *C, wmOperator *op) { const int iterations = RNA_int_get(op->ptr, "iterations"); ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); if ((em->bm->totvertsel == 0) && (em->bm->totedgesel == 0) && (em->bm->totfacesel == 0)) { continue; } BMOperator bmop; EDBM_op_init(em, &bmop, op, "unsubdivide verts=%hv iterations=%i", BM_ELEM_SELECT, iterations); BMO_op_exec(em->bm, &bmop); if (!EDBM_op_finish(em, &bmop, op, true)) { continue; } if ((em->selectmode & SCE_SELECT_VERTEX) == 0) { EDBM_selectmode_flush_ex(em, SCE_SELECT_VERTEX); /* need to flush vert->face first */ } EDBM_selectmode_flush(em); EDBM_update_generic(obedit->data, true, true); } MEM_freeN(objects); return OPERATOR_FINISHED; } void MESH_OT_unsubdivide(wmOperatorType *ot) { /* identifiers */ ot->name = "Un-Subdivide"; ot->description = "UnSubdivide selected edges & faces"; ot->idname = "MESH_OT_unsubdivide"; /* api callbacks */ ot->exec = edbm_unsubdivide_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; /* props */ RNA_def_int( ot->srna, "iterations", 2, 1, 1000, "Iterations", "Number of times to unsubdivide", 1, 100); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Delete Operator * \{ */ /* Note, these values must match delete_mesh() event values */ enum { MESH_DELETE_VERT = 0, MESH_DELETE_EDGE = 1, MESH_DELETE_FACE = 2, MESH_DELETE_EDGE_FACE = 3, MESH_DELETE_ONLY_FACE = 4, }; static void edbm_report_delete_info(ReportList *reports, const int totelem_old[3], const int totelem_new[3]) { BKE_reportf(reports, RPT_INFO, "Removed: %d vertices, %d edges, %d faces", totelem_old[0] - totelem_new[0], totelem_old[1] - totelem_new[1], totelem_old[2] - totelem_new[2]); } static int edbm_delete_exec(bContext *C, wmOperator *op) { ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); bool changed_multi = false; for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); const int type = RNA_enum_get(op->ptr, "type"); BM_custom_loop_normals_to_vector_layer(em->bm); switch (type) { case MESH_DELETE_VERT: /* Erase Vertices */ if (!(em->bm->totvertsel && EDBM_op_callf(em, op, "delete geom=%hv context=%i", BM_ELEM_SELECT, DEL_VERTS))) { continue; } break; case MESH_DELETE_EDGE: /* Erase Edges */ if (!(em->bm->totedgesel && EDBM_op_callf(em, op, "delete geom=%he context=%i", BM_ELEM_SELECT, DEL_EDGES))) { continue; } break; case MESH_DELETE_FACE: /* Erase Faces */ if (!(em->bm->totfacesel && EDBM_op_callf(em, op, "delete geom=%hf context=%i", BM_ELEM_SELECT, DEL_FACES))) { continue; } break; case MESH_DELETE_EDGE_FACE: /* Edges and Faces */ if (!((em->bm->totedgesel || em->bm->totfacesel) && EDBM_op_callf( em, op, "delete geom=%hef context=%i", BM_ELEM_SELECT, DEL_EDGESFACES))) { continue; } break; case MESH_DELETE_ONLY_FACE: /* Only faces. */ if (!(em->bm->totfacesel && EDBM_op_callf( em, op, "delete geom=%hf context=%i", BM_ELEM_SELECT, DEL_ONLYFACES))) { continue; } break; default: BLI_assert(0); break; } changed_multi = true; EDBM_flag_disable_all(em, BM_ELEM_SELECT); BM_custom_loop_normals_from_vector_layer(em->bm, false); EDBM_update_generic(obedit->data, true, true); DEG_id_tag_update(obedit->data, ID_RECALC_SELECT); WM_event_add_notifier(C, NC_GEOM | ND_SELECT, obedit->data); } MEM_freeN(objects); return changed_multi ? OPERATOR_FINISHED : OPERATOR_CANCELLED; } void MESH_OT_delete(wmOperatorType *ot) { static const EnumPropertyItem prop_mesh_delete_types[] = { {MESH_DELETE_VERT, "VERT", 0, "Vertices", ""}, {MESH_DELETE_EDGE, "EDGE", 0, "Edges", ""}, {MESH_DELETE_FACE, "FACE", 0, "Faces", ""}, {MESH_DELETE_EDGE_FACE, "EDGE_FACE", 0, "Only Edges & Faces", ""}, {MESH_DELETE_ONLY_FACE, "ONLY_FACE", 0, "Only Faces", ""}, {0, NULL, 0, NULL, NULL}, }; /* identifiers */ ot->name = "Delete"; ot->description = "Delete selected vertices, edges or faces"; ot->idname = "MESH_OT_delete"; /* api callbacks */ ot->invoke = WM_menu_invoke; ot->exec = edbm_delete_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; /* props */ ot->prop = RNA_def_enum(ot->srna, "type", prop_mesh_delete_types, MESH_DELETE_VERT, "Type", "Method used for deleting mesh data"); RNA_def_property_flag(ot->prop, PROP_HIDDEN | PROP_SKIP_SAVE); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Delete Loose Operator * \{ */ static bool bm_face_is_loose(BMFace *f) { BMLoop *l_iter, *l_first; l_iter = l_first = BM_FACE_FIRST_LOOP(f); do { if (!BM_edge_is_boundary(l_iter->e)) { return false; } } while ((l_iter = l_iter->next) != l_first); return true; } static int edbm_delete_loose_exec(bContext *C, wmOperator *op) { ViewLayer *view_layer = CTX_data_view_layer(C); int totelem_old_sel[3]; int totelem_old[3]; uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); EDBM_mesh_stats_multi(objects, objects_len, totelem_old, totelem_old_sel); const bool use_verts = (RNA_boolean_get(op->ptr, "use_verts") && totelem_old_sel[0]); const bool use_edges = (RNA_boolean_get(op->ptr, "use_edges") && totelem_old_sel[1]); const bool use_faces = (RNA_boolean_get(op->ptr, "use_faces") && totelem_old_sel[2]); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); BMesh *bm = em->bm; BMIter iter; BM_mesh_elem_hflag_disable_all(bm, BM_VERT | BM_EDGE | BM_FACE, BM_ELEM_TAG, false); if (use_faces) { BMFace *f; BM_ITER_MESH (f, &iter, bm, BM_FACES_OF_MESH) { if (BM_elem_flag_test(f, BM_ELEM_SELECT)) { BM_elem_flag_set(f, BM_ELEM_TAG, bm_face_is_loose(f)); } } BM_mesh_delete_hflag_context(bm, BM_ELEM_TAG, DEL_FACES); } if (use_edges) { BMEdge *e; BM_ITER_MESH (e, &iter, bm, BM_EDGES_OF_MESH) { if (BM_elem_flag_test(e, BM_ELEM_SELECT)) { BM_elem_flag_set(e, BM_ELEM_TAG, BM_edge_is_wire(e)); } } BM_mesh_delete_hflag_context(bm, BM_ELEM_TAG, DEL_EDGES); } if (use_verts) { BMVert *v; BM_ITER_MESH (v, &iter, bm, BM_VERTS_OF_MESH) { if (BM_elem_flag_test(v, BM_ELEM_SELECT)) { BM_elem_flag_set(v, BM_ELEM_TAG, (v->e == NULL)); } } BM_mesh_delete_hflag_context(bm, BM_ELEM_TAG, DEL_VERTS); } EDBM_flag_disable_all(em, BM_ELEM_SELECT); EDBM_update_generic(obedit->data, true, true); } int totelem_new[3]; EDBM_mesh_stats_multi(objects, objects_len, totelem_new, NULL); edbm_report_delete_info(op->reports, totelem_old, totelem_new); MEM_freeN(objects); return OPERATOR_FINISHED; } void MESH_OT_delete_loose(wmOperatorType *ot) { /* identifiers */ ot->name = "Delete Loose"; ot->description = "Delete loose vertices, edges or faces"; ot->idname = "MESH_OT_delete_loose"; /* api callbacks */ ot->exec = edbm_delete_loose_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; /* props */ RNA_def_boolean(ot->srna, "use_verts", true, "Vertices", "Remove loose vertices"); RNA_def_boolean(ot->srna, "use_edges", true, "Edges", "Remove loose edges"); RNA_def_boolean(ot->srna, "use_faces", false, "Faces", "Remove loose faces"); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Collapse Edge Operator * \{ */ static int edbm_collapse_edge_exec(bContext *C, wmOperator *op) { ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); if (em->bm->totedgesel == 0) { continue; } if (!EDBM_op_callf(em, op, "collapse edges=%he uvs=%b", BM_ELEM_SELECT, true)) { continue; } EDBM_update_generic(obedit->data, true, true); } MEM_freeN(objects); return OPERATOR_FINISHED; } void MESH_OT_edge_collapse(wmOperatorType *ot) { /* identifiers */ ot->name = "Collapse Edges & Faces"; ot->description = "Collapse isolated edges & faces regions, merging data such as UV's and vertex colors. " "This can collapse edge-rings as well as regions of connected faces into vertices"; ot->idname = "MESH_OT_edge_collapse"; /* api callbacks */ ot->exec = edbm_collapse_edge_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; } /** \} */ /* -------------------------------------------------------------------- */ /** \name Create Edge/Face Operator * \{ */ static bool edbm_add_edge_face__smooth_get(BMesh *bm) { BMEdge *e; BMIter iter; uint vote_on_smooth[2] = {0, 0}; BM_ITER_MESH (e, &iter, bm, BM_EDGES_OF_MESH) { if (BM_elem_flag_test(e, BM_ELEM_SELECT) && e->l) { vote_on_smooth[BM_elem_flag_test_bool(e->l->f, BM_ELEM_SMOOTH)]++; } } return (vote_on_smooth[0] < vote_on_smooth[1]); } #ifdef USE_FACE_CREATE_SEL_EXTEND /** * Function used to get a fixed number of edges linked to a vertex that passes a test function. * This is used so we can request all boundary edges connected to a vertex for eg. */ static int edbm_add_edge_face_exec__vert_edge_lookup( BMVert *v, BMEdge *e_used, BMEdge **e_arr, const int e_arr_len, bool (*func)(const BMEdge *)) { BMIter iter; BMEdge *e_iter; int i = 0; BM_ITER_ELEM (e_iter, &iter, v, BM_EDGES_OF_VERT) { if (BM_elem_flag_test(e_iter, BM_ELEM_HIDDEN) == false) { if ((e_used == NULL) || (e_used != e_iter)) { if (func(e_iter)) { e_arr[i++] = e_iter; if (i >= e_arr_len) { break; } } } } } return i; } static BMElem *edbm_add_edge_face_exec__tricky_extend_sel(BMesh *bm) { BMIter iter; bool found = false; if (bm->totvertsel == 1 && bm->totedgesel == 0 && bm->totfacesel == 0) { /* first look for 2 boundary edges */ BMVert *v; BM_ITER_MESH (v, &iter, bm, BM_VERTS_OF_MESH) { if (BM_elem_flag_test(v, BM_ELEM_SELECT)) { found = true; break; } } if (found) { BMEdge *ed_pair[3]; if (((edbm_add_edge_face_exec__vert_edge_lookup(v, NULL, ed_pair, 3, BM_edge_is_wire) == 2) && (BM_edge_share_face_check(ed_pair[0], ed_pair[1]) == false)) || ((edbm_add_edge_face_exec__vert_edge_lookup(v, NULL, ed_pair, 3, BM_edge_is_boundary) == 2) && (BM_edge_share_face_check(ed_pair[0], ed_pair[1]) == false))) { BMEdge *e_other = BM_edge_exists(BM_edge_other_vert(ed_pair[0], v), BM_edge_other_vert(ed_pair[1], v)); BM_edge_select_set(bm, ed_pair[0], true); BM_edge_select_set(bm, ed_pair[1], true); if (e_other) { BM_edge_select_set(bm, e_other, true); } return (BMElem *)v; } } } else if (bm->totvertsel == 2 && bm->totedgesel == 1 && bm->totfacesel == 0) { /* first look for 2 boundary edges */ BMEdge *e; BM_ITER_MESH (e, &iter, bm, BM_EDGES_OF_MESH) { if (BM_elem_flag_test(e, BM_ELEM_SELECT)) { found = true; break; } } if (found) { BMEdge *ed_pair_v1[2]; BMEdge *ed_pair_v2[2]; if (((edbm_add_edge_face_exec__vert_edge_lookup(e->v1, e, ed_pair_v1, 2, BM_edge_is_wire) == 1) && (edbm_add_edge_face_exec__vert_edge_lookup(e->v2, e, ed_pair_v2, 2, BM_edge_is_wire) == 1) && (BM_edge_share_face_check(e, ed_pair_v1[0]) == false) && (BM_edge_share_face_check(e, ed_pair_v2[0]) == false)) || # if 1 /* better support mixed cases [#37203] */ ((edbm_add_edge_face_exec__vert_edge_lookup(e->v1, e, ed_pair_v1, 2, BM_edge_is_wire) == 1) && (edbm_add_edge_face_exec__vert_edge_lookup( e->v2, e, ed_pair_v2, 2, BM_edge_is_boundary) == 1) && (BM_edge_share_face_check(e, ed_pair_v1[0]) == false) && (BM_edge_share_face_check(e, ed_pair_v2[0]) == false)) || ((edbm_add_edge_face_exec__vert_edge_lookup( e->v1, e, ed_pair_v1, 2, BM_edge_is_boundary) == 1) && (edbm_add_edge_face_exec__vert_edge_lookup(e->v2, e, ed_pair_v2, 2, BM_edge_is_wire) == 1) && (BM_edge_share_face_check(e, ed_pair_v1[0]) == false) && (BM_edge_share_face_check(e, ed_pair_v2[0]) == false)) || # endif ((edbm_add_edge_face_exec__vert_edge_lookup( e->v1, e, ed_pair_v1, 2, BM_edge_is_boundary) == 1) && (edbm_add_edge_face_exec__vert_edge_lookup( e->v2, e, ed_pair_v2, 2, BM_edge_is_boundary) == 1) && (BM_edge_share_face_check(e, ed_pair_v1[0]) == false) && (BM_edge_share_face_check(e, ed_pair_v2[0]) == false))) { BMVert *v1_other = BM_edge_other_vert(ed_pair_v1[0], e->v1); BMVert *v2_other = BM_edge_other_vert(ed_pair_v2[0], e->v2); BMEdge *e_other = (v1_other != v2_other) ? BM_edge_exists(v1_other, v2_other) : NULL; BM_edge_select_set(bm, ed_pair_v1[0], true); BM_edge_select_set(bm, ed_pair_v2[0], true); if (e_other) { BM_edge_select_set(bm, e_other, true); } return (BMElem *)e; } } } return NULL; } static void edbm_add_edge_face_exec__tricky_finalize_sel(BMesh *bm, BMElem *ele_desel, BMFace *f) { /* now we need to find the edge that isnt connected to this element */ BM_select_history_clear(bm); /* Notes on hidden geometry: * - Un-hide the face since its possible hidden was copied when copying * surrounding face attributes. * - Un-hide before adding to select history * since we may extend into an existing, hidden vert/edge. */ BM_elem_flag_disable(f, BM_ELEM_HIDDEN); BM_face_select_set(bm, f, false); if (ele_desel->head.htype == BM_VERT) { BMLoop *l = BM_face_vert_share_loop(f, (BMVert *)ele_desel); BLI_assert(f->len == 3); BM_vert_select_set(bm, (BMVert *)ele_desel, false); BM_edge_select_set(bm, l->next->e, true); BM_select_history_store(bm, l->next->e); } else { BMLoop *l = BM_face_edge_share_loop(f, (BMEdge *)ele_desel); BLI_assert(f->len == 4 || f->len == 3); BM_edge_select_set(bm, (BMEdge *)ele_desel, false); if (f->len == 4) { BMEdge *e_active = l->next->next->e; BM_elem_flag_disable(e_active, BM_ELEM_HIDDEN); BM_edge_select_set(bm, e_active, true); BM_select_history_store(bm, e_active); } else { BMVert *v_active = l->next->next->v; BM_elem_flag_disable(v_active, BM_ELEM_HIDDEN); BM_vert_select_set(bm, v_active, true); BM_select_history_store(bm, v_active); } } } #endif /* USE_FACE_CREATE_SEL_EXTEND */ static int edbm_add_edge_face_exec(bContext *C, wmOperator *op) { /* when this is used to dissolve we could avoid this, but checking isnt too slow */ bool changed_multi = false; ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); if ((em->bm->totvertsel == 0) && (em->bm->totedgesel == 0) && (em->bm->totvertsel == 0)) { continue; } bool use_smooth = edbm_add_edge_face__smooth_get(em->bm); int totedge_orig = em->bm->totedge; int totface_orig = em->bm->totface; BMOperator bmop; #ifdef USE_FACE_CREATE_SEL_EXTEND BMElem *ele_desel; BMFace *ele_desel_face; /* be extra clever, figure out if a partial selection should be extended so we can create * geometry with single vert or single edge selection. */ ele_desel = edbm_add_edge_face_exec__tricky_extend_sel(em->bm); #endif if (!EDBM_op_init(em, &bmop, op, "contextual_create geom=%hfev mat_nr=%i use_smooth=%b", BM_ELEM_SELECT, em->mat_nr, use_smooth)) { continue; } BMO_op_exec(em->bm, &bmop); /* cancel if nothing was done */ if ((totedge_orig == em->bm->totedge) && (totface_orig == em->bm->totface)) { EDBM_op_finish(em, &bmop, op, true); continue; } #ifdef USE_FACE_CREATE_SEL_EXTEND /* normally we would want to leave the new geometry selected, * but being able to press F many times to add geometry is too useful! */ if (ele_desel && (BMO_slot_buffer_count(bmop.slots_out, "faces.out") == 1) && (ele_desel_face = BMO_slot_buffer_get_first(bmop.slots_out, "faces.out"))) { edbm_add_edge_face_exec__tricky_finalize_sel(em->bm, ele_desel, ele_desel_face); } else #endif { /* Newly created faces may include existing hidden edges, * copying face data from surrounding, may have copied hidden face flag too. * * Important that faces use flushing since 'edges.out' * wont include hidden edges that already existed. */ BMO_slot_buffer_hflag_disable( em->bm, bmop.slots_out, "faces.out", BM_FACE, BM_ELEM_HIDDEN, true); BMO_slot_buffer_hflag_disable( em->bm, bmop.slots_out, "edges.out", BM_EDGE, BM_ELEM_HIDDEN, false); BMO_slot_buffer_hflag_enable( em->bm, bmop.slots_out, "faces.out", BM_FACE, BM_ELEM_SELECT, true); BMO_slot_buffer_hflag_enable( em->bm, bmop.slots_out, "edges.out", BM_EDGE, BM_ELEM_SELECT, true); } if (!EDBM_op_finish(em, &bmop, op, true)) { continue; } EDBM_update_generic(obedit->data, true, true); changed_multi = true; } MEM_freeN(objects); if (!changed_multi) { return OPERATOR_CANCELLED; } return OPERATOR_FINISHED; } void MESH_OT_edge_face_add(wmOperatorType *ot) { /* identifiers */ ot->name = "Make Edge/Face"; ot->description = "Add an edge or face to selected"; ot->idname = "MESH_OT_edge_face_add"; /* api callbacks */ ot->exec = edbm_add_edge_face_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; } /** \} */ /* -------------------------------------------------------------------- */ /** \name Mark Edge (Seam) Operator * \{ */ static int edbm_mark_seam_exec(bContext *C, wmOperator *op) { Scene *scene = CTX_data_scene(C); ViewLayer *view_layer = CTX_data_view_layer(C); BMEdge *eed; BMIter iter; const bool clear = RNA_boolean_get(op->ptr, "clear"); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); BMesh *bm = em->bm; if (bm->totedgesel == 0) { continue; } if (clear) { BM_ITER_MESH (eed, &iter, bm, BM_EDGES_OF_MESH) { if (!BM_elem_flag_test(eed, BM_ELEM_SELECT) || BM_elem_flag_test(eed, BM_ELEM_HIDDEN)) { continue; } BM_elem_flag_disable(eed, BM_ELEM_SEAM); } } else { BM_ITER_MESH (eed, &iter, bm, BM_EDGES_OF_MESH) { if (!BM_elem_flag_test(eed, BM_ELEM_SELECT) || BM_elem_flag_test(eed, BM_ELEM_HIDDEN)) { continue; } BM_elem_flag_enable(eed, BM_ELEM_SEAM); } } } ED_uvedit_live_unwrap(scene, objects, objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; EDBM_update_generic(obedit->data, true, false); } MEM_freeN(objects); return OPERATOR_FINISHED; } void MESH_OT_mark_seam(wmOperatorType *ot) { PropertyRNA *prop; /* identifiers */ ot->name = "Mark Seam"; ot->idname = "MESH_OT_mark_seam"; ot->description = "(Un)mark selected edges as a seam"; /* api callbacks */ ot->exec = edbm_mark_seam_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; prop = RNA_def_boolean(ot->srna, "clear", 0, "Clear", ""); RNA_def_property_flag(prop, PROP_HIDDEN | PROP_SKIP_SAVE); WM_operatortype_props_advanced_begin(ot); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Mark Edge (Sharp) Operator * \{ */ static int edbm_mark_sharp_exec(bContext *C, wmOperator *op) { BMEdge *eed; BMIter iter; const bool clear = RNA_boolean_get(op->ptr, "clear"); const bool use_verts = RNA_boolean_get(op->ptr, "use_verts"); ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); BMesh *bm = em->bm; if ((use_verts && bm->totvertsel == 0) || (!use_verts && bm->totedgesel == 0)) { continue; } BM_ITER_MESH (eed, &iter, bm, BM_EDGES_OF_MESH) { if (use_verts) { if (!(BM_elem_flag_test(eed->v1, BM_ELEM_SELECT) || BM_elem_flag_test(eed->v2, BM_ELEM_SELECT))) { continue; } } else if (!BM_elem_flag_test(eed, BM_ELEM_SELECT)) { continue; } BM_elem_flag_set(eed, BM_ELEM_SMOOTH, clear); } EDBM_update_generic(obedit->data, true, false); } MEM_freeN(objects); return OPERATOR_FINISHED; } void MESH_OT_mark_sharp(wmOperatorType *ot) { PropertyRNA *prop; /* identifiers */ ot->name = "Mark Sharp"; ot->idname = "MESH_OT_mark_sharp"; ot->description = "(Un)mark selected edges as sharp"; /* api callbacks */ ot->exec = edbm_mark_sharp_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; prop = RNA_def_boolean(ot->srna, "clear", false, "Clear", ""); RNA_def_property_flag(prop, PROP_HIDDEN | PROP_SKIP_SAVE); prop = RNA_def_boolean( ot->srna, "use_verts", false, "Vertices", "Consider vertices instead of edges to select which edges to (un)tag as sharp"); RNA_def_property_flag(prop, PROP_SKIP_SAVE); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Connect Vertex Path Operator * \{ */ static bool edbm_connect_vert_pair(BMEditMesh *em, struct Mesh *me, wmOperator *op) { BMesh *bm = em->bm; BMOperator bmop; const int verts_len = bm->totvertsel; bool is_pair = (verts_len == 2); int len = 0; bool check_degenerate = true; BMVert **verts; bool checks_succeded = true; /* sanity check */ if (verts_len < 2) { return false; } verts = MEM_mallocN(sizeof(*verts) * verts_len, __func__); { BMIter iter; BMVert *v; int i = 0; BM_ITER_MESH (v, &iter, bm, BM_VERTS_OF_MESH) { if (BM_elem_flag_test(v, BM_ELEM_SELECT)) { verts[i++] = v; } } if (BM_vert_pair_share_face_check_cb( verts[0], verts[1], BM_elem_cb_check_hflag_disabled_simple(BMFace *, BM_ELEM_HIDDEN))) { check_degenerate = false; is_pair = false; } } if (is_pair) { if (!EDBM_op_init(em, &bmop, op, "connect_vert_pair verts=%eb verts_exclude=%hv faces_exclude=%hf", verts, verts_len, BM_ELEM_HIDDEN, BM_ELEM_HIDDEN)) { checks_succeded = false; } } else { if (!EDBM_op_init(em, &bmop, op, "connect_verts verts=%eb faces_exclude=%hf check_degenerate=%b", verts, verts_len, BM_ELEM_HIDDEN, check_degenerate)) { checks_succeded = false; } } if (checks_succeded) { BM_custom_loop_normals_to_vector_layer(bm); BMO_op_exec(bm, &bmop); len = BMO_slot_get(bmop.slots_out, "edges.out")->len; if (len && is_pair) { /* new verts have been added, we have to select the edges, not just flush */ BMO_slot_buffer_hflag_enable( em->bm, bmop.slots_out, "edges.out", BM_EDGE, BM_ELEM_SELECT, true); } if (!EDBM_op_finish(em, &bmop, op, true)) { len = 0; } else { /* so newly created edges get the selection state from the vertex */ EDBM_selectmode_flush(em); BM_custom_loop_normals_from_vector_layer(bm, false); EDBM_update_generic(me, true, true); } } MEM_freeN(verts); return len; } static int edbm_vert_connect_exec(bContext *C, wmOperator *op) { ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; uint failed_objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); if (!edbm_connect_vert_pair(em, obedit->data, op)) { failed_objects_len++; } } MEM_freeN(objects); return failed_objects_len == objects_len ? OPERATOR_CANCELLED : OPERATOR_FINISHED; } void MESH_OT_vert_connect(wmOperatorType *ot) { /* identifiers */ ot->name = "Vertex Connect"; ot->idname = "MESH_OT_vert_connect"; ot->description = "Connect selected vertices of faces, splitting the face"; /* api callbacks */ ot->exec = edbm_vert_connect_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; } /** \} */ /* -------------------------------------------------------------------- */ /** \name Connect Vertex Path Operator * \{ */ /** * check that endpoints are verts and only have a single selected edge connected. */ static bool bm_vert_is_select_history_open(BMesh *bm) { BMEditSelection *ele_a = bm->selected.first; BMEditSelection *ele_b = bm->selected.last; if ((ele_a->htype == BM_VERT) && (ele_b->htype == BM_VERT)) { if ((BM_iter_elem_count_flag(BM_EDGES_OF_VERT, (BMVert *)ele_a->ele, BM_ELEM_SELECT, true) == 1) && (BM_iter_elem_count_flag(BM_EDGES_OF_VERT, (BMVert *)ele_b->ele, BM_ELEM_SELECT, true) == 1)) { return true; } } return false; } static bool bm_vert_connect_pair(BMesh *bm, BMVert *v_a, BMVert *v_b) { BMOperator bmop; BMVert **verts; const int totedge_orig = bm->totedge; BMO_op_init(bm, &bmop, BMO_FLAG_DEFAULTS, "connect_vert_pair"); verts = BMO_slot_buffer_alloc(&bmop, bmop.slots_in, "verts", 2); verts[0] = v_a; verts[1] = v_b; BM_vert_normal_update(verts[0]); BM_vert_normal_update(verts[1]); BMO_op_exec(bm, &bmop); BMO_slot_buffer_hflag_enable(bm, bmop.slots_out, "edges.out", BM_EDGE, BM_ELEM_SELECT, true); BMO_op_finish(bm, &bmop); return (bm->totedge != totedge_orig); } static bool bm_vert_connect_select_history(BMesh *bm) { /* Logic is as follows: * * - If there are any isolated/wire verts - connect as edges. * - Otherwise connect faces. * - If all edges have been created already, closed the loop. */ if (BLI_listbase_count_at_most(&bm->selected, 2) == 2 && (bm->totvertsel > 2)) { BMEditSelection *ese; int tot = 0; bool changed = false; bool has_wire = false; // bool all_verts; /* ensure all verts have history */ for (ese = bm->selected.first; ese; ese = ese->next, tot++) { BMVert *v; if (ese->htype != BM_VERT) { break; } v = (BMVert *)ese->ele; if ((has_wire == false) && ((v->e == NULL) || BM_vert_is_wire(v))) { has_wire = true; } } // all_verts = (ese == NULL); if (has_wire == false) { /* all verts have faces , connect verts via faces! */ if (tot == bm->totvertsel) { BMEditSelection *ese_last; ese_last = bm->selected.first; ese = ese_last->next; do { if (BM_edge_exists((BMVert *)ese_last->ele, (BMVert *)ese->ele)) { /* pass, edge exists (and will be selected) */ } else { changed |= bm_vert_connect_pair(bm, (BMVert *)ese_last->ele, (BMVert *)ese->ele); } } while ((void)(ese_last = ese), (ese = ese->next)); if (changed) { return true; } } if (changed == false) { /* existing loops: close the selection */ if (bm_vert_is_select_history_open(bm)) { changed |= bm_vert_connect_pair(bm, (BMVert *)((BMEditSelection *)bm->selected.first)->ele, (BMVert *)((BMEditSelection *)bm->selected.last)->ele); if (changed) { return true; } } } } else { /* no faces, simply connect the verts by edges */ BMEditSelection *ese_prev; ese_prev = bm->selected.first; ese = ese_prev->next; do { if (BM_edge_exists((BMVert *)ese_prev->ele, (BMVert *)ese->ele)) { /* pass, edge exists (and will be selected) */ } else { BMEdge *e; e = BM_edge_create(bm, (BMVert *)ese_prev->ele, (BMVert *)ese->ele, NULL, 0); BM_edge_select_set(bm, e, true); changed = true; } } while ((void)(ese_prev = ese), (ese = ese->next)); if (changed == false) { /* existing loops: close the selection */ if (bm_vert_is_select_history_open(bm)) { BMEdge *e; ese_prev = bm->selected.first; ese = bm->selected.last; e = BM_edge_create(bm, (BMVert *)ese_prev->ele, (BMVert *)ese->ele, NULL, 0); BM_edge_select_set(bm, e, true); } } return true; } } return false; } /** * Convert an edge selection to a temp vertex selection * (which must be cleared after use as a path to connect). */ static bool bm_vert_connect_select_history_edge_to_vert_path(BMesh *bm, ListBase *r_selected) { ListBase selected_orig = {NULL, NULL}; BMEditSelection *ese; int edges_len = 0; bool side = false; /* first check all edges are OK */ for (ese = bm->selected.first; ese; ese = ese->next) { if (ese->htype == BM_EDGE) { edges_len += 1; } else { return false; } } /* if this is a mixed selection, bail out! */ if (bm->totedgesel != edges_len) { return false; } SWAP(ListBase, bm->selected, selected_orig); /* convert edge selection into 2 ordered loops (where the first edge ends up in the middle) */ for (ese = selected_orig.first; ese; ese = ese->next) { BMEdge *e_curr = (BMEdge *)ese->ele; BMEdge *e_prev = ese->prev ? (BMEdge *)ese->prev->ele : NULL; BMLoop *l_curr; BMLoop *l_prev; BMVert *v; if (e_prev) { BMFace *f = BM_edge_pair_share_face_by_len(e_curr, e_prev, &l_curr, &l_prev, true); if (f) { if ((e_curr->v1 != l_curr->v) == (e_prev->v1 != l_prev->v)) { side = !side; } } else if (is_quad_flip_v3(e_curr->v1->co, e_curr->v2->co, e_prev->v2->co, e_prev->v1->co)) { side = !side; } } v = (&e_curr->v1)[side]; if (!bm->selected.last || (BMVert *)((BMEditSelection *)bm->selected.last)->ele != v) { BM_select_history_store_notest(bm, v); } v = (&e_curr->v1)[!side]; if (!bm->selected.first || (BMVert *)((BMEditSelection *)bm->selected.first)->ele != v) { BM_select_history_store_head_notest(bm, v); } e_prev = e_curr; } *r_selected = bm->selected; bm->selected = selected_orig; return true; } static int edbm_vert_connect_path_exec(bContext *C, wmOperator *op) { ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; uint failed_selection_order_len = 0; uint failed_connect_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); BMesh *bm = em->bm; const bool is_pair = (em->bm->totvertsel == 2); ListBase selected_orig = {NULL, NULL}; if (bm->totvertsel == 0) { continue; } /* when there is only 2 vertices, we can ignore selection order */ if (is_pair) { if (!edbm_connect_vert_pair(em, obedit->data, op)) { failed_connect_len++; } continue; } if (bm->selected.first) { BMEditSelection *ese = bm->selected.first; if (ese->htype == BM_EDGE) { if (bm_vert_connect_select_history_edge_to_vert_path(bm, &selected_orig)) { SWAP(ListBase, bm->selected, selected_orig); } } } BM_custom_loop_normals_to_vector_layer(bm); if (bm_vert_connect_select_history(bm)) { EDBM_selectmode_flush(em); BM_custom_loop_normals_from_vector_layer(bm, false); EDBM_update_generic(obedit->data, true, true); } else { failed_selection_order_len++; } if (!BLI_listbase_is_empty(&selected_orig)) { BM_select_history_clear(bm); bm->selected = selected_orig; } } MEM_freeN(objects); if (failed_selection_order_len == objects_len) { BKE_report(op->reports, RPT_ERROR, "Invalid selection order"); return OPERATOR_CANCELLED; } else if (failed_connect_len == objects_len) { BKE_report(op->reports, RPT_ERROR, "Could not connect vertices"); return OPERATOR_CANCELLED; } return OPERATOR_FINISHED; } void MESH_OT_vert_connect_path(wmOperatorType *ot) { /* identifiers */ ot->name = "Vertex Connect Path"; ot->idname = "MESH_OT_vert_connect_path"; ot->description = "Connect vertices by their selection order, creating edges, splitting faces"; /* api callbacks */ ot->exec = edbm_vert_connect_path_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; } /** \} */ /* -------------------------------------------------------------------- */ /** \name Connect Concave Operator * \{ */ static int edbm_vert_connect_concave_exec(bContext *C, wmOperator *op) { ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); if (em->bm->totfacesel == 0) { continue; } if (!EDBM_op_call_and_selectf( em, op, "faces.out", true, "connect_verts_concave faces=%hf", BM_ELEM_SELECT)) { continue; } EDBM_update_generic(obedit->data, true, true); } MEM_freeN(objects); return OPERATOR_FINISHED; } void MESH_OT_vert_connect_concave(wmOperatorType *ot) { /* identifiers */ ot->name = "Split Concave Faces"; ot->idname = "MESH_OT_vert_connect_concave"; ot->description = "Make all faces convex"; /* api callbacks */ ot->exec = edbm_vert_connect_concave_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; } /** \} */ /* -------------------------------------------------------------------- */ /** \name Split Non-Planar Faces Operator * \{ */ static int edbm_vert_connect_nonplaner_exec(bContext *C, wmOperator *op) { ViewLayer *view_layer = CTX_data_view_layer(C); const float angle_limit = RNA_float_get(op->ptr, "angle_limit"); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); if (em->bm->totfacesel == 0) { continue; } if (!EDBM_op_call_and_selectf(em, op, "faces.out", true, "connect_verts_nonplanar faces=%hf angle_limit=%f", BM_ELEM_SELECT, angle_limit)) { continue; } EDBM_update_generic(obedit->data, true, true); } MEM_freeN(objects); return OPERATOR_FINISHED; } void MESH_OT_vert_connect_nonplanar(wmOperatorType *ot) { PropertyRNA *prop; /* identifiers */ ot->name = "Split Non-Planar Faces"; ot->idname = "MESH_OT_vert_connect_nonplanar"; ot->description = "Split non-planar faces that exceed the angle threshold"; /* api callbacks */ ot->exec = edbm_vert_connect_nonplaner_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; /* props */ prop = RNA_def_float_rotation(ot->srna, "angle_limit", 0, NULL, 0.0f, DEG2RADF(180.0f), "Max Angle", "Angle limit", 0.0f, DEG2RADF(180.0f)); RNA_def_property_float_default(prop, DEG2RADF(5.0f)); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Make Planar Faces Operator * \{ */ static int edbm_face_make_planar_exec(bContext *C, wmOperator *op) { ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); const int repeat = RNA_int_get(op->ptr, "repeat"); const float fac = RNA_float_get(op->ptr, "factor"); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); if (em->bm->totfacesel == 0) { continue; } if (!EDBM_op_callf(em, op, "planar_faces faces=%hf iterations=%i factor=%f", BM_ELEM_SELECT, repeat, fac)) { continue; } EDBM_update_generic(obedit->data, true, true); } MEM_freeN(objects); return OPERATOR_FINISHED; } void MESH_OT_face_make_planar(wmOperatorType *ot) { /* identifiers */ ot->name = "Make Planar Faces"; ot->idname = "MESH_OT_face_make_planar"; ot->description = "Flatten selected faces"; /* api callbacks */ ot->exec = edbm_face_make_planar_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; /* props */ RNA_def_float(ot->srna, "factor", 1.0f, -10.0f, 10.0f, "Factor", "", 0.0f, 1.0f); RNA_def_int(ot->srna, "repeat", 1, 1, 10000, "Iterations", "", 1, 200); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Split Edge Operator * \{ */ static bool edbm_edge_split_selected_edges(wmOperator *op, Object *obedit, BMEditMesh *em) { BMesh *bm = em->bm; if (bm->totedgesel == 0) { return false; } if (!EDBM_op_call_and_selectf( em, op, "edges.out", false, "split_edges edges=%he", BM_ELEM_SELECT)) { return false; } EDBM_select_flush(em); EDBM_update_generic(obedit->data, true, true); return true; } static bool edbm_edge_split_selected_verts(wmOperator *op, Object *obedit, BMEditMesh *em) { BMesh *bm = em->bm; /* Note that tracking vertices through the 'split_edges' operator is complicated. * Instead, tag loops for selection. */ if (bm->totvertsel == 0) { return false; } /* Flush from vertices to edges. */ BMIter iter; BMEdge *eed; BM_ITER_MESH (eed, &iter, bm, BM_EDGES_OF_MESH) { BM_elem_flag_disable(eed, BM_ELEM_TAG); if (eed->l != NULL) { if (!BM_elem_flag_test(eed, BM_ELEM_HIDDEN) && (BM_elem_flag_test(eed->v1, BM_ELEM_SELECT) || BM_elem_flag_test(eed->v2, BM_ELEM_SELECT))) { BM_elem_flag_enable(eed, BM_ELEM_TAG); } /* Store selection in loop tags. */ BMLoop *l_iter = eed->l; do { BM_elem_flag_set(l_iter, BM_ELEM_TAG, BM_elem_flag_test(l_iter->v, BM_ELEM_SELECT)); } while ((l_iter = l_iter->radial_next) != eed->l); } } if (!EDBM_op_callf(em, op, "split_edges edges=%he verts=%hv use_verts=%b", BM_ELEM_TAG, BM_ELEM_SELECT, true)) { return false; } BM_ITER_MESH (eed, &iter, em->bm, BM_EDGES_OF_MESH) { if (eed->l != NULL) { BMLoop *l_iter = eed->l; do { if (BM_elem_flag_test(l_iter, BM_ELEM_TAG)) { BM_vert_select_set(em->bm, l_iter->v, true); } } while ((l_iter = l_iter->radial_next) != eed->l); } else { /* Split out wire. */ for (int i = 0; i < 2; i++) { BMVert *v = *(&eed->v1 + i); if (BM_elem_flag_test(v, BM_ELEM_SELECT)) { if (eed != BM_DISK_EDGE_NEXT(eed, v)) { BM_vert_separate(bm, v, &eed, 1, true, NULL, NULL); } } } } } EDBM_select_flush(em); EDBM_update_generic(obedit->data, true, true); return true; } static int edbm_edge_split_exec(bContext *C, wmOperator *op) { const int type = RNA_enum_get(op->ptr, "type"); ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); switch (type) { case BM_VERT: if (!edbm_edge_split_selected_verts(op, obedit, em)) { continue; } break; case BM_EDGE: if (!edbm_edge_split_selected_edges(op, obedit, em)) { continue; } break; default: BLI_assert(0); } } MEM_freeN(objects); return OPERATOR_FINISHED; } void MESH_OT_edge_split(wmOperatorType *ot) { /* identifiers */ ot->name = "Edge Split"; ot->idname = "MESH_OT_edge_split"; ot->description = "Split selected edges so that each neighbor face gets its own copy"; /* api callbacks */ ot->exec = edbm_edge_split_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; /* properties */ static const EnumPropertyItem merge_type_items[] = { {BM_EDGE, "EDGE", 0, "Faces by Edges", "Split faces along selected edges"}, {BM_VERT, "VERT", 0, "Faces & Edges by Vertices", "Split faces & edges connected to selected vertices"}, {0, NULL, 0, NULL, NULL}, }; ot->prop = RNA_def_enum( ot->srna, "type", merge_type_items, BM_EDGE, "Type", "Method to use for splitting"); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Duplicate Operator * \{ */ static int edbm_duplicate_exec(bContext *C, wmOperator *op) { ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); if (em->bm->totvertsel == 0) { continue; } BMOperator bmop; BMesh *bm = em->bm; EDBM_op_init(em, &bmop, op, "duplicate geom=%hvef use_select_history=%b use_edge_flip_from_face=%b", BM_ELEM_SELECT, true, true); BMO_op_exec(bm, &bmop); /* de-select all would clear otherwise */ BM_SELECT_HISTORY_BACKUP(bm); EDBM_flag_disable_all(em, BM_ELEM_SELECT); BMO_slot_buffer_hflag_enable( bm, bmop.slots_out, "geom.out", BM_ALL_NOLOOP, BM_ELEM_SELECT, true); /* rebuild editselection */ BM_SELECT_HISTORY_RESTORE(bm); if (!EDBM_op_finish(em, &bmop, op, true)) { continue; } EDBM_update_generic(obedit->data, true, true); } MEM_freeN(objects); return OPERATOR_FINISHED; } static int edbm_duplicate_invoke(bContext *C, wmOperator *op, const wmEvent *UNUSED(event)) { WM_cursor_wait(1); edbm_duplicate_exec(C, op); WM_cursor_wait(0); return OPERATOR_FINISHED; } void MESH_OT_duplicate(wmOperatorType *ot) { /* identifiers */ ot->name = "Duplicate"; ot->description = "Duplicate selected vertices, edges or faces"; ot->idname = "MESH_OT_duplicate"; /* api callbacks */ ot->invoke = edbm_duplicate_invoke; ot->exec = edbm_duplicate_exec; ot->poll = ED_operator_editmesh; /* to give to transform */ RNA_def_int(ot->srna, "mode", TFM_TRANSLATION, 0, INT_MAX, "Mode", "", 0, INT_MAX); } static BMLoopNorEditDataArray *flip_custom_normals_init_data(BMesh *bm) { BMLoopNorEditDataArray *lnors_ed_arr = NULL; if (CustomData_has_layer(&bm->ldata, CD_CUSTOMLOOPNORMAL)) { /* The mesh has custom normal data, update these too. * Otherwise they will be left in a mangled state. */ BM_lnorspace_update(bm); lnors_ed_arr = BM_loop_normal_editdata_array_init(bm, true); } return lnors_ed_arr; } static bool flip_custom_normals(BMesh *bm, BMLoopNorEditDataArray *lnors_ed_arr) { if (!lnors_ed_arr) { return false; } if (lnors_ed_arr->totloop == 0) { /* No loops normals to flip, exit early! */ return false; } bm->spacearr_dirty |= BM_SPACEARR_DIRTY_ALL; BM_lnorspace_update(bm); /* We need to recreate the custom normal array because the clnors_data will * be mangled because we swapped the loops around when we flipped the faces. */ BMLoopNorEditDataArray *lnors_ed_arr_new_full = BM_loop_normal_editdata_array_init(bm, true); { /* We need to recalculate all loop normals in the affected area. Even the ones that are not * going to be flipped because the clnors data is mangled. */ BMLoopNorEditData *lnor_ed_new_full = lnors_ed_arr_new_full->lnor_editdata; for (int i = 0; i < lnors_ed_arr_new_full->totloop; i++, lnor_ed_new_full++) { BMLoopNorEditData *lnor_ed = lnors_ed_arr->lidx_to_lnor_editdata[lnor_ed_new_full->loop_index]; BLI_assert(lnor_ed != NULL); BKE_lnor_space_custom_normal_to_data( bm->lnor_spacearr->lspacearr[lnor_ed_new_full->loop_index], lnor_ed->nloc, lnor_ed_new_full->clnors_data); } } BMFace *f; BMLoop *l; BMIter iter_f, iter_l; BM_ITER_MESH (f, &iter_f, bm, BM_FACES_OF_MESH) { if (!BM_elem_flag_test(f, BM_ELEM_SELECT)) { continue; } /* Flip all the custom loop normals on the selected faces. */ BM_ITER_ELEM (l, &iter_l, f, BM_LOOPS_OF_FACE) { int loop_index = BM_elem_index_get(l); BMLoopNorEditData *lnor_ed = lnors_ed_arr->lidx_to_lnor_editdata[loop_index]; BMLoopNorEditData *lnor_ed_new = lnors_ed_arr_new_full->lidx_to_lnor_editdata[loop_index]; BLI_assert(lnor_ed != NULL && lnor_ed_new != NULL); negate_v3(lnor_ed->nloc); BKE_lnor_space_custom_normal_to_data( bm->lnor_spacearr->lspacearr[loop_index], lnor_ed->nloc, lnor_ed_new->clnors_data); } } BM_loop_normal_editdata_array_free(lnors_ed_arr_new_full); return true; } /** \} */ /* -------------------------------------------------------------------- */ /** \name Flip Normals Operator * \{ */ static int edbm_flip_normals_exec(bContext *C, wmOperator *op) { const bool only_clnors = RNA_boolean_get(op->ptr, "only_clnors"); ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); if (only_clnors) { if (CustomData_has_layer(&em->bm->ldata, CD_CUSTOMLOOPNORMAL)) { /* The mesh has custom normal data, flip them. */ BMesh *bm = em->bm; BM_lnorspace_update(bm); BMLoopNorEditDataArray *lnors_ed_arr = BM_loop_normal_editdata_array_init(bm, false); BMLoopNorEditData *lnor_ed = lnors_ed_arr->lnor_editdata; for (int i = 0; i < lnors_ed_arr->totloop; i++, lnor_ed++) { negate_v3(lnor_ed->nloc); BKE_lnor_space_custom_normal_to_data(bm->lnor_spacearr->lspacearr[lnor_ed->loop_index], lnor_ed->nloc, lnor_ed->clnors_data); } BM_loop_normal_editdata_array_free(lnors_ed_arr); EDBM_update_generic(obedit->data, true, false); } continue; } if (em->bm->totfacesel == 0) { continue; } bool has_flipped_faces = false; /* See if we have any custom normals to flip. */ BMLoopNorEditDataArray *lnors_ed_arr = flip_custom_normals_init_data(em->bm); if (EDBM_op_callf(em, op, "reverse_faces faces=%hf flip_multires=%b", BM_ELEM_SELECT, true)) { has_flipped_faces = true; } if (flip_custom_normals(em->bm, lnors_ed_arr) || has_flipped_faces) { EDBM_update_generic(obedit->data, true, false); } if (lnors_ed_arr != NULL) { BM_loop_normal_editdata_array_free(lnors_ed_arr); } } MEM_freeN(objects); return OPERATOR_FINISHED; } void MESH_OT_flip_normals(wmOperatorType *ot) { /* identifiers */ ot->name = "Flip Normals"; ot->description = "Flip the direction of selected faces' normals (and of their vertices)"; ot->idname = "MESH_OT_flip_normals"; /* api callbacks */ ot->exec = edbm_flip_normals_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; RNA_def_boolean(ot->srna, "only_clnors", false, "Custom Normals Only", "Only flip the custom loop normals of the selected elements"); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Rotate Edge Operator * \{ */ /** * Rotate the edges between selected faces, otherwise rotate the selected edges. */ static int edbm_edge_rotate_selected_exec(bContext *C, wmOperator *op) { BMEdge *eed; BMIter iter; const bool use_ccw = RNA_boolean_get(op->ptr, "use_ccw"); int tot_rotate_all = 0, tot_failed_all = 0; bool no_selected_edges = true, invalid_selected_edges = true; ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); int tot = 0; if (em->bm->totedgesel == 0) { continue; } no_selected_edges = false; /* first see if we have two adjacent faces */ BM_ITER_MESH (eed, &iter, em->bm, BM_EDGES_OF_MESH) { BM_elem_flag_disable(eed, BM_ELEM_TAG); if (BM_elem_flag_test(eed, BM_ELEM_SELECT)) { BMFace *fa, *fb; if (BM_edge_face_pair(eed, &fa, &fb)) { /* if both faces are selected we rotate between them, * otherwise - rotate between 2 unselected - but not mixed */ if (BM_elem_flag_test(fa, BM_ELEM_SELECT) == BM_elem_flag_test(fb, BM_ELEM_SELECT)) { BM_elem_flag_enable(eed, BM_ELEM_TAG); tot++; } } } } /* ok, we don't have two adjacent faces, but we do have two selected ones. * that's an error condition.*/ if (tot == 0) { continue; } invalid_selected_edges = false; BMOperator bmop; EDBM_op_init(em, &bmop, op, "rotate_edges edges=%he use_ccw=%b", BM_ELEM_TAG, use_ccw); /* avoids leaving old verts selected which can be a problem running multiple times, * since this means the edges become selected around the face * which then attempt to rotate */ BMO_slot_buffer_hflag_disable(em->bm, bmop.slots_in, "edges", BM_EDGE, BM_ELEM_SELECT, true); BMO_op_exec(em->bm, &bmop); /* edges may rotate into hidden vertices, if this does _not_ run we get an illogical state */ BMO_slot_buffer_hflag_disable( em->bm, bmop.slots_out, "edges.out", BM_EDGE, BM_ELEM_HIDDEN, true); BMO_slot_buffer_hflag_enable( em->bm, bmop.slots_out, "edges.out", BM_EDGE, BM_ELEM_SELECT, true); const int tot_rotate = BMO_slot_buffer_count(bmop.slots_out, "edges.out"); const int tot_failed = tot - tot_rotate; tot_rotate_all += tot_rotate; tot_failed_all += tot_failed; if (tot_failed != 0) { /* If some edges fail to rotate, we need to re-select them, * otherwise we can end up with invalid selection * (unselected edge between 2 selected faces). */ BM_mesh_elem_hflag_enable_test(em->bm, BM_EDGE, BM_ELEM_SELECT, true, false, BM_ELEM_TAG); } EDBM_selectmode_flush(em); if (!EDBM_op_finish(em, &bmop, op, true)) { continue; } EDBM_update_generic(obedit->data, true, true); } MEM_freeN(objects); if (no_selected_edges) { BKE_report( op->reports, RPT_ERROR, "Select edges or face pairs for edge loops to rotate about"); return OPERATOR_CANCELLED; } /* Ok, we don't have two adjacent faces, but we do have two selected ones. * that's an error condition. */ if (invalid_selected_edges) { BKE_report(op->reports, RPT_ERROR, "Could not find any selected edges that can be rotated"); return OPERATOR_CANCELLED; } if (tot_failed_all != 0) { BKE_reportf(op->reports, RPT_WARNING, "Unable to rotate %d edge(s)", tot_failed_all); } return OPERATOR_FINISHED; } void MESH_OT_edge_rotate(wmOperatorType *ot) { /* identifiers */ ot->name = "Rotate Selected Edge"; ot->description = "Rotate selected edge or adjoining faces"; ot->idname = "MESH_OT_edge_rotate"; /* api callbacks */ ot->exec = edbm_edge_rotate_selected_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; /* props */ RNA_def_boolean(ot->srna, "use_ccw", false, "Counter Clockwise", ""); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Hide Operator * \{ */ static int edbm_hide_exec(bContext *C, wmOperator *op) { const bool unselected = RNA_boolean_get(op->ptr, "unselected"); ViewLayer *view_layer = CTX_data_view_layer(C); bool changed = false; uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); BMesh *bm = em->bm; if (unselected) { if (em->selectmode & SCE_SELECT_VERTEX) { if (bm->totvertsel == bm->totvert) { continue; } } else if (em->selectmode & SCE_SELECT_EDGE) { if (bm->totedgesel == bm->totedge) { continue; } } else if (em->selectmode & SCE_SELECT_FACE) { if (bm->totfacesel == bm->totface) { continue; } } } else { if (bm->totvertsel == 0) { continue; } } if (EDBM_mesh_hide(em, unselected)) { EDBM_update_generic(obedit->data, true, false); changed = true; } } MEM_freeN(objects); if (!changed) { return OPERATOR_CANCELLED; } return OPERATOR_FINISHED; } void MESH_OT_hide(wmOperatorType *ot) { /* identifiers */ ot->name = "Hide Selected"; ot->idname = "MESH_OT_hide"; ot->description = "Hide (un)selected vertices, edges or faces"; /* api callbacks */ ot->exec = edbm_hide_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; /* props */ RNA_def_boolean( ot->srna, "unselected", false, "Unselected", "Hide unselected rather than selected"); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Reveal Operator * \{ */ static int edbm_reveal_exec(bContext *C, wmOperator *op) { const bool select = RNA_boolean_get(op->ptr, "select"); ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); if (EDBM_mesh_reveal(em, select)) { EDBM_update_generic(obedit->data, true, false); } } MEM_freeN(objects); return OPERATOR_FINISHED; } void MESH_OT_reveal(wmOperatorType *ot) { /* identifiers */ ot->name = "Reveal Hidden"; ot->idname = "MESH_OT_reveal"; ot->description = "Reveal all hidden vertices, edges and faces"; /* api callbacks */ ot->exec = edbm_reveal_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; RNA_def_boolean(ot->srna, "select", true, "Select", ""); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Recalculate Normals Operator * \{ */ static int edbm_normals_make_consistent_exec(bContext *C, wmOperator *op) { ViewLayer *view_layer = CTX_data_view_layer(C); const bool inside = RNA_boolean_get(op->ptr, "inside"); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); if (em->bm->totfacesel == 0) { continue; } BMLoopNorEditDataArray *lnors_ed_arr = NULL; if (inside) { /* Save custom normal data for later so we can flip them correctly. */ lnors_ed_arr = flip_custom_normals_init_data(em->bm); } if (!EDBM_op_callf(em, op, "recalc_face_normals faces=%hf", BM_ELEM_SELECT)) { continue; } if (inside) { EDBM_op_callf(em, op, "reverse_faces faces=%hf flip_multires=%b", BM_ELEM_SELECT, true); flip_custom_normals(em->bm, lnors_ed_arr); if (lnors_ed_arr != NULL) { BM_loop_normal_editdata_array_free(lnors_ed_arr); } } EDBM_update_generic(obedit->data, true, false); } MEM_freeN(objects); return OPERATOR_FINISHED; } void MESH_OT_normals_make_consistent(wmOperatorType *ot) { /* identifiers */ ot->name = "Recalculate Normals"; ot->description = "Make face and vertex normals point either outside or inside the mesh"; ot->idname = "MESH_OT_normals_make_consistent"; /* api callbacks */ ot->exec = edbm_normals_make_consistent_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; RNA_def_boolean(ot->srna, "inside", false, "Inside", ""); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Smooth Vertices Operator * \{ */ static int edbm_do_smooth_vertex_exec(bContext *C, wmOperator *op) { const float fac = RNA_float_get(op->ptr, "factor"); const bool xaxis = RNA_boolean_get(op->ptr, "xaxis"); const bool yaxis = RNA_boolean_get(op->ptr, "yaxis"); const bool zaxis = RNA_boolean_get(op->ptr, "zaxis"); int repeat = RNA_int_get(op->ptr, "repeat"); if (!repeat) { repeat = 1; } ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; Mesh *me = obedit->data; BMEditMesh *em = BKE_editmesh_from_object(obedit); ModifierData *md; bool mirrx = false, mirry = false, mirrz = false; int i; float clip_dist = 0.0f; const bool use_topology = (me->editflag & ME_EDIT_MIRROR_TOPO) != 0; if (em->bm->totvertsel == 0) { continue; } /* mirror before smooth */ if (((Mesh *)obedit->data)->editflag & ME_EDIT_MIRROR_X) { EDBM_verts_mirror_cache_begin(em, 0, false, true, use_topology); } /* if there is a mirror modifier with clipping, flag the verts that * are within tolerance of the plane(s) of reflection */ for (md = obedit->modifiers.first; md; md = md->next) { if (md->type == eModifierType_Mirror && (md->mode & eModifierMode_Realtime)) { MirrorModifierData *mmd = (MirrorModifierData *)md; if (mmd->flag & MOD_MIR_CLIPPING) { if (mmd->flag & MOD_MIR_AXIS_X) { mirrx = true; } if (mmd->flag & MOD_MIR_AXIS_Y) { mirry = true; } if (mmd->flag & MOD_MIR_AXIS_Z) { mirrz = true; } clip_dist = mmd->tolerance; } } } for (i = 0; i < repeat; i++) { if (!EDBM_op_callf( em, op, "smooth_vert verts=%hv factor=%f mirror_clip_x=%b mirror_clip_y=%b mirror_clip_z=%b " "clip_dist=%f use_axis_x=%b use_axis_y=%b use_axis_z=%b", BM_ELEM_SELECT, fac, mirrx, mirry, mirrz, clip_dist, xaxis, yaxis, zaxis)) { continue; } } /* apply mirror */ if (((Mesh *)obedit->data)->editflag & ME_EDIT_MIRROR_X) { EDBM_verts_mirror_apply(em, BM_ELEM_SELECT, 0); EDBM_verts_mirror_cache_end(em); } EDBM_update_generic(obedit->data, true, false); } MEM_freeN(objects); return OPERATOR_FINISHED; } void MESH_OT_vertices_smooth(wmOperatorType *ot) { /* identifiers */ ot->name = "Smooth Vertices"; ot->description = "Flatten angles of selected vertices"; ot->idname = "MESH_OT_vertices_smooth"; /* api callbacks */ ot->exec = edbm_do_smooth_vertex_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; ot->prop = RNA_def_float_factor( ot->srna, "factor", 0.0f, -10.0f, 10.0f, "Smoothing", "Smoothing factor", 0.0f, 1.0f); RNA_def_int( ot->srna, "repeat", 1, 1, 1000, "Repeat", "Number of times to smooth the mesh", 1, 100); WM_operatortype_props_advanced_begin(ot); RNA_def_boolean(ot->srna, "xaxis", true, "X-Axis", "Smooth along the X axis"); RNA_def_boolean(ot->srna, "yaxis", true, "Y-Axis", "Smooth along the Y axis"); RNA_def_boolean(ot->srna, "zaxis", true, "Z-Axis", "Smooth along the Z axis"); /* Set generic modal callbacks. */ WM_operator_type_modal_from_exec_for_object_edit_coords(ot); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Laplacian Smooth Vertices Operator * \{ */ static int edbm_do_smooth_laplacian_vertex_exec(bContext *C, wmOperator *op) { BMIter fiter; BMFace *f; int tot_invalid = 0; int tot_unselected = 0; ViewLayer *view_layer = CTX_data_view_layer(C); const float lambda_factor = RNA_float_get(op->ptr, "lambda_factor"); const float lambda_border = RNA_float_get(op->ptr, "lambda_border"); const bool usex = RNA_boolean_get(op->ptr, "use_x"); const bool usey = RNA_boolean_get(op->ptr, "use_y"); const bool usez = RNA_boolean_get(op->ptr, "use_z"); const bool preserve_volume = RNA_boolean_get(op->ptr, "preserve_volume"); int repeat = RNA_int_get(op->ptr, "repeat"); if (!repeat) { repeat = 1; } uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); Mesh *me = obedit->data; bool use_topology = (me->editflag & ME_EDIT_MIRROR_TOPO) != 0; if (em->bm->totvertsel == 0) { tot_unselected++; tot_invalid++; continue; } bool is_invalid = false; /* Check if select faces are triangles. */ BM_ITER_MESH (f, &fiter, em->bm, BM_FACES_OF_MESH) { if (BM_elem_flag_test(f, BM_ELEM_SELECT)) { if (f->len > 4) { tot_invalid++; is_invalid = true; break; } } } if (is_invalid) { continue; } /* Mirror before smooth. */ if (((Mesh *)obedit->data)->editflag & ME_EDIT_MIRROR_X) { EDBM_verts_mirror_cache_begin(em, 0, false, true, use_topology); } bool failed_repeat_loop = false; for (int i = 0; i < repeat; i++) { if (!EDBM_op_callf(em, op, "smooth_laplacian_vert verts=%hv lambda_factor=%f lambda_border=%f " "use_x=%b use_y=%b use_z=%b preserve_volume=%b", BM_ELEM_SELECT, lambda_factor, lambda_border, usex, usey, usez, preserve_volume)) { failed_repeat_loop = true; break; } } if (failed_repeat_loop) { continue; } /* Apply mirror. */ if (((Mesh *)obedit->data)->editflag & ME_EDIT_MIRROR_X) { EDBM_verts_mirror_apply(em, BM_ELEM_SELECT, 0); EDBM_verts_mirror_cache_end(em); } EDBM_update_generic(obedit->data, true, false); } MEM_freeN(objects); if (tot_unselected == objects_len) { BKE_report(op->reports, RPT_WARNING, "No selected vertex"); return OPERATOR_CANCELLED; } else if (tot_invalid == objects_len) { BKE_report(op->reports, RPT_WARNING, "Selected faces must be triangles or quads"); return OPERATOR_CANCELLED; } return OPERATOR_FINISHED; } void MESH_OT_vertices_smooth_laplacian(wmOperatorType *ot) { /* identifiers */ ot->name = "Laplacian Smooth Vertices"; ot->description = "Laplacian smooth of selected vertices"; ot->idname = "MESH_OT_vertices_smooth_laplacian"; /* api callbacks */ ot->exec = edbm_do_smooth_laplacian_vertex_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; RNA_def_int( ot->srna, "repeat", 1, 1, 1000, "Number of iterations to smooth the mesh", "", 1, 200); RNA_def_float( ot->srna, "lambda_factor", 1.0f, 1e-7f, 1000.0f, "Lambda factor", "", 1e-7f, 1000.0f); RNA_def_float(ot->srna, "lambda_border", 5e-5f, 1e-7f, 1000.0f, "Lambda factor in border", "", 1e-7f, 1000.0f); WM_operatortype_props_advanced_begin(ot); RNA_def_boolean(ot->srna, "use_x", true, "Smooth X Axis", "Smooth object along X axis"); RNA_def_boolean(ot->srna, "use_y", true, "Smooth Y Axis", "Smooth object along Y axis"); RNA_def_boolean(ot->srna, "use_z", true, "Smooth Z Axis", "Smooth object along Z axis"); RNA_def_boolean(ot->srna, "preserve_volume", true, "Preserve Volume", "Apply volume preservation after smooth"); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Set Faces Smooth Shading Operator * \{ */ static void mesh_set_smooth_faces(BMEditMesh *em, short smooth) { BMIter iter; BMFace *efa; if (em == NULL) { return; } BM_ITER_MESH (efa, &iter, em->bm, BM_FACES_OF_MESH) { if (BM_elem_flag_test(efa, BM_ELEM_SELECT)) { BM_elem_flag_set(efa, BM_ELEM_SMOOTH, smooth); } } } static int edbm_faces_shade_smooth_exec(bContext *C, wmOperator *UNUSED(op)) { ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); if (em->bm->totfacesel == 0) { continue; } mesh_set_smooth_faces(em, 1); EDBM_update_generic(obedit->data, false, false); } MEM_freeN(objects); return OPERATOR_FINISHED; } void MESH_OT_faces_shade_smooth(wmOperatorType *ot) { /* identifiers */ ot->name = "Shade Smooth"; ot->description = "Display faces smooth (using vertex normals)"; ot->idname = "MESH_OT_faces_shade_smooth"; /* api callbacks */ ot->exec = edbm_faces_shade_smooth_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; } /** \} */ /* -------------------------------------------------------------------- */ /** \name Set Faces Flat Shading Operator * \{ */ static int edbm_faces_shade_flat_exec(bContext *C, wmOperator *UNUSED(op)) { ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); if (em->bm->totfacesel == 0) { continue; } mesh_set_smooth_faces(em, 0); EDBM_update_generic(obedit->data, false, false); } MEM_freeN(objects); return OPERATOR_FINISHED; } void MESH_OT_faces_shade_flat(wmOperatorType *ot) { /* identifiers */ ot->name = "Shade Flat"; ot->description = "Display faces flat"; ot->idname = "MESH_OT_faces_shade_flat"; /* api callbacks */ ot->exec = edbm_faces_shade_flat_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; } /** \} */ /* -------------------------------------------------------------------- */ /** \name UV/Color Rotate/Reverse Operator * \{ */ static int edbm_rotate_uvs_exec(bContext *C, wmOperator *op) { /* get the direction from RNA */ const bool use_ccw = RNA_boolean_get(op->ptr, "use_ccw"); ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); if (em->bm->totfacesel == 0) { continue; } BMOperator bmop; /* initialize the bmop using EDBM api, which does various ui error reporting and other stuff */ EDBM_op_init(em, &bmop, op, "rotate_uvs faces=%hf use_ccw=%b", BM_ELEM_SELECT, use_ccw); /* execute the operator */ BMO_op_exec(em->bm, &bmop); if (!EDBM_op_finish(em, &bmop, op, true)) { continue; } EDBM_update_generic(obedit->data, false, false); } MEM_freeN(objects); return OPERATOR_FINISHED; } static int edbm_reverse_uvs_exec(bContext *C, wmOperator *op) { ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); if (em->bm->totfacesel == 0) { continue; } BMOperator bmop; /* initialize the bmop using EDBM api, which does various ui error reporting and other stuff */ EDBM_op_init(em, &bmop, op, "reverse_uvs faces=%hf", BM_ELEM_SELECT); /* execute the operator */ BMO_op_exec(em->bm, &bmop); /* finish the operator */ if (!EDBM_op_finish(em, &bmop, op, true)) { continue; } EDBM_update_generic(obedit->data, false, false); } MEM_freeN(objects); return OPERATOR_FINISHED; } static int edbm_rotate_colors_exec(bContext *C, wmOperator *op) { /* get the direction from RNA */ const bool use_ccw = RNA_boolean_get(op->ptr, "use_ccw"); ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *ob = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(ob); if (em->bm->totfacesel == 0) { continue; } BMOperator bmop; /* initialize the bmop using EDBM api, which does various ui error reporting and other stuff */ EDBM_op_init(em, &bmop, op, "rotate_colors faces=%hf use_ccw=%b", BM_ELEM_SELECT, use_ccw); /* execute the operator */ BMO_op_exec(em->bm, &bmop); /* finish the operator */ if (!EDBM_op_finish(em, &bmop, op, true)) { continue; } /* dependencies graph and notification stuff */ EDBM_update_generic(ob->data, false, false); } MEM_freeN(objects); return OPERATOR_FINISHED; } static int edbm_reverse_colors_exec(bContext *C, wmOperator *op) { ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); if (em->bm->totfacesel == 0) { continue; } BMOperator bmop; /* initialize the bmop using EDBM api, which does various ui error reporting and other stuff */ EDBM_op_init(em, &bmop, op, "reverse_colors faces=%hf", BM_ELEM_SELECT); /* execute the operator */ BMO_op_exec(em->bm, &bmop); /* finish the operator */ if (!EDBM_op_finish(em, &bmop, op, true)) { return OPERATOR_CANCELLED; } EDBM_update_generic(obedit->data, false, false); } MEM_freeN(objects); return OPERATOR_FINISHED; } void MESH_OT_uvs_rotate(wmOperatorType *ot) { /* identifiers */ ot->name = "Rotate UVs"; ot->idname = "MESH_OT_uvs_rotate"; ot->description = "Rotate UV coordinates inside faces"; /* api callbacks */ ot->exec = edbm_rotate_uvs_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; /* props */ RNA_def_boolean(ot->srna, "use_ccw", false, "Counter Clockwise", ""); } void MESH_OT_uvs_reverse(wmOperatorType *ot) { /* identifiers */ ot->name = "Reverse UVs"; ot->idname = "MESH_OT_uvs_reverse"; ot->description = "Flip direction of UV coordinates inside faces"; /* api callbacks */ ot->exec = edbm_reverse_uvs_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; /* props */ // RNA_def_enum(ot->srna, "axis", axis_items, DIRECTION_CW, "Axis", "Axis to mirror UVs around"); } void MESH_OT_colors_rotate(wmOperatorType *ot) { /* identifiers */ ot->name = "Rotate Colors"; ot->idname = "MESH_OT_colors_rotate"; ot->description = "Rotate vertex colors inside faces"; /* api callbacks */ ot->exec = edbm_rotate_colors_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; /* props */ RNA_def_boolean(ot->srna, "use_ccw", false, "Counter Clockwise", ""); } void MESH_OT_colors_reverse(wmOperatorType *ot) { /* identifiers */ ot->name = "Reverse Colors"; ot->idname = "MESH_OT_colors_reverse"; ot->description = "Flip direction of vertex colors inside faces"; /* api callbacks */ ot->exec = edbm_reverse_colors_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; /* props */ #if 0 RNA_def_enum(ot->srna, "axis", axis_items, DIRECTION_CW, "Axis", "Axis to mirror colors around"); #endif } /** \} */ /* -------------------------------------------------------------------- */ /** \name Merge Vertices Operator * \{ */ enum { MESH_MERGE_LAST = 1, MESH_MERGE_CENTER = 3, MESH_MERGE_CURSOR = 4, MESH_MERGE_COLLAPSE = 5, MESH_MERGE_FIRST = 6, }; static bool merge_firstlast(BMEditMesh *em, const bool use_first, const bool use_uvmerge, wmOperator *wmop) { BMVert *mergevert; BMEditSelection *ese; /* operator could be called directly from shortcut or python, * so do extra check for data here */ /* do sanity check in mergemenu in edit.c ?*/ if (use_first == false) { if (!em->bm->selected.last || ((BMEditSelection *)em->bm->selected.last)->htype != BM_VERT) { return false; } ese = em->bm->selected.last; mergevert = (BMVert *)ese->ele; } else { if (!em->bm->selected.first || ((BMEditSelection *)em->bm->selected.first)->htype != BM_VERT) { return false; } ese = em->bm->selected.first; mergevert = (BMVert *)ese->ele; } if (!BM_elem_flag_test(mergevert, BM_ELEM_SELECT)) { return false; } if (use_uvmerge) { if (!EDBM_op_callf( em, wmop, "pointmerge_facedata verts=%hv vert_snap=%e", BM_ELEM_SELECT, mergevert)) { return false; } } if (!EDBM_op_callf( em, wmop, "pointmerge verts=%hv merge_co=%v", BM_ELEM_SELECT, mergevert->co)) { return false; } return true; } static bool merge_target(BMEditMesh *em, Scene *scene, Object *ob, const bool use_cursor, const bool use_uvmerge, wmOperator *wmop) { BMIter iter; BMVert *v; float co[3], cent[3] = {0.0f, 0.0f, 0.0f}; const float *vco = NULL; if (use_cursor) { vco = scene->cursor.location; copy_v3_v3(co, vco); invert_m4_m4(ob->imat, ob->obmat); mul_m4_v3(ob->imat, co); } else { float fac; int i = 0; BM_ITER_MESH (v, &iter, em->bm, BM_VERTS_OF_MESH) { if (!BM_elem_flag_test(v, BM_ELEM_SELECT)) { continue; } add_v3_v3(cent, v->co); i++; } if (!i) { return false; } fac = 1.0f / (float)i; mul_v3_fl(cent, fac); copy_v3_v3(co, cent); vco = co; } if (!vco) { return false; } if (use_uvmerge) { if (!EDBM_op_callf(em, wmop, "average_vert_facedata verts=%hv", BM_ELEM_SELECT)) { return false; } } if (!EDBM_op_callf(em, wmop, "pointmerge verts=%hv merge_co=%v", BM_ELEM_SELECT, co)) { return false; } return true; } static int edbm_merge_exec(bContext *C, wmOperator *op) { Scene *scene = CTX_data_scene(C); ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); const int type = RNA_enum_get(op->ptr, "type"); const bool uvs = RNA_boolean_get(op->ptr, "uvs"); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); if (em->bm->totvertsel == 0) { continue; } BM_custom_loop_normals_to_vector_layer(em->bm); bool ok = false; switch (type) { case MESH_MERGE_CENTER: ok = merge_target(em, scene, obedit, false, uvs, op); break; case MESH_MERGE_CURSOR: ok = merge_target(em, scene, obedit, true, uvs, op); break; case MESH_MERGE_LAST: ok = merge_firstlast(em, false, uvs, op); break; case MESH_MERGE_FIRST: ok = merge_firstlast(em, true, uvs, op); break; case MESH_MERGE_COLLAPSE: ok = EDBM_op_callf(em, op, "collapse edges=%he uvs=%b", BM_ELEM_SELECT, uvs); break; default: BLI_assert(0); break; } if (!ok) { continue; } BM_custom_loop_normals_from_vector_layer(em->bm, false); EDBM_update_generic(obedit->data, true, true); /* once collapsed, we can't have edge/face selection */ if ((em->selectmode & SCE_SELECT_VERTEX) == 0) { EDBM_flag_disable_all(em, BM_ELEM_SELECT); } /* Only active object supported, see comment below. */ if (ELEM(type, MESH_MERGE_FIRST, MESH_MERGE_LAST)) { break; } } MEM_freeN(objects); return OPERATOR_FINISHED; } static const EnumPropertyItem merge_type_items[] = { {MESH_MERGE_FIRST, "FIRST", 0, "At First", ""}, {MESH_MERGE_LAST, "LAST", 0, "At Last", ""}, {MESH_MERGE_CENTER, "CENTER", 0, "At Center", ""}, {MESH_MERGE_CURSOR, "CURSOR", 0, "At Cursor", ""}, {MESH_MERGE_COLLAPSE, "COLLAPSE", 0, "Collapse", ""}, {0, NULL, 0, NULL, NULL}, }; static const EnumPropertyItem *merge_type_itemf(bContext *C, PointerRNA *UNUSED(ptr), PropertyRNA *UNUSED(prop), bool *r_free) { Object *obedit; EnumPropertyItem *item = NULL; int totitem = 0; if (!C) { /* needed for docs */ return merge_type_items; } obedit = CTX_data_edit_object(C); if (obedit && obedit->type == OB_MESH) { BMEditMesh *em = BKE_editmesh_from_object(obedit); /* Only active object supported: * In practice it doesn't make sense to run this operation on non-active meshes * since selecting will activate - we could have own code-path for these but it's a hassle * for now just apply to the active (first) object. */ if (em->selectmode & SCE_SELECT_VERTEX) { if (em->bm->selected.first && em->bm->selected.last && ((BMEditSelection *)em->bm->selected.first)->htype == BM_VERT && ((BMEditSelection *)em->bm->selected.last)->htype == BM_VERT) { RNA_enum_items_add_value(&item, &totitem, merge_type_items, MESH_MERGE_FIRST); RNA_enum_items_add_value(&item, &totitem, merge_type_items, MESH_MERGE_LAST); } else if (em->bm->selected.first && ((BMEditSelection *)em->bm->selected.first)->htype == BM_VERT) { RNA_enum_items_add_value(&item, &totitem, merge_type_items, MESH_MERGE_FIRST); } else if (em->bm->selected.last && ((BMEditSelection *)em->bm->selected.last)->htype == BM_VERT) { RNA_enum_items_add_value(&item, &totitem, merge_type_items, MESH_MERGE_LAST); } } RNA_enum_items_add_value(&item, &totitem, merge_type_items, MESH_MERGE_CENTER); RNA_enum_items_add_value(&item, &totitem, merge_type_items, MESH_MERGE_CURSOR); RNA_enum_items_add_value(&item, &totitem, merge_type_items, MESH_MERGE_COLLAPSE); RNA_enum_item_end(&item, &totitem); *r_free = true; return item; } /* Get all items e.g. when creating keymap item. */ return merge_type_items; } void MESH_OT_merge(wmOperatorType *ot) { /* identifiers */ ot->name = "Merge"; ot->description = "Merge selected vertices"; ot->idname = "MESH_OT_merge"; /* api callbacks */ ot->exec = edbm_merge_exec; ot->invoke = WM_menu_invoke; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; /* properties */ ot->prop = RNA_def_enum( ot->srna, "type", merge_type_items, MESH_MERGE_CENTER, "Type", "Merge method to use"); RNA_def_enum_funcs(ot->prop, merge_type_itemf); WM_operatortype_props_advanced_begin(ot); RNA_def_boolean(ot->srna, "uvs", false, "UVs", "Move UVs according to merge"); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Merge By Distance Operator * \{ */ static int edbm_remove_doubles_exec(bContext *C, wmOperator *op) { const float threshold = RNA_float_get(op->ptr, "threshold"); const bool use_unselected = RNA_boolean_get(op->ptr, "use_unselected"); int count_multi = 0; ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); /* Selection used as target with 'use_unselected'. */ if (em->bm->totvertsel == 0) { continue; } BMOperator bmop; const int totvert_orig = em->bm->totvert; /* avoid losing selection state (select -> tags) */ char htype_select; if (em->selectmode & SCE_SELECT_VERTEX) { htype_select = BM_VERT; } else if (em->selectmode & SCE_SELECT_EDGE) { htype_select = BM_EDGE; } else { htype_select = BM_FACE; } BM_custom_loop_normals_to_vector_layer(em->bm); /* store selection as tags */ BM_mesh_elem_hflag_enable_test(em->bm, htype_select, BM_ELEM_TAG, true, true, BM_ELEM_SELECT); if (use_unselected) { EDBM_automerge(obedit, false, BM_ELEM_SELECT, threshold); } else { EDBM_op_init(em, &bmop, op, "find_doubles verts=%hv dist=%f", BM_ELEM_SELECT, threshold); BMO_op_exec(em->bm, &bmop); if (!EDBM_op_callf(em, op, "weld_verts targetmap=%S", &bmop, "targetmap.out")) { BMO_op_finish(em->bm, &bmop); continue; } if (!EDBM_op_finish(em, &bmop, op, true)) { continue; } } const int count = (totvert_orig - em->bm->totvert); /* restore selection from tags */ BM_mesh_elem_hflag_enable_test(em->bm, htype_select, BM_ELEM_SELECT, true, true, BM_ELEM_TAG); EDBM_selectmode_flush(em); BM_custom_loop_normals_from_vector_layer(em->bm, true); if (count) { count_multi += count; EDBM_update_generic(obedit->data, true, true); } } MEM_freeN(objects); BKE_reportf(op->reports, RPT_INFO, "Removed %d vertice(s)", count_multi); return OPERATOR_FINISHED; } void MESH_OT_remove_doubles(wmOperatorType *ot) { /* identifiers */ ot->name = "Merge by Distance"; ot->description = "Merge vertices based on their proximity"; ot->idname = "MESH_OT_remove_doubles"; /* api callbacks */ ot->exec = edbm_remove_doubles_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; RNA_def_float_distance(ot->srna, "threshold", 1e-4f, 1e-6f, 50.0f, "Merge Distance", "Maximum distance between elements to merge", 1e-5f, 10.0f); RNA_def_boolean(ot->srna, "use_unselected", false, "Unselected", "Merge selected to other unselected vertices"); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Shape Key Propagate Operator * \{ */ /* BMESH_TODO this should be properly encapsulated in a bmop. but later.*/ static bool shape_propagate(BMEditMesh *em) { BMIter iter; BMVert *eve = NULL; float *co; int totshape = CustomData_number_of_layers(&em->bm->vdata, CD_SHAPEKEY); if (!CustomData_has_layer(&em->bm->vdata, CD_SHAPEKEY)) { return false; } BM_ITER_MESH (eve, &iter, em->bm, BM_VERTS_OF_MESH) { if (!BM_elem_flag_test(eve, BM_ELEM_SELECT) || BM_elem_flag_test(eve, BM_ELEM_HIDDEN)) { continue; } for (int i = 0; i < totshape; i++) { co = CustomData_bmesh_get_n(&em->bm->vdata, eve->head.data, CD_SHAPEKEY, i); copy_v3_v3(co, eve->co); } } return true; } static int edbm_shape_propagate_to_all_exec(bContext *C, wmOperator *op) { ViewLayer *view_layer = CTX_data_view_layer(C); int tot_shapekeys = 0; int tot_selected_verts_objects = 0; uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; Mesh *me = obedit->data; BMEditMesh *em = me->edit_mesh; if (em->bm->totvertsel == 0) { continue; } tot_selected_verts_objects++; if (shape_propagate(em)) { tot_shapekeys++; } EDBM_update_generic(me, false, false); } MEM_freeN(objects); if (tot_selected_verts_objects == 0) { BKE_report(op->reports, RPT_ERROR, "No selected vertex"); return OPERATOR_CANCELLED; } else if (tot_shapekeys == 0) { BKE_report(op->reports, RPT_ERROR, objects_len > 1 ? "Meshes do not have shape keys" : "Mesh does not have shape keys"); return OPERATOR_CANCELLED; } return OPERATOR_FINISHED; } void MESH_OT_shape_propagate_to_all(wmOperatorType *ot) { /* identifiers */ ot->name = "Shape Propagate"; ot->description = "Apply selected vertex locations to all other shape keys"; ot->idname = "MESH_OT_shape_propagate_to_all"; /* api callbacks */ ot->exec = edbm_shape_propagate_to_all_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; } /** \} */ /* -------------------------------------------------------------------- */ /** \name Blend from Shape Operator * \{ */ /* BMESH_TODO this should be properly encapsulated in a bmop. but later.*/ static int edbm_blend_from_shape_exec(bContext *C, wmOperator *op) { Object *obedit_ref = CTX_data_edit_object(C); Mesh *me_ref = obedit_ref->data; Key *key_ref = me_ref->key; KeyBlock *kb_ref = NULL; BMEditMesh *em_ref = me_ref->edit_mesh; BMVert *eve; BMIter iter; ViewLayer *view_layer = CTX_data_view_layer(C); float co[3], *sco; int totshape_ref = 0; const float blend = RNA_float_get(op->ptr, "blend"); int shape_ref = RNA_enum_get(op->ptr, "shape"); const bool use_add = RNA_boolean_get(op->ptr, "add"); /* Sanity check. */ totshape_ref = CustomData_number_of_layers(&em_ref->bm->vdata, CD_SHAPEKEY); if (totshape_ref == 0 || shape_ref < 0) { BKE_report(op->reports, RPT_ERROR, "Active mesh does not have shape keys"); return OPERATOR_CANCELLED; } else if (shape_ref >= totshape_ref) { /* This case occurs if operator was used before on object with more keys than current one. */ shape_ref = 0; /* default to basis */ } /* Get shape key - needed for finding reference shape (for add mode only). */ if (key_ref) { kb_ref = BLI_findlink(&key_ref->block, shape_ref); } int tot_selected_verts_objects = 0; uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; Mesh *me = obedit->data; Key *key = me->key; KeyBlock *kb = NULL; BMEditMesh *em = me->edit_mesh; int shape; if (em->bm->totvertsel == 0) { continue; } tot_selected_verts_objects++; if (!key) { continue; } else { kb = BKE_keyblock_find_name(key, kb_ref->name); shape = BLI_findindex(&key->block, kb); } if (kb) { /* Perform blending on selected vertices. */ BM_ITER_MESH (eve, &iter, em->bm, BM_VERTS_OF_MESH) { if (!BM_elem_flag_test(eve, BM_ELEM_SELECT) || BM_elem_flag_test(eve, BM_ELEM_HIDDEN)) { continue; } /* Get coordinates of shapekey we're blending from. */ sco = CustomData_bmesh_get_n(&em->bm->vdata, eve->head.data, CD_SHAPEKEY, shape); copy_v3_v3(co, sco); if (use_add) { /* In add mode, we add relative shape key offset. */ const float *rco = CustomData_bmesh_get_n( &em->bm->vdata, eve->head.data, CD_SHAPEKEY, kb->relative); sub_v3_v3v3(co, co, rco); madd_v3_v3fl(eve->co, co, blend); } else { /* In blend mode, we interpolate to the shape key. */ interp_v3_v3v3(eve->co, eve->co, co, blend); } } EDBM_update_generic(me, true, false); } } MEM_freeN(objects); if (tot_selected_verts_objects == 0) { BKE_report(op->reports, RPT_ERROR, "No selected vertex"); return OPERATOR_CANCELLED; } return OPERATOR_FINISHED; } static const EnumPropertyItem *shape_itemf(bContext *C, PointerRNA *UNUSED(ptr), PropertyRNA *UNUSED(prop), bool *r_free) { Object *obedit = CTX_data_edit_object(C); BMEditMesh *em; EnumPropertyItem *item = NULL; int totitem = 0; if ((obedit && obedit->type == OB_MESH) && (em = BKE_editmesh_from_object(obedit)) && CustomData_has_layer(&em->bm->vdata, CD_SHAPEKEY)) { EnumPropertyItem tmp = {0, "", 0, "", ""}; int a; for (a = 0; a < em->bm->vdata.totlayer; a++) { if (em->bm->vdata.layers[a].type != CD_SHAPEKEY) { continue; } tmp.value = totitem; tmp.identifier = em->bm->vdata.layers[a].name; tmp.name = em->bm->vdata.layers[a].name; /* RNA_enum_item_add sets totitem itself! */ RNA_enum_item_add(&item, &totitem, &tmp); } } RNA_enum_item_end(&item, &totitem); *r_free = true; return item; } static void edbm_blend_from_shape_ui(bContext *C, wmOperator *op) { uiLayout *layout = op->layout; PointerRNA ptr; Object *obedit = CTX_data_edit_object(C); Mesh *me = obedit->data; PointerRNA ptr_key; RNA_pointer_create(NULL, op->type->srna, op->properties, &ptr); RNA_id_pointer_create((ID *)me->key, &ptr_key); uiItemPointerR(layout, &ptr, "shape", &ptr_key, "key_blocks", "", ICON_SHAPEKEY_DATA); uiItemR(layout, &ptr, "blend", 0, NULL, ICON_NONE); uiItemR(layout, &ptr, "add", 0, NULL, ICON_NONE); } void MESH_OT_blend_from_shape(wmOperatorType *ot) { PropertyRNA *prop; /* identifiers */ ot->name = "Blend From Shape"; ot->description = "Blend in shape from a shape key"; ot->idname = "MESH_OT_blend_from_shape"; /* api callbacks */ ot->exec = edbm_blend_from_shape_exec; /* disable because search popup closes too easily */ // ot->invoke = WM_operator_props_popup_call; ot->ui = edbm_blend_from_shape_ui; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; /* properties */ prop = RNA_def_enum( ot->srna, "shape", DummyRNA_NULL_items, 0, "Shape", "Shape key to use for blending"); RNA_def_enum_funcs(prop, shape_itemf); RNA_def_property_flag(prop, PROP_ENUM_NO_TRANSLATE | PROP_NEVER_UNLINK); RNA_def_float(ot->srna, "blend", 1.0f, -1e3f, 1e3f, "Blend", "Blending factor", -2.0f, 2.0f); RNA_def_boolean(ot->srna, "add", true, "Add", "Add rather than blend between shapes"); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Solidify Mesh Operator * \{ */ static int edbm_solidify_exec(bContext *C, wmOperator *op) { const float thickness = RNA_float_get(op->ptr, "thickness"); ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); BMesh *bm = em->bm; if (em->bm->totfacesel == 0) { continue; } BMOperator bmop; if (!EDBM_op_init( em, &bmop, op, "solidify geom=%hf thickness=%f", BM_ELEM_SELECT, thickness)) { continue; } /* deselect only the faces in the region to be solidified (leave wire * edges and loose verts selected, as there will be no corresponding * geometry selected below) */ BMO_slot_buffer_hflag_disable(bm, bmop.slots_in, "geom", BM_FACE, BM_ELEM_SELECT, true); /* run the solidify operator */ BMO_op_exec(bm, &bmop); /* select the newly generated faces */ BMO_slot_buffer_hflag_enable(bm, bmop.slots_out, "geom.out", BM_FACE, BM_ELEM_SELECT, true); if (!EDBM_op_finish(em, &bmop, op, true)) { continue; } EDBM_update_generic(obedit->data, true, true); } MEM_freeN(objects); return OPERATOR_FINISHED; } void MESH_OT_solidify(wmOperatorType *ot) { PropertyRNA *prop; /* identifiers */ ot->name = "Solidify"; ot->description = "Create a solid skin by extruding, compensating for sharp angles"; ot->idname = "MESH_OT_solidify"; /* api callbacks */ ot->exec = edbm_solidify_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; prop = RNA_def_float_distance( ot->srna, "thickness", 0.01f, -1e4f, 1e4f, "Thickness", "", -10.0f, 10.0f); RNA_def_property_ui_range(prop, -10.0, 10.0, 0.1, 4); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Knife Subdivide Operator * \{ */ #define KNIFE_EXACT 1 #define KNIFE_MIDPOINT 2 #define KNIFE_MULTICUT 3 static const EnumPropertyItem knife_items[] = { {KNIFE_EXACT, "EXACT", 0, "Exact", ""}, {KNIFE_MIDPOINT, "MIDPOINTS", 0, "Midpoints", ""}, {KNIFE_MULTICUT, "MULTICUT", 0, "Multicut", ""}, {0, NULL, 0, NULL, NULL}, }; /* bm_edge_seg_isect() Determines if and where a mouse trail intersects an BMEdge */ static float bm_edge_seg_isect(const float sco_a[2], const float sco_b[2], float (*mouse_path)[2], int len, char mode, int *isected) { #define MAXSLOPE 100000 float x11, y11, x12 = 0, y12 = 0, x2max, x2min, y2max; float y2min, dist, lastdist = 0, xdiff2, xdiff1; float m1, b1, m2, b2, x21, x22, y21, y22, xi; float yi, x1min, x1max, y1max, y1min, perc = 0; float threshold = 0.0; int i; // threshold = 0.000001; /* tolerance for vertex intersection */ // XXX threshold = scene->toolsettings->select_thresh / 100; /* Get screen coords of verts */ x21 = sco_a[0]; y21 = sco_a[1]; x22 = sco_b[0]; y22 = sco_b[1]; xdiff2 = (x22 - x21); if (xdiff2) { m2 = (y22 - y21) / xdiff2; b2 = ((x22 * y21) - (x21 * y22)) / xdiff2; } else { m2 = MAXSLOPE; /* Vertical slope */ b2 = x22; } *isected = 0; /* check for _exact_ vertex intersection first */ if (mode != KNIFE_MULTICUT) { for (i = 0; i < len; i++) { if (i > 0) { x11 = x12; y11 = y12; } else { x11 = mouse_path[i][0]; y11 = mouse_path[i][1]; } x12 = mouse_path[i][0]; y12 = mouse_path[i][1]; /* test e->v1 */ if ((x11 == x21 && y11 == y21) || (x12 == x21 && y12 == y21)) { perc = 0; *isected = 1; return perc; } /* test e->v2 */ else if ((x11 == x22 && y11 == y22) || (x12 == x22 && y12 == y22)) { perc = 0; *isected = 2; return perc; } } } /* now check for edge intersect (may produce vertex intersection as well) */ for (i = 0; i < len; i++) { if (i > 0) { x11 = x12; y11 = y12; } else { x11 = mouse_path[i][0]; y11 = mouse_path[i][1]; } x12 = mouse_path[i][0]; y12 = mouse_path[i][1]; /* Perp. Distance from point to line */ if (m2 != MAXSLOPE) { /* sqrt(m2 * m2 + 1); Only looking for change in sign. Skip extra math .*/ dist = (y12 - m2 * x12 - b2); } else { dist = x22 - x12; } if (i == 0) { lastdist = dist; } /* if dist changes sign, and intersect point in edge's Bound Box */ if ((lastdist * dist) <= 0) { xdiff1 = (x12 - x11); /* Equation of line between last 2 points */ if (xdiff1) { m1 = (y12 - y11) / xdiff1; b1 = ((x12 * y11) - (x11 * y12)) / xdiff1; } else { m1 = MAXSLOPE; b1 = x12; } x2max = max_ff(x21, x22) + 0.001f; /* prevent missed edges */ x2min = min_ff(x21, x22) - 0.001f; /* due to round off error */ y2max = max_ff(y21, y22) + 0.001f; y2min = min_ff(y21, y22) - 0.001f; /* Found an intersect, calc intersect point */ if (m1 == m2) { /* co-incident lines */ /* cut at 50% of overlap area */ x1max = max_ff(x11, x12); x1min = min_ff(x11, x12); xi = (min_ff(x2max, x1max) + max_ff(x2min, x1min)) / 2.0f; y1max = max_ff(y11, y12); y1min = min_ff(y11, y12); yi = (min_ff(y2max, y1max) + max_ff(y2min, y1min)) / 2.0f; } else if (m2 == MAXSLOPE) { xi = x22; yi = m1 * x22 + b1; } else if (m1 == MAXSLOPE) { xi = x12; yi = m2 * x12 + b2; } else { xi = (b1 - b2) / (m2 - m1); yi = (b1 * m2 - m1 * b2) / (m2 - m1); } /* Intersect inside bounding box of edge?*/ if ((xi >= x2min) && (xi <= x2max) && (yi <= y2max) && (yi >= y2min)) { /* test for vertex intersect that may be 'close enough'*/ if (mode != KNIFE_MULTICUT) { if (xi <= (x21 + threshold) && xi >= (x21 - threshold)) { if (yi <= (y21 + threshold) && yi >= (y21 - threshold)) { *isected = 1; perc = 0; break; } } if (xi <= (x22 + threshold) && xi >= (x22 - threshold)) { if (yi <= (y22 + threshold) && yi >= (y22 - threshold)) { *isected = 2; perc = 0; break; } } } if ((m2 <= 1.0f) && (m2 >= -1.0f)) { perc = (xi - x21) / (x22 - x21); } else { perc = (yi - y21) / (y22 - y21); /* lower slope more accurate */ } // isect = 32768.0 * (perc + 0.0000153); /* Percentage in 1 / 32768ths */ break; } } lastdist = dist; } return perc; } #define ELE_EDGE_CUT 1 static int edbm_knife_cut_exec(bContext *C, wmOperator *op) { Object *obedit = CTX_data_edit_object(C); BMEditMesh *em = BKE_editmesh_from_object(obedit); BMesh *bm = em->bm; ARegion *region = CTX_wm_region(C); BMVert *bv; BMIter iter; BMEdge *be; BMOperator bmop; float isect = 0.0f; int len = 0, isected, i; short numcuts = 1; const short mode = RNA_int_get(op->ptr, "type"); BMOpSlot *slot_edge_percents; /* allocd vars */ float(*screen_vert_coords)[2], (*sco)[2], (*mouse_path)[2]; /* edit-object needed for matrix, and region->regiondata for projections to work */ if (ELEM(NULL, obedit, region, region->regiondata)) { return OPERATOR_CANCELLED; } if (bm->totvertsel < 2) { BKE_report(op->reports, RPT_ERROR, "No edges are selected to operate on"); return OPERATOR_CANCELLED; } len = RNA_collection_length(op->ptr, "path"); if (len < 2) { BKE_report(op->reports, RPT_ERROR, "Mouse path too short"); return OPERATOR_CANCELLED; } mouse_path = MEM_mallocN(len * sizeof(*mouse_path), __func__); /* get the cut curve */ RNA_BEGIN (op->ptr, itemptr, "path") { RNA_float_get_array(&itemptr, "loc", (float *)&mouse_path[len]); } RNA_END; /* for ED_view3d_project_float_object */ ED_view3d_init_mats_rv3d(obedit, region->regiondata); /* TODO, investigate using index lookup for screen_vert_coords() rather then a hash table */ /* the floating point coordinates of verts in screen space will be * stored in a hash table according to the vertices pointer */ screen_vert_coords = sco = MEM_mallocN(bm->totvert * sizeof(float) * 2, __func__); BM_ITER_MESH_INDEX (bv, &iter, bm, BM_VERTS_OF_MESH, i) { if (ED_view3d_project_float_object(region, bv->co, *sco, V3D_PROJ_TEST_CLIP_NEAR) != V3D_PROJ_RET_OK) { copy_v2_fl(*sco, FLT_MAX); /* set error value */ } BM_elem_index_set(bv, i); /* set_inline */ sco++; } bm->elem_index_dirty &= ~BM_VERT; /* clear dirty flag */ if (!EDBM_op_init(em, &bmop, op, "subdivide_edges")) { MEM_freeN(mouse_path); MEM_freeN(screen_vert_coords); return OPERATOR_CANCELLED; } /* store percentage of edge cut for KNIFE_EXACT here.*/ slot_edge_percents = BMO_slot_get(bmop.slots_in, "edge_percents"); BM_ITER_MESH (be, &iter, bm, BM_EDGES_OF_MESH) { bool is_cut = false; if (BM_elem_flag_test(be, BM_ELEM_SELECT)) { const float *sco_a = screen_vert_coords[BM_elem_index_get(be->v1)]; const float *sco_b = screen_vert_coords[BM_elem_index_get(be->v2)]; /* check for error value (vert cant be projected) */ if ((sco_a[0] != FLT_MAX) && (sco_b[0] != FLT_MAX)) { isect = bm_edge_seg_isect(sco_a, sco_b, mouse_path, len, mode, &isected); if (isect != 0.0f) { if (mode != KNIFE_MULTICUT && mode != KNIFE_MIDPOINT) { BMO_slot_map_float_insert(&bmop, slot_edge_percents, be, isect); } } } } BMO_edge_flag_set(bm, be, ELE_EDGE_CUT, is_cut); } /* free all allocs */ MEM_freeN(screen_vert_coords); MEM_freeN(mouse_path); BM_custom_loop_normals_to_vector_layer(bm); BMO_slot_buffer_from_enabled_flag(bm, &bmop, bmop.slots_in, "edges", BM_EDGE, ELE_EDGE_CUT); if (mode == KNIFE_MIDPOINT) { numcuts = 1; } BMO_slot_int_set(bmop.slots_in, "cuts", numcuts); BMO_slot_int_set(bmop.slots_in, "quad_corner_type", SUBD_CORNER_STRAIGHT_CUT); BMO_slot_bool_set(bmop.slots_in, "use_single_edge", false); BMO_slot_bool_set(bmop.slots_in, "use_grid_fill", false); BMO_slot_float_set(bmop.slots_in, "radius", 0); BMO_op_exec(bm, &bmop); if (!EDBM_op_finish(em, &bmop, op, true)) { return OPERATOR_CANCELLED; } BM_custom_loop_normals_from_vector_layer(bm, false); EDBM_update_generic(obedit->data, true, true); return OPERATOR_FINISHED; } #undef ELE_EDGE_CUT void MESH_OT_knife_cut(wmOperatorType *ot) { ot->name = "Knife Cut"; ot->description = "Cut selected edges and faces into parts"; ot->idname = "MESH_OT_knife_cut"; ot->invoke = WM_gesture_lines_invoke; ot->modal = WM_gesture_lines_modal; ot->exec = edbm_knife_cut_exec; ot->poll = EDBM_view3d_poll; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; /* properties */ PropertyRNA *prop; prop = RNA_def_collection_runtime(ot->srna, "path", &RNA_OperatorMousePath, "Path", ""); RNA_def_property_flag(prop, PROP_HIDDEN | PROP_SKIP_SAVE); RNA_def_enum(ot->srna, "type", knife_items, KNIFE_EXACT, "Type", ""); /* internal */ RNA_def_int( ot->srna, "cursor", WM_CURSOR_KNIFE, 0, WM_CURSOR_NUM, "Cursor", "", 0, WM_CURSOR_NUM); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Separate Parts Operator * \{ */ enum { MESH_SEPARATE_SELECTED = 0, MESH_SEPARATE_MATERIAL = 1, MESH_SEPARATE_LOOSE = 2, }; /** TODO: Use #mesh_separate_arrays since it's more efficient. */ static Base *mesh_separate_tagged( Main *bmain, Scene *scene, ViewLayer *view_layer, Base *base_old, BMesh *bm_old) { Base *base_new; Object *obedit = base_old->object; BMesh *bm_new; bm_new = BM_mesh_create(&bm_mesh_allocsize_default, &((struct BMeshCreateParams){ .use_toolflags = true, })); BM_mesh_elem_toolflags_ensure(bm_new); /* needed for 'duplicate' bmo */ CustomData_copy(&bm_old->vdata, &bm_new->vdata, CD_MASK_BMESH.vmask, CD_CALLOC, 0); CustomData_copy(&bm_old->edata, &bm_new->edata, CD_MASK_BMESH.emask, CD_CALLOC, 0); CustomData_copy(&bm_old->ldata, &bm_new->ldata, CD_MASK_BMESH.lmask, CD_CALLOC, 0); CustomData_copy(&bm_old->pdata, &bm_new->pdata, CD_MASK_BMESH.pmask, CD_CALLOC, 0); CustomData_bmesh_init_pool(&bm_new->vdata, bm_mesh_allocsize_default.totvert, BM_VERT); CustomData_bmesh_init_pool(&bm_new->edata, bm_mesh_allocsize_default.totedge, BM_EDGE); CustomData_bmesh_init_pool(&bm_new->ldata, bm_mesh_allocsize_default.totloop, BM_LOOP); CustomData_bmesh_init_pool(&bm_new->pdata, bm_mesh_allocsize_default.totface, BM_FACE); /* Take into account user preferences for duplicating actions. */ const eDupli_ID_Flags dupflag = USER_DUP_MESH | (U.dupflag & USER_DUP_ACT); base_new = ED_object_add_duplicate(bmain, scene, view_layer, base_old, dupflag); /* normally would call directly after but in this case delay recalc */ /* DAG_relations_tag_update(bmain); */ /* new in 2.5 */ BKE_object_material_array_assign(bmain, base_new->object, BKE_object_material_array_p(obedit), *BKE_object_material_len_p(obedit)); ED_object_base_select(base_new, BA_SELECT); BMO_op_callf(bm_old, (BMO_FLAG_DEFAULTS & ~BMO_FLAG_RESPECT_HIDE), "duplicate geom=%hvef dest=%p", BM_ELEM_TAG, bm_new); BMO_op_callf(bm_old, (BMO_FLAG_DEFAULTS & ~BMO_FLAG_RESPECT_HIDE), "delete geom=%hvef context=%i", BM_ELEM_TAG, DEL_FACES); /* deselect loose data - this used to get deleted, * we could de-select edges and verts only, but this turns out to be less complicated * since de-selecting all skips selection flushing logic */ BM_mesh_elem_hflag_disable_all(bm_old, BM_VERT | BM_EDGE | BM_FACE, BM_ELEM_SELECT, false); BM_mesh_normals_update(bm_new); BM_mesh_bm_to_me(bmain, bm_new, base_new->object->data, (&(struct BMeshToMeshParams){0})); BM_mesh_free(bm_new); ((Mesh *)base_new->object->data)->edit_mesh = NULL; return base_new; } static Base *mesh_separate_arrays(Main *bmain, Scene *scene, ViewLayer *view_layer, Base *base_old, BMesh *bm_old, BMVert **verts, uint verts_len, BMEdge **edges, uint edges_len, BMFace **faces, uint faces_len) { Base *base_new; Object *obedit = base_old->object; BMesh *bm_new; bm_new = BM_mesh_create(&bm_mesh_allocsize_default, &((struct BMeshCreateParams){ .use_toolflags = true, })); CustomData_copy(&bm_old->vdata, &bm_new->vdata, CD_MASK_BMESH.vmask, CD_CALLOC, 0); CustomData_copy(&bm_old->edata, &bm_new->edata, CD_MASK_BMESH.emask, CD_CALLOC, 0); CustomData_copy(&bm_old->ldata, &bm_new->ldata, CD_MASK_BMESH.lmask, CD_CALLOC, 0); CustomData_copy(&bm_old->pdata, &bm_new->pdata, CD_MASK_BMESH.pmask, CD_CALLOC, 0); CustomData_bmesh_init_pool(&bm_new->vdata, verts_len, BM_VERT); CustomData_bmesh_init_pool(&bm_new->edata, edges_len, BM_EDGE); CustomData_bmesh_init_pool(&bm_new->ldata, faces_len * 3, BM_LOOP); CustomData_bmesh_init_pool(&bm_new->pdata, faces_len, BM_FACE); /* Take into account user preferences for duplicating actions. */ const eDupli_ID_Flags dupflag = USER_DUP_MESH | (U.dupflag & USER_DUP_ACT); base_new = ED_object_add_duplicate(bmain, scene, view_layer, base_old, dupflag); /* normally would call directly after but in this case delay recalc */ /* DAG_relations_tag_update(bmain); */ /* new in 2.5 */ BKE_object_material_array_assign(bmain, base_new->object, BKE_object_material_array_p(obedit), *BKE_object_material_len_p(obedit)); ED_object_base_select(base_new, BA_SELECT); BM_mesh_copy_arrays(bm_old, bm_new, verts, verts_len, edges, edges_len, faces, faces_len); for (uint i = 0; i < verts_len; i++) { BM_vert_kill(bm_old, verts[i]); } BM_mesh_bm_to_me(bmain, bm_new, base_new->object->data, (&(struct BMeshToMeshParams){0})); BM_mesh_free(bm_new); ((Mesh *)base_new->object->data)->edit_mesh = NULL; return base_new; } static bool mesh_separate_selected( Main *bmain, Scene *scene, ViewLayer *view_layer, Base *base_old, BMesh *bm_old) { /* we may have tags from previous operators */ BM_mesh_elem_hflag_disable_all(bm_old, BM_FACE | BM_EDGE | BM_VERT, BM_ELEM_TAG, false); /* sel -> tag */ BM_mesh_elem_hflag_enable_test( bm_old, BM_FACE | BM_EDGE | BM_VERT, BM_ELEM_TAG, true, false, BM_ELEM_SELECT); return (mesh_separate_tagged(bmain, scene, view_layer, base_old, bm_old) != NULL); } /** * Sets an object to a single material. from one of its slots. * * \note This could be used for split-by-material for non mesh types. * \note This could take material data from another object or args. */ static void mesh_separate_material_assign_mat_nr(Main *bmain, Object *ob, const short mat_nr) { ID *obdata = ob->data; Material ***matarar; const short *totcolp; totcolp = BKE_id_material_len_p(obdata); matarar = BKE_id_material_array_p(obdata); if ((totcolp && matarar) == 0) { BLI_assert(0); return; } if (*totcolp) { Material *ma_ob; Material *ma_obdata; char matbit; if (mat_nr < ob->totcol) { ma_ob = ob->mat[mat_nr]; matbit = ob->matbits[mat_nr]; } else { ma_ob = NULL; matbit = 0; } if (mat_nr < *totcolp) { ma_obdata = (*matarar)[mat_nr]; } else { ma_obdata = NULL; } BKE_id_material_clear(bmain, obdata); BKE_object_material_resize(bmain, ob, 1, true); BKE_id_material_resize(bmain, obdata, 1, true); ob->mat[0] = ma_ob; id_us_plus((ID *)ma_ob); ob->matbits[0] = matbit; (*matarar)[0] = ma_obdata; id_us_plus((ID *)ma_obdata); } else { BKE_id_material_clear(bmain, obdata); BKE_object_material_resize(bmain, ob, 0, true); BKE_id_material_resize(bmain, obdata, 0, true); } } static bool mesh_separate_material( Main *bmain, Scene *scene, ViewLayer *view_layer, Base *base_old, BMesh *bm_old) { BMFace *f_cmp, *f; BMIter iter; bool result = false; while ((f_cmp = BM_iter_at_index(bm_old, BM_FACES_OF_MESH, NULL, 0))) { Base *base_new; const short mat_nr = f_cmp->mat_nr; int tot = 0; BM_mesh_elem_hflag_disable_all(bm_old, BM_VERT | BM_EDGE | BM_FACE, BM_ELEM_TAG, false); BM_ITER_MESH (f, &iter, bm_old, BM_FACES_OF_MESH) { if (f->mat_nr == mat_nr) { BMLoop *l_iter; BMLoop *l_first; BM_elem_flag_enable(f, BM_ELEM_TAG); l_iter = l_first = BM_FACE_FIRST_LOOP(f); do { BM_elem_flag_enable(l_iter->v, BM_ELEM_TAG); BM_elem_flag_enable(l_iter->e, BM_ELEM_TAG); } while ((l_iter = l_iter->next) != l_first); tot++; } } /* leave the current object with some materials */ if (tot == bm_old->totface) { mesh_separate_material_assign_mat_nr(bmain, base_old->object, mat_nr); /* since we're in editmode, must set faces here */ BM_ITER_MESH (f, &iter, bm_old, BM_FACES_OF_MESH) { f->mat_nr = 0; } break; } /* Move selection into a separate object */ base_new = mesh_separate_tagged(bmain, scene, view_layer, base_old, bm_old); if (base_new) { mesh_separate_material_assign_mat_nr(bmain, base_new->object, mat_nr); } result |= (base_new != NULL); } return result; } static bool mesh_separate_loose( Main *bmain, Scene *scene, ViewLayer *view_layer, Base *base_old, BMesh *bm_old) { /* Without this, we duplicate the object mode mesh for each loose part. * This can get very slow especially for large meshes with many parts * which would duplicate the mesh on entering edit-mode. */ const bool clear_object_data = true; bool result = false; BMVert **vert_groups = MEM_mallocN(sizeof(*vert_groups) * bm_old->totvert, __func__); BMEdge **edge_groups = MEM_mallocN(sizeof(*edge_groups) * bm_old->totedge, __func__); BMFace **face_groups = MEM_mallocN(sizeof(*face_groups) * bm_old->totface, __func__); int(*groups)[3] = NULL; int groups_len = BM_mesh_calc_edge_groups_as_arrays( bm_old, vert_groups, edge_groups, face_groups, &groups); if (groups_len <= 1) { goto finally; } if (clear_object_data) { ED_mesh_geometry_clear(base_old->object->data); } /* Separate out all groups except the first. */ uint group_ofs[3] = {UNPACK3(groups[0])}; for (int i = 1; i < groups_len; i++) { Base *base_new = mesh_separate_arrays(bmain, scene, view_layer, base_old, bm_old, vert_groups + group_ofs[0], groups[i][0], edge_groups + group_ofs[1], groups[i][1], face_groups + group_ofs[2], groups[i][2]); result |= (base_new != NULL); group_ofs[0] += groups[i][0]; group_ofs[1] += groups[i][1]; group_ofs[2] += groups[i][2]; } Mesh *me_old = base_old->object->data; BM_mesh_elem_hflag_disable_all(bm_old, BM_VERT | BM_EDGE | BM_FACE, BM_ELEM_SELECT, false); if (clear_object_data) { BM_mesh_bm_to_me(NULL, bm_old, me_old, (&(struct BMeshToMeshParams){ .update_shapekey_indices = true, })); } finally: MEM_freeN(vert_groups); MEM_freeN(edge_groups); MEM_freeN(face_groups); MEM_freeN(groups); return result; } static int edbm_separate_exec(bContext *C, wmOperator *op) { Main *bmain = CTX_data_main(C); Scene *scene = CTX_data_scene(C); ViewLayer *view_layer = CTX_data_view_layer(C); const int type = RNA_enum_get(op->ptr, "type"); int retval = 0; if (ED_operator_editmesh(C)) { uint bases_len = 0; uint empty_selection_len = 0; Base **bases = BKE_view_layer_array_from_bases_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &bases_len); for (uint bs_index = 0; bs_index < bases_len; bs_index++) { Base *base = bases[bs_index]; BMEditMesh *em = BKE_editmesh_from_object(base->object); if (type == 0) { if ((em->bm->totvertsel == 0) && (em->bm->totedgesel == 0) && (em->bm->totfacesel == 0)) { /* when all objects has no selection */ if (++empty_selection_len == bases_len) { BKE_report(op->reports, RPT_ERROR, "Nothing selected"); } continue; } } /* editmode separate */ switch (type) { case MESH_SEPARATE_SELECTED: retval = mesh_separate_selected(bmain, scene, view_layer, base, em->bm); break; case MESH_SEPARATE_MATERIAL: retval = mesh_separate_material(bmain, scene, view_layer, base, em->bm); break; case MESH_SEPARATE_LOOSE: retval = mesh_separate_loose(bmain, scene, view_layer, base, em->bm); break; default: BLI_assert(0); break; } if (retval) { EDBM_update_generic(base->object->data, true, true); } } MEM_freeN(bases); } else { if (type == MESH_SEPARATE_SELECTED) { BKE_report(op->reports, RPT_ERROR, "Selection not supported in object mode"); return OPERATOR_CANCELLED; } /* object mode separate */ CTX_DATA_BEGIN (C, Base *, base_iter, selected_editable_bases) { Object *ob = base_iter->object; if (ob->type == OB_MESH) { Mesh *me = ob->data; if (!ID_IS_LINKED(me)) { BMesh *bm_old = NULL; int retval_iter = 0; bm_old = BM_mesh_create(&bm_mesh_allocsize_default, &((struct BMeshCreateParams){ .use_toolflags = true, })); BM_mesh_bm_from_me(bm_old, me, (&(struct BMeshFromMeshParams){0})); switch (type) { case MESH_SEPARATE_MATERIAL: retval_iter = mesh_separate_material(bmain, scene, view_layer, base_iter, bm_old); break; case MESH_SEPARATE_LOOSE: retval_iter = mesh_separate_loose(bmain, scene, view_layer, base_iter, bm_old); break; default: BLI_assert(0); break; } if (retval_iter) { BM_mesh_bm_to_me(bmain, bm_old, me, (&(struct BMeshToMeshParams){ .calc_object_remap = true, })); DEG_id_tag_update(&me->id, ID_RECALC_GEOMETRY); WM_event_add_notifier(C, NC_GEOM | ND_DATA, me); } BM_mesh_free(bm_old); retval |= retval_iter; } } } CTX_DATA_END; } if (retval) { /* delay depsgraph recalc until all objects are duplicated */ DEG_relations_tag_update(bmain); WM_event_add_notifier(C, NC_OBJECT | ND_DRAW, NULL); ED_outliner_select_sync_from_object_tag(C); return OPERATOR_FINISHED; } return OPERATOR_CANCELLED; } void MESH_OT_separate(wmOperatorType *ot) { static const EnumPropertyItem prop_separate_types[] = { {MESH_SEPARATE_SELECTED, "SELECTED", 0, "Selection", ""}, {MESH_SEPARATE_MATERIAL, "MATERIAL", 0, "By Material", ""}, {MESH_SEPARATE_LOOSE, "LOOSE", 0, "By Loose Parts", ""}, {0, NULL, 0, NULL, NULL}, }; /* identifiers */ ot->name = "Separate"; ot->description = "Separate selected geometry into a new mesh"; ot->idname = "MESH_OT_separate"; /* api callbacks */ ot->invoke = WM_menu_invoke; ot->exec = edbm_separate_exec; ot->poll = ED_operator_scene_editable; /* object and editmode */ /* flags */ ot->flag = OPTYPE_UNDO; ot->prop = RNA_def_enum( ot->srna, "type", prop_separate_types, MESH_SEPARATE_SELECTED, "Type", ""); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Triangle Fill Operator * \{ */ static int edbm_fill_exec(bContext *C, wmOperator *op) { const bool use_beauty = RNA_boolean_get(op->ptr, "use_beauty"); bool has_selected_edges = false, has_faces_filled = false; ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); const int totface_orig = em->bm->totface; if (em->bm->totedgesel == 0) { continue; } has_selected_edges = true; BMOperator bmop; if (!EDBM_op_init( em, &bmop, op, "triangle_fill edges=%he use_beauty=%b", BM_ELEM_SELECT, use_beauty)) { continue; } BMO_op_exec(em->bm, &bmop); /* cancel if nothing was done */ if (totface_orig == em->bm->totface) { EDBM_op_finish(em, &bmop, op, true); continue; } has_faces_filled = true; /* select new geometry */ BMO_slot_buffer_hflag_enable( em->bm, bmop.slots_out, "geom.out", BM_FACE | BM_EDGE, BM_ELEM_SELECT, true); if (!EDBM_op_finish(em, &bmop, op, true)) { continue; } EDBM_update_generic(obedit->data, true, true); } MEM_freeN(objects); if (!has_selected_edges) { BKE_report(op->reports, RPT_ERROR, "No edges selected"); return OPERATOR_CANCELLED; } if (!has_faces_filled) { BKE_report(op->reports, RPT_WARNING, "No faces filled"); return OPERATOR_CANCELLED; } return OPERATOR_FINISHED; } void MESH_OT_fill(wmOperatorType *ot) { /* identifiers */ ot->name = "Fill"; ot->idname = "MESH_OT_fill"; ot->description = "Fill a selected edge loop with faces"; /* api callbacks */ ot->exec = edbm_fill_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; RNA_def_boolean(ot->srna, "use_beauty", true, "Beauty", "Use best triangulation division"); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Grid Fill Operator * \{ */ static bool bm_edge_test_fill_grid_cb(BMEdge *e, void *UNUSED(bm_v)) { return BM_elem_flag_test_bool(e, BM_ELEM_SELECT); } static float edbm_fill_grid_vert_tag_angle(BMVert *v) { BMIter iter; BMEdge *e_iter; BMVert *v_pair[2]; int i = 0; BM_ITER_ELEM (e_iter, &iter, v, BM_EDGES_OF_VERT) { if (BM_elem_flag_test(e_iter, BM_ELEM_TAG)) { v_pair[i++] = BM_edge_other_vert(e_iter, v); } } BLI_assert(i == 2); return fabsf((float)M_PI - angle_v3v3v3(v_pair[0]->co, v->co, v_pair[1]->co)); } /** * non-essential utility function to select 2 open edge loops from a closed loop. */ static bool edbm_fill_grid_prepare(BMesh *bm, int offset, int *span_p, const bool span_calc) { /* angle differences below this value are considered 'even' * in that they shouldn't be used to calculate corners used for the 'span' */ const float eps_even = 1e-3f; BMEdge *e; BMIter iter; int count; int span = *span_p; ListBase eloops = {NULL}; struct BMEdgeLoopStore *el_store; // LinkData *el_store; count = BM_mesh_edgeloops_find(bm, &eloops, bm_edge_test_fill_grid_cb, bm); el_store = eloops.first; if (count != 1) { /* Let the operator use the selection flags, * most likely failing with an error in this case. */ BM_mesh_edgeloops_free(&eloops); return false; } /* Only tag edges that are part of a loop. */ BM_ITER_MESH (e, &iter, bm, BM_EDGES_OF_MESH) { BM_elem_flag_disable(e, BM_ELEM_TAG); } const int verts_len = BM_edgeloop_length_get(el_store); const int edges_len = verts_len - (BM_edgeloop_is_closed(el_store) ? 0 : 1); BMEdge **edges = MEM_mallocN(sizeof(*edges) * edges_len, __func__); BM_edgeloop_edges_get(el_store, edges); for (int i = 0; i < edges_len; i++) { BM_elem_flag_enable(edges[i], BM_ELEM_TAG); } if (span_calc) { span = verts_len / 4; } else { span = min_ii(span, (verts_len / 2) - 1); } offset = mod_i(offset, verts_len); if ((count == 1) && ((verts_len & 1) == 0) && (verts_len == edges_len)) { /* be clever! detect 2 edge loops from one closed edge loop */ ListBase *verts = BM_edgeloop_verts_get(el_store); BMVert *v_act = BM_mesh_active_vert_get(bm); LinkData *v_act_link; int i; if (v_act && (v_act_link = BLI_findptr(verts, v_act, offsetof(LinkData, data)))) { /* pass */ } else { /* find the vertex with the best angle (a corner vertex) */ LinkData *v_link, *v_link_best = NULL; float angle_best = -1.0f; for (v_link = verts->first; v_link; v_link = v_link->next) { const float angle = edbm_fill_grid_vert_tag_angle(v_link->data); if ((angle > angle_best) || (v_link_best == NULL)) { angle_best = angle; v_link_best = v_link; } } v_act_link = v_link_best; v_act = v_act_link->data; } /* set this vertex first */ BLI_listbase_rotate_first(verts, v_act_link); if (offset != 0) { v_act_link = BLI_findlink(verts, offset); v_act = v_act_link->data; BLI_listbase_rotate_first(verts, v_act_link); } /* Run again to update the edge order from the rotated vertex list. */ BM_edgeloop_edges_get(el_store, edges); if (span_calc) { /* calculate the span by finding the next corner in 'verts' * we dont know what defines a corner exactly so find the 4 verts * in the loop with the greatest angle. * Tag them and use the first tagged vertex to calculate the span. * * note: we may have already checked 'edbm_fill_grid_vert_tag_angle()' on each * vert, but advantage of de-duplicating is minimal. */ struct SortPtrByFloat *ele_sort = MEM_mallocN(sizeof(*ele_sort) * verts_len, __func__); LinkData *v_link; for (v_link = verts->first, i = 0; v_link; v_link = v_link->next, i++) { BMVert *v = v_link->data; const float angle = edbm_fill_grid_vert_tag_angle(v); ele_sort[i].sort_value = angle; ele_sort[i].data = v; BM_elem_flag_disable(v, BM_ELEM_TAG); } qsort(ele_sort, verts_len, sizeof(*ele_sort), BLI_sortutil_cmp_float_reverse); /* check that we have at least 3 corners, * if the angle on the 3rd angle is roughly the same as the last, * then we can't calculate 3+ corners - fallback to the even span. */ if ((ele_sort[2].sort_value - ele_sort[verts_len - 1].sort_value) > eps_even) { for (i = 0; i < 4; i++) { BMVert *v = ele_sort[i].data; BM_elem_flag_enable(v, BM_ELEM_TAG); } /* now find the first... */ for (v_link = verts->first, i = 0; i < verts_len / 2; v_link = v_link->next, i++) { BMVert *v = v_link->data; if (BM_elem_flag_test(v, BM_ELEM_TAG)) { if (v != v_act) { span = i; break; } } } } MEM_freeN(ele_sort); } /* end span calc */ /* un-flag 'rails' */ for (i = 0; i < span; i++) { BM_elem_flag_disable(edges[i], BM_ELEM_TAG); BM_elem_flag_disable(edges[(verts_len / 2) + i], BM_ELEM_TAG); } } /* else let the bmesh-operator handle it */ BM_mesh_edgeloops_free(&eloops); MEM_freeN(edges); *span_p = span; return true; } static int edbm_fill_grid_exec(bContext *C, wmOperator *op) { const bool use_interp_simple = RNA_boolean_get(op->ptr, "use_interp_simple"); ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); bool use_prepare = true; const bool use_smooth = edbm_add_edge_face__smooth_get(em->bm); const int totedge_orig = em->bm->totedge; const int totface_orig = em->bm->totface; if (em->bm->totedgesel == 0) { continue; } if (use_prepare) { /* use when we have a single loop selected */ PropertyRNA *prop_span = RNA_struct_find_property(op->ptr, "span"); PropertyRNA *prop_offset = RNA_struct_find_property(op->ptr, "offset"); bool calc_span; int span; int offset; /* Only reuse on redo because these settings need to match the current selection. * We never want to use them on other geometry, repeat last for eg, see: T60777. */ if (((op->flag & OP_IS_INVOKE) || (op->flag & OP_IS_REPEAT_LAST) == 0) && RNA_property_is_set(op->ptr, prop_span)) { span = RNA_property_int_get(op->ptr, prop_span); calc_span = false; } else { /* Will be overwritten if possible. */ span = 0; calc_span = true; } offset = RNA_property_int_get(op->ptr, prop_offset); /* in simple cases, move selection for tags, but also support more advanced cases */ use_prepare = edbm_fill_grid_prepare(em->bm, offset, &span, calc_span); RNA_property_int_set(op->ptr, prop_span, span); } /* end tricky prepare code */ BMOperator bmop; if (!EDBM_op_init(em, &bmop, op, "grid_fill edges=%he mat_nr=%i use_smooth=%b use_interp_simple=%b", use_prepare ? BM_ELEM_TAG : BM_ELEM_SELECT, em->mat_nr, use_smooth, use_interp_simple)) { continue; } BMO_op_exec(em->bm, &bmop); /* NOTE: EDBM_op_finish() will change bmesh pointer inside of edit mesh, * so need to tell evaluated objects to sync new bmesh pointer to their * edit mesh structures. */ DEG_id_tag_update(&obedit->id, 0); /* cancel if nothing was done */ if ((totedge_orig == em->bm->totedge) && (totface_orig == em->bm->totface)) { EDBM_op_finish(em, &bmop, op, true); continue; } BMO_slot_buffer_hflag_enable( em->bm, bmop.slots_out, "faces.out", BM_FACE, BM_ELEM_SELECT, true); if (!EDBM_op_finish(em, &bmop, op, true)) { continue; } EDBM_update_generic(obedit->data, true, true); } MEM_freeN(objects); return OPERATOR_FINISHED; } void MESH_OT_fill_grid(wmOperatorType *ot) { PropertyRNA *prop; /* identifiers */ ot->name = "Grid Fill"; ot->description = "Fill grid from two loops"; ot->idname = "MESH_OT_fill_grid"; /* api callbacks */ ot->exec = edbm_fill_grid_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; /* properties */ prop = RNA_def_int(ot->srna, "span", 1, 1, 1000, "Span", "Number of grid columns", 1, 100); RNA_def_property_flag(prop, PROP_SKIP_SAVE); prop = RNA_def_int(ot->srna, "offset", 0, -1000, 1000, "Offset", "Vertex that is the corner of the grid", -100, 100); RNA_def_property_flag(prop, PROP_SKIP_SAVE); RNA_def_boolean(ot->srna, "use_interp_simple", false, "Simple Blending", "Use simple interpolation of grid vertices"); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Hole Fill Operator * \{ */ static int edbm_fill_holes_exec(bContext *C, wmOperator *op) { const int sides = RNA_int_get(op->ptr, "sides"); ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); if (em->bm->totedgesel == 0) { continue; } if (!EDBM_op_call_and_selectf( em, op, "faces.out", true, "holes_fill edges=%he sides=%i", BM_ELEM_SELECT, sides)) { continue; } EDBM_update_generic(obedit->data, true, true); } MEM_freeN(objects); return OPERATOR_FINISHED; } void MESH_OT_fill_holes(wmOperatorType *ot) { /* identifiers */ ot->name = "Fill Holes"; ot->idname = "MESH_OT_fill_holes"; ot->description = "Fill in holes (boundary edge loops)"; /* api callbacks */ ot->exec = edbm_fill_holes_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; RNA_def_int(ot->srna, "sides", 4, 0, 1000, "Sides", "Number of sides in hole required to fill (zero fills all holes)", 0, 100); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Beauty Fill Operator * \{ */ static int edbm_beautify_fill_exec(bContext *C, wmOperator *op) { ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); const float angle_max = M_PI; const float angle_limit = RNA_float_get(op->ptr, "angle_limit"); char hflag; for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); if (em->bm->totfacesel == 0) { continue; } if (angle_limit >= angle_max) { hflag = BM_ELEM_SELECT; } else { BMIter iter; BMEdge *e; BM_ITER_MESH (e, &iter, em->bm, BM_EDGES_OF_MESH) { BM_elem_flag_set(e, BM_ELEM_TAG, (BM_elem_flag_test(e, BM_ELEM_SELECT) && BM_edge_calc_face_angle_ex(e, angle_max) < angle_limit)); } hflag = BM_ELEM_TAG; } if (!EDBM_op_call_and_selectf(em, op, "geom.out", true, "beautify_fill faces=%hf edges=%he", BM_ELEM_SELECT, hflag)) { continue; } EDBM_update_generic(obedit->data, true, true); } MEM_freeN(objects); return OPERATOR_FINISHED; } void MESH_OT_beautify_fill(wmOperatorType *ot) { PropertyRNA *prop; /* identifiers */ ot->name = "Beautify Faces"; ot->idname = "MESH_OT_beautify_fill"; ot->description = "Rearrange some faces to try to get less degenerated geometry"; /* api callbacks */ ot->exec = edbm_beautify_fill_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; /* props */ prop = RNA_def_float_rotation(ot->srna, "angle_limit", 0, NULL, 0.0f, DEG2RADF(180.0f), "Max Angle", "Angle limit", 0.0f, DEG2RADF(180.0f)); RNA_def_property_float_default(prop, DEG2RADF(180.0f)); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Poke Face Operator * \{ */ static int edbm_poke_face_exec(bContext *C, wmOperator *op) { const float offset = RNA_float_get(op->ptr, "offset"); const bool use_relative_offset = RNA_boolean_get(op->ptr, "use_relative_offset"); const int center_mode = RNA_enum_get(op->ptr, "center_mode"); ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); if (em->bm->totfacesel == 0) { continue; } BMOperator bmop; EDBM_op_init(em, &bmop, op, "poke faces=%hf offset=%f use_relative_offset=%b center_mode=%i", BM_ELEM_SELECT, offset, use_relative_offset, center_mode); BMO_op_exec(em->bm, &bmop); EDBM_flag_disable_all(em, BM_ELEM_SELECT); BMO_slot_buffer_hflag_enable( em->bm, bmop.slots_out, "verts.out", BM_VERT, BM_ELEM_SELECT, true); BMO_slot_buffer_hflag_enable( em->bm, bmop.slots_out, "faces.out", BM_FACE, BM_ELEM_SELECT, true); if (!EDBM_op_finish(em, &bmop, op, true)) { continue; } EDBM_mesh_normals_update(em); EDBM_update_generic(obedit->data, true, true); } MEM_freeN(objects); return OPERATOR_FINISHED; } void MESH_OT_poke(wmOperatorType *ot) { static const EnumPropertyItem poke_center_modes[] = { {BMOP_POKE_MEDIAN_WEIGHTED, "MEDIAN_WEIGHTED", 0, "Weighted Median", "Weighted median face center"}, {BMOP_POKE_MEDIAN, "MEDIAN", 0, "Median", "Median face center"}, {BMOP_POKE_BOUNDS, "BOUNDS", 0, "Bounds", "Face bounds center"}, {0, NULL, 0, NULL, NULL}, }; /* identifiers */ ot->name = "Poke Faces"; ot->idname = "MESH_OT_poke"; ot->description = "Split a face into a fan"; /* api callbacks */ ot->exec = edbm_poke_face_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; RNA_def_float_distance( ot->srna, "offset", 0.0f, -1e3f, 1e3f, "Poke Offset", "Poke Offset", -1.0f, 1.0f); RNA_def_boolean(ot->srna, "use_relative_offset", false, "Offset Relative", "Scale the offset by surrounding geometry"); RNA_def_enum(ot->srna, "center_mode", poke_center_modes, BMOP_POKE_MEDIAN_WEIGHTED, "Poke Center", "Poke Face Center Calculation"); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Triangulate Face Operator * \{ */ static int edbm_quads_convert_to_tris_exec(bContext *C, wmOperator *op) { const int quad_method = RNA_enum_get(op->ptr, "quad_method"); const int ngon_method = RNA_enum_get(op->ptr, "ngon_method"); ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); if (em->bm->totfacesel == 0) { continue; } BMOperator bmop; BMOIter oiter; BMFace *f; EDBM_op_init(em, &bmop, op, "triangulate faces=%hf quad_method=%i ngon_method=%i", BM_ELEM_SELECT, quad_method, ngon_method); BMO_op_exec(em->bm, &bmop); /* select the output */ BMO_slot_buffer_hflag_enable( em->bm, bmop.slots_out, "faces.out", BM_FACE, BM_ELEM_SELECT, true); /* remove the doubles */ BMO_ITER (f, &oiter, bmop.slots_out, "face_map_double.out", BM_FACE) { BM_face_kill(em->bm, f); } EDBM_selectmode_flush(em); if (!EDBM_op_finish(em, &bmop, op, true)) { continue; } EDBM_update_generic(obedit->data, true, true); } MEM_freeN(objects); return OPERATOR_FINISHED; } void MESH_OT_quads_convert_to_tris(wmOperatorType *ot) { /* identifiers */ ot->name = "Triangulate Faces"; ot->idname = "MESH_OT_quads_convert_to_tris"; ot->description = "Triangulate selected faces"; /* api callbacks */ ot->exec = edbm_quads_convert_to_tris_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; RNA_def_enum(ot->srna, "quad_method", rna_enum_modifier_triangulate_quad_method_items, MOD_TRIANGULATE_QUAD_BEAUTY, "Quad Method", "Method for splitting the quads into triangles"); RNA_def_enum(ot->srna, "ngon_method", rna_enum_modifier_triangulate_ngon_method_items, MOD_TRIANGULATE_NGON_BEAUTY, "Polygon Method", "Method for splitting the polygons into triangles"); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Convert to Quads Operator * \{ */ static int edbm_tris_convert_to_quads_exec(bContext *C, wmOperator *op) { ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); bool is_face_pair; { int totelem_sel[3]; EDBM_mesh_stats_multi(objects, objects_len, NULL, totelem_sel); is_face_pair = (totelem_sel[2] == 2); } for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); bool do_seam, do_sharp, do_uvs, do_vcols, do_materials; float angle_face_threshold, angle_shape_threshold; PropertyRNA *prop; /* When joining exactly 2 faces, no limit. * this is useful for one off joins while editing. */ prop = RNA_struct_find_property(op->ptr, "face_threshold"); if (is_face_pair && (RNA_property_is_set(op->ptr, prop) == false)) { angle_face_threshold = DEG2RADF(180.0f); } else { angle_face_threshold = RNA_property_float_get(op->ptr, prop); } prop = RNA_struct_find_property(op->ptr, "shape_threshold"); if (is_face_pair && (RNA_property_is_set(op->ptr, prop) == false)) { angle_shape_threshold = DEG2RADF(180.0f); } else { angle_shape_threshold = RNA_property_float_get(op->ptr, prop); } do_seam = RNA_boolean_get(op->ptr, "seam"); do_sharp = RNA_boolean_get(op->ptr, "sharp"); do_uvs = RNA_boolean_get(op->ptr, "uvs"); do_vcols = RNA_boolean_get(op->ptr, "vcols"); do_materials = RNA_boolean_get(op->ptr, "materials"); BM_custom_loop_normals_to_vector_layer(em->bm); if (!EDBM_op_call_and_selectf( em, op, "faces.out", true, "join_triangles faces=%hf angle_face_threshold=%f angle_shape_threshold=%f " "cmp_seam=%b cmp_sharp=%b cmp_uvs=%b cmp_vcols=%b cmp_materials=%b", BM_ELEM_SELECT, angle_face_threshold, angle_shape_threshold, do_seam, do_sharp, do_uvs, do_vcols, do_materials)) { continue; } BM_custom_loop_normals_from_vector_layer(em->bm, false); EDBM_update_generic(obedit->data, true, true); } MEM_freeN(objects); return OPERATOR_FINISHED; } static void join_triangle_props(wmOperatorType *ot) { PropertyRNA *prop; prop = RNA_def_float_rotation(ot->srna, "face_threshold", 0, NULL, 0.0f, DEG2RADF(180.0f), "Max Face Angle", "Face angle limit", 0.0f, DEG2RADF(180.0f)); RNA_def_property_float_default(prop, DEG2RADF(40.0f)); prop = RNA_def_float_rotation(ot->srna, "shape_threshold", 0, NULL, 0.0f, DEG2RADF(180.0f), "Max Shape Angle", "Shape angle limit", 0.0f, DEG2RADF(180.0f)); RNA_def_property_float_default(prop, DEG2RADF(40.0f)); RNA_def_boolean(ot->srna, "uvs", false, "Compare UVs", ""); RNA_def_boolean(ot->srna, "vcols", false, "Compare VCols", ""); RNA_def_boolean(ot->srna, "seam", false, "Compare Seam", ""); RNA_def_boolean(ot->srna, "sharp", false, "Compare Sharp", ""); RNA_def_boolean(ot->srna, "materials", false, "Compare Materials", ""); } void MESH_OT_tris_convert_to_quads(wmOperatorType *ot) { /* identifiers */ ot->name = "Tris to Quads"; ot->idname = "MESH_OT_tris_convert_to_quads"; ot->description = "Join triangles into quads"; /* api callbacks */ ot->exec = edbm_tris_convert_to_quads_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; join_triangle_props(ot); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Decimate Operator * * \note The function to decimate is intended for use as a modifier, * while its handy allow access as a tool - this does cause access to be a little awkward * (passing selection as weights for eg). * * \{ */ static int edbm_decimate_exec(bContext *C, wmOperator *op) { const float ratio = RNA_float_get(op->ptr, "ratio"); bool use_vertex_group = RNA_boolean_get(op->ptr, "use_vertex_group"); const float vertex_group_factor = RNA_float_get(op->ptr, "vertex_group_factor"); const bool invert_vertex_group = RNA_boolean_get(op->ptr, "invert_vertex_group"); const bool use_symmetry = RNA_boolean_get(op->ptr, "use_symmetry"); const float symmetry_eps = 0.00002f; const int symmetry_axis = use_symmetry ? RNA_enum_get(op->ptr, "symmetry_axis") : -1; /* nop */ if (ratio == 1.0f) { return OPERATOR_FINISHED; } ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); BMesh *bm = em->bm; if (bm->totedgesel == 0) { continue; } float *vweights = MEM_mallocN(sizeof(*vweights) * bm->totvert, __func__); { const int cd_dvert_offset = CustomData_get_offset(&bm->vdata, CD_MDEFORMVERT); const int defbase_act = obedit->actdef - 1; if (use_vertex_group && (cd_dvert_offset == -1)) { BKE_report(op->reports, RPT_WARNING, "No active vertex group"); use_vertex_group = false; } BMIter iter; BMVert *v; int i; BM_ITER_MESH_INDEX (v, &iter, bm, BM_VERTS_OF_MESH, i) { float weight = 0.0f; if (BM_elem_flag_test(v, BM_ELEM_SELECT)) { if (use_vertex_group) { const MDeformVert *dv = BM_ELEM_CD_GET_VOID_P(v, cd_dvert_offset); weight = BKE_defvert_find_weight(dv, defbase_act); if (invert_vertex_group) { weight = 1.0f - weight; } } else { weight = 1.0f; } } vweights[i] = weight; BM_elem_index_set(v, i); /* set_inline */ } bm->elem_index_dirty &= ~BM_VERT; } float ratio_adjust; if ((bm->totface == bm->totfacesel) || (ratio == 0.0f)) { ratio_adjust = ratio; } else { /** * Calculate a new ratio based on faces that could be removed during decimation. * needed so 0..1 has a meaningful range when operating on the selection. * * This doesn't have to be totally accurate, * but needs to be greater than the number of selected faces */ int totface_basis = 0; int totface_adjacent = 0; BMIter iter; BMFace *f; BM_ITER_MESH (f, &iter, bm, BM_FACES_OF_MESH) { /* count faces during decimation, ngons are triangulated */ const int f_len = f->len > 4 ? (f->len - 2) : 1; totface_basis += f_len; BMLoop *l_iter, *l_first; l_iter = l_first = BM_FACE_FIRST_LOOP(f); do { if (vweights[BM_elem_index_get(l_iter->v)] != 0.0f) { totface_adjacent += f_len; break; } } while ((l_iter = l_iter->next) != l_first); } ratio_adjust = ratio; ratio_adjust = 1.0f - ratio_adjust; ratio_adjust *= (float)totface_adjacent / (float)totface_basis; ratio_adjust = 1.0f - ratio_adjust; } BM_mesh_decimate_collapse( em->bm, ratio_adjust, vweights, vertex_group_factor, false, symmetry_axis, symmetry_eps); MEM_freeN(vweights); { short selectmode = em->selectmode; if ((selectmode & (SCE_SELECT_VERTEX | SCE_SELECT_EDGE)) == 0) { /* ensure we flush edges -> faces */ selectmode |= SCE_SELECT_EDGE; } EDBM_selectmode_flush_ex(em, selectmode); } EDBM_update_generic(obedit->data, true, true); } MEM_freeN(objects); return OPERATOR_FINISHED; } static bool edbm_decimate_check(bContext *UNUSED(C), wmOperator *UNUSED(op)) { return true; } static void edbm_decimate_ui(bContext *UNUSED(C), wmOperator *op) { uiLayout *layout = op->layout, *box, *row, *col; PointerRNA ptr; RNA_pointer_create(NULL, op->type->srna, op->properties, &ptr); uiItemR(layout, &ptr, "ratio", 0, NULL, ICON_NONE); box = uiLayoutBox(layout); uiItemR(box, &ptr, "use_vertex_group", 0, NULL, ICON_NONE); col = uiLayoutColumn(box, false); uiLayoutSetActive(col, RNA_boolean_get(&ptr, "use_vertex_group")); uiItemR(col, &ptr, "vertex_group_factor", 0, NULL, ICON_NONE); uiItemR(col, &ptr, "invert_vertex_group", 0, NULL, ICON_NONE); box = uiLayoutBox(layout); uiItemR(box, &ptr, "use_symmetry", 0, NULL, ICON_NONE); row = uiLayoutRow(box, true); uiLayoutSetActive(row, RNA_boolean_get(&ptr, "use_symmetry")); uiItemR(row, &ptr, "symmetry_axis", UI_ITEM_R_EXPAND, NULL, ICON_NONE); } void MESH_OT_decimate(wmOperatorType *ot) { /* identifiers */ ot->name = "Decimate Geometry"; ot->idname = "MESH_OT_decimate"; ot->description = "Simplify geometry by collapsing edges"; /* api callbacks */ ot->exec = edbm_decimate_exec; ot->check = edbm_decimate_check; ot->ui = edbm_decimate_ui; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; /* Note, keep in sync with 'rna_def_modifier_decimate' */ RNA_def_float(ot->srna, "ratio", 1.0f, 0.0f, 1.0f, "Ratio", "", 0.0f, 1.0f); RNA_def_boolean(ot->srna, "use_vertex_group", false, "Vertex Group", "Use active vertex group as an influence"); RNA_def_float(ot->srna, "vertex_group_factor", 1.0f, 0.0f, 1000.0f, "Weight", "Vertex group strength", 0.0f, 10.0f); RNA_def_boolean( ot->srna, "invert_vertex_group", false, "Invert", "Invert vertex group influence"); RNA_def_boolean(ot->srna, "use_symmetry", false, "Symmetry", "Maintain symmetry on an axis"); RNA_def_enum(ot->srna, "symmetry_axis", rna_enum_axis_xyz_items, 1, "Axis", "Axis of symmetry"); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Dissolve Vertices Operator * \{ */ static void edbm_dissolve_prop__use_verts(wmOperatorType *ot, bool value, int flag) { PropertyRNA *prop; prop = RNA_def_boolean( ot->srna, "use_verts", value, "Dissolve Verts", "Dissolve remaining vertices"); if (flag) { RNA_def_property_flag(prop, flag); } } static void edbm_dissolve_prop__use_face_split(wmOperatorType *ot) { RNA_def_boolean(ot->srna, "use_face_split", false, "Face Split", "Split off face corners to maintain surrounding geometry"); } static void edbm_dissolve_prop__use_boundary_tear(wmOperatorType *ot) { RNA_def_boolean(ot->srna, "use_boundary_tear", false, "Tear Boundary", "Split off face corners instead of merging faces"); } static int edbm_dissolve_verts_exec(bContext *C, wmOperator *op) { const bool use_face_split = RNA_boolean_get(op->ptr, "use_face_split"); const bool use_boundary_tear = RNA_boolean_get(op->ptr, "use_boundary_tear"); ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); if (em->bm->totvertsel == 0) { continue; } BM_custom_loop_normals_to_vector_layer(em->bm); if (!EDBM_op_callf(em, op, "dissolve_verts verts=%hv use_face_split=%b use_boundary_tear=%b", BM_ELEM_SELECT, use_face_split, use_boundary_tear)) { continue; } BM_custom_loop_normals_from_vector_layer(em->bm, false); EDBM_update_generic(obedit->data, true, true); } MEM_freeN(objects); return OPERATOR_FINISHED; } void MESH_OT_dissolve_verts(wmOperatorType *ot) { /* identifiers */ ot->name = "Dissolve Vertices"; ot->description = "Dissolve verts, merge edges and faces"; ot->idname = "MESH_OT_dissolve_verts"; /* api callbacks */ ot->exec = edbm_dissolve_verts_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; edbm_dissolve_prop__use_face_split(ot); edbm_dissolve_prop__use_boundary_tear(ot); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Dissolve Edges Operator * \{ */ static int edbm_dissolve_edges_exec(bContext *C, wmOperator *op) { const bool use_verts = RNA_boolean_get(op->ptr, "use_verts"); const bool use_face_split = RNA_boolean_get(op->ptr, "use_face_split"); ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); if (em->bm->totedgesel == 0) { continue; } BM_custom_loop_normals_to_vector_layer(em->bm); if (!EDBM_op_callf(em, op, "dissolve_edges edges=%he use_verts=%b use_face_split=%b", BM_ELEM_SELECT, use_verts, use_face_split)) { continue; } BM_custom_loop_normals_from_vector_layer(em->bm, false); EDBM_update_generic(obedit->data, true, true); } MEM_freeN(objects); return OPERATOR_FINISHED; } void MESH_OT_dissolve_edges(wmOperatorType *ot) { /* identifiers */ ot->name = "Dissolve Edges"; ot->description = "Dissolve edges, merging faces"; ot->idname = "MESH_OT_dissolve_edges"; /* api callbacks */ ot->exec = edbm_dissolve_edges_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; edbm_dissolve_prop__use_verts(ot, true, 0); edbm_dissolve_prop__use_face_split(ot); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Dissolve Faces Operator * \{ */ static int edbm_dissolve_faces_exec(bContext *C, wmOperator *op) { const bool use_verts = RNA_boolean_get(op->ptr, "use_verts"); ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); if (em->bm->totfacesel == 0) { continue; } BM_custom_loop_normals_to_vector_layer(em->bm); if (!EDBM_op_call_and_selectf(em, op, "region.out", true, "dissolve_faces faces=%hf use_verts=%b", BM_ELEM_SELECT, use_verts)) { continue; } BM_custom_loop_normals_from_vector_layer(em->bm, false); EDBM_update_generic(obedit->data, true, true); } MEM_freeN(objects); return OPERATOR_FINISHED; } void MESH_OT_dissolve_faces(wmOperatorType *ot) { /* identifiers */ ot->name = "Dissolve Faces"; ot->description = "Dissolve faces"; ot->idname = "MESH_OT_dissolve_faces"; /* api callbacks */ ot->exec = edbm_dissolve_faces_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; edbm_dissolve_prop__use_verts(ot, false, 0); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Dissolve (Context Sensitive) Operator * \{ */ static int edbm_dissolve_mode_exec(bContext *C, wmOperator *op) { Object *obedit = CTX_data_edit_object(C); BMEditMesh *em = BKE_editmesh_from_object(obedit); PropertyRNA *prop; prop = RNA_struct_find_property(op->ptr, "use_verts"); if (!RNA_property_is_set(op->ptr, prop)) { /* always enable in edge-mode */ if ((em->selectmode & SCE_SELECT_FACE) == 0) { RNA_property_boolean_set(op->ptr, prop, true); } } if (em->selectmode & SCE_SELECT_VERTEX) { return edbm_dissolve_verts_exec(C, op); } else if (em->selectmode & SCE_SELECT_EDGE) { return edbm_dissolve_edges_exec(C, op); } else { return edbm_dissolve_faces_exec(C, op); } } void MESH_OT_dissolve_mode(wmOperatorType *ot) { /* identifiers */ ot->name = "Dissolve Selection"; ot->description = "Dissolve geometry based on the selection mode"; ot->idname = "MESH_OT_dissolve_mode"; /* api callbacks */ ot->exec = edbm_dissolve_mode_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; edbm_dissolve_prop__use_verts(ot, false, PROP_SKIP_SAVE); edbm_dissolve_prop__use_face_split(ot); edbm_dissolve_prop__use_boundary_tear(ot); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Limited Dissolve Operator * \{ */ static int edbm_dissolve_limited_exec(bContext *C, wmOperator *op) { const float angle_limit = RNA_float_get(op->ptr, "angle_limit"); const bool use_dissolve_boundaries = RNA_boolean_get(op->ptr, "use_dissolve_boundaries"); const int delimit = RNA_enum_get(op->ptr, "delimit"); char dissolve_flag; ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); BMesh *bm = em->bm; if ((bm->totvertsel == 0) && (bm->totedgesel == 0) && (bm->totfacesel == 0)) { continue; } if (em->selectmode == SCE_SELECT_FACE) { /* flush selection to tags and untag edges/verts with partially selected faces */ BMIter iter; BMIter liter; BMElem *ele; BMFace *f; BMLoop *l; BM_ITER_MESH (ele, &iter, bm, BM_VERTS_OF_MESH) { BM_elem_flag_set(ele, BM_ELEM_TAG, BM_elem_flag_test(ele, BM_ELEM_SELECT)); } BM_ITER_MESH (ele, &iter, bm, BM_EDGES_OF_MESH) { BM_elem_flag_set(ele, BM_ELEM_TAG, BM_elem_flag_test(ele, BM_ELEM_SELECT)); } BM_ITER_MESH (f, &iter, bm, BM_FACES_OF_MESH) { if (!BM_elem_flag_test(f, BM_ELEM_SELECT)) { BM_ITER_ELEM (l, &liter, f, BM_LOOPS_OF_FACE) { BM_elem_flag_disable(l->v, BM_ELEM_TAG); BM_elem_flag_disable(l->e, BM_ELEM_TAG); } } } dissolve_flag = BM_ELEM_TAG; } else { dissolve_flag = BM_ELEM_SELECT; } EDBM_op_call_and_selectf( em, op, "region.out", true, "dissolve_limit edges=%he verts=%hv angle_limit=%f use_dissolve_boundaries=%b delimit=%i", dissolve_flag, dissolve_flag, angle_limit, use_dissolve_boundaries, delimit); EDBM_update_generic(obedit->data, true, true); } MEM_freeN(objects); return OPERATOR_FINISHED; } void MESH_OT_dissolve_limited(wmOperatorType *ot) { PropertyRNA *prop; /* identifiers */ ot->name = "Limited Dissolve"; ot->idname = "MESH_OT_dissolve_limited"; ot->description = "Dissolve selected edges and verts, limited by the angle of surrounding geometry"; /* api callbacks */ ot->exec = edbm_dissolve_limited_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; prop = RNA_def_float_rotation(ot->srna, "angle_limit", 0, NULL, 0.0f, DEG2RADF(180.0f), "Max Angle", "Angle limit", 0.0f, DEG2RADF(180.0f)); RNA_def_property_float_default(prop, DEG2RADF(5.0f)); RNA_def_boolean(ot->srna, "use_dissolve_boundaries", false, "All Boundaries", "Dissolve all vertices in between face boundaries"); RNA_def_enum_flag(ot->srna, "delimit", rna_enum_mesh_delimit_mode_items, BMO_DELIM_NORMAL, "Delimit", "Delimit dissolve operation"); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Degenerate Dissolve Operator * \{ */ static int edbm_dissolve_degenerate_exec(bContext *C, wmOperator *op) { ViewLayer *view_layer = CTX_data_view_layer(C); int totelem_old[3] = {0, 0, 0}; int totelem_new[3] = {0, 0, 0}; uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); BMesh *bm = em->bm; totelem_old[0] += bm->totvert; totelem_old[1] += bm->totedge; totelem_old[2] += bm->totface; } /* objects */ const float thresh = RNA_float_get(op->ptr, "threshold"); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); BMesh *bm = em->bm; if (!EDBM_op_callf(em, op, "dissolve_degenerate edges=%he dist=%f", BM_ELEM_SELECT, thresh)) { return OPERATOR_CANCELLED; } /* tricky to maintain correct selection here, so just flush up from verts */ EDBM_select_flush(em); EDBM_update_generic(obedit->data, true, true); totelem_new[0] += bm->totvert; totelem_new[1] += bm->totedge; totelem_new[2] += bm->totface; } MEM_freeN(objects); edbm_report_delete_info(op->reports, totelem_old, totelem_new); return OPERATOR_FINISHED; } void MESH_OT_dissolve_degenerate(wmOperatorType *ot) { /* identifiers */ ot->name = "Degenerate Dissolve"; ot->idname = "MESH_OT_dissolve_degenerate"; ot->description = "Dissolve zero area faces and zero length edges"; /* api callbacks */ ot->exec = edbm_dissolve_degenerate_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; RNA_def_float_distance(ot->srna, "threshold", 1e-4f, 1e-6f, 50.0f, "Merge Distance", "Maximum distance between elements to merge", 1e-5f, 10.0f); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Delete Edge-Loop Operator * \{ */ /* internally uses dissolve */ static int edbm_delete_edgeloop_exec(bContext *C, wmOperator *op) { const bool use_face_split = RNA_boolean_get(op->ptr, "use_face_split"); ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); if (em->bm->totedgesel == 0) { continue; } /* deal with selection */ { BMEdge *e; BMIter iter; BM_mesh_elem_hflag_disable_all(em->bm, BM_FACE, BM_ELEM_TAG, false); BM_ITER_MESH (e, &iter, em->bm, BM_EDGES_OF_MESH) { if (BM_elem_flag_test(e, BM_ELEM_SELECT) && e->l) { BMLoop *l_iter = e->l; do { BM_elem_flag_enable(l_iter->f, BM_ELEM_TAG); } while ((l_iter = l_iter->radial_next) != e->l); } } } if (!EDBM_op_callf(em, op, "dissolve_edges edges=%he use_verts=%b use_face_split=%b", BM_ELEM_SELECT, true, use_face_split)) { continue; } BM_mesh_elem_hflag_enable_test(em->bm, BM_FACE, BM_ELEM_SELECT, true, false, BM_ELEM_TAG); EDBM_selectmode_flush_ex(em, SCE_SELECT_VERTEX); EDBM_update_generic(obedit->data, true, true); } MEM_freeN(objects); return OPERATOR_FINISHED; } void MESH_OT_delete_edgeloop(wmOperatorType *ot) { /* identifiers */ ot->name = "Delete Edge Loop"; ot->description = "Delete an edge loop by merging the faces on each side"; ot->idname = "MESH_OT_delete_edgeloop"; /* api callbacks */ ot->exec = edbm_delete_edgeloop_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; RNA_def_boolean(ot->srna, "use_face_split", true, "Face Split", "Split off face corners to maintain surrounding geometry"); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Split Geometry Operator * \{ */ static int edbm_split_exec(bContext *C, wmOperator *op) { ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); if ((em->bm->totvertsel == 0) && (em->bm->totedgesel == 0) && (em->bm->totfacesel == 0)) { continue; } BMOperator bmop; EDBM_op_init(em, &bmop, op, "split geom=%hvef use_only_faces=%b", BM_ELEM_SELECT, false); BMO_op_exec(em->bm, &bmop); BM_mesh_elem_hflag_disable_all(em->bm, BM_VERT | BM_EDGE | BM_FACE, BM_ELEM_SELECT, false); BMO_slot_buffer_hflag_enable( em->bm, bmop.slots_out, "geom.out", BM_ALL_NOLOOP, BM_ELEM_SELECT, true); if (!EDBM_op_finish(em, &bmop, op, true)) { continue; } /* Geometry has changed, need to recalc normals and looptris */ EDBM_mesh_normals_update(em); EDBM_update_generic(obedit->data, true, true); } MEM_freeN(objects); return OPERATOR_FINISHED; } void MESH_OT_split(wmOperatorType *ot) { /* identifiers */ ot->name = "Split"; ot->idname = "MESH_OT_split"; ot->description = "Split off selected geometry from connected unselected geometry"; /* api callbacks */ ot->exec = edbm_split_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; } /** \} */ /* -------------------------------------------------------------------- */ /** \name Sort Geometry Elements Operator * * Unified for vertices/edges/faces. * * \{ */ enum { /** Use view Z (deep) axis. */ SRT_VIEW_ZAXIS = 1, /** Use view X (left to right) axis. */ SRT_VIEW_XAXIS, /** Use distance from element to 3D cursor. */ SRT_CURSOR_DISTANCE, /** Face only: use mat number. */ SRT_MATERIAL, /** Move selected elements in first, without modifying * relative order of selected and unselected elements. */ SRT_SELECTED, /** Randomize selected elements. */ SRT_RANDOMIZE, /** Reverse current order of selected elements. */ SRT_REVERSE, }; typedef struct BMElemSort { /** Sort factor */ float srt; /** Original index of this element _in its mempool_ */ int org_idx; } BMElemSort; static int bmelemsort_comp(const void *v1, const void *v2) { const BMElemSort *x1 = v1, *x2 = v2; return (x1->srt > x2->srt) - (x1->srt < x2->srt); } /* Reorders vertices/edges/faces using a given methods. Loops are not supported. */ static void sort_bmelem_flag(bContext *C, Scene *scene, Object *ob, RegionView3D *rv3d, const int types, const int flag, const int action, const int reverse, const uint seed) { BMEditMesh *em = BKE_editmesh_from_object(ob); BMVert *ve; BMEdge *ed; BMFace *fa; BMIter iter; /* In all five elements below, 0 = vertices, 1 = edges, 2 = faces. */ /* Just to mark protected elements. */ char *pblock[3] = {NULL, NULL, NULL}, *pb; BMElemSort *sblock[3] = {NULL, NULL, NULL}, *sb; uint *map[3] = {NULL, NULL, NULL}, *mp; int totelem[3] = {0, 0, 0}; int affected[3] = {0, 0, 0}; int i, j; if (!(types && flag && action)) { return; } if (types & BM_VERT) { totelem[0] = em->bm->totvert; } if (types & BM_EDGE) { totelem[1] = em->bm->totedge; } if (types & BM_FACE) { totelem[2] = em->bm->totface; } if (ELEM(action, SRT_VIEW_ZAXIS, SRT_VIEW_XAXIS)) { float mat[4][4]; float fact = reverse ? -1.0 : 1.0; int coidx = (action == SRT_VIEW_ZAXIS) ? 2 : 0; /* Apply the view matrix to the object matrix. */ mul_m4_m4m4(mat, rv3d->viewmat, ob->obmat); if (totelem[0]) { pb = pblock[0] = MEM_callocN(sizeof(char) * totelem[0], "sort_bmelem vert pblock"); sb = sblock[0] = MEM_callocN(sizeof(BMElemSort) * totelem[0], "sort_bmelem vert sblock"); BM_ITER_MESH_INDEX (ve, &iter, em->bm, BM_VERTS_OF_MESH, i) { if (BM_elem_flag_test(ve, flag)) { float co[3]; mul_v3_m4v3(co, mat, ve->co); pb[i] = false; sb[affected[0]].org_idx = i; sb[affected[0]++].srt = co[coidx] * fact; } else { pb[i] = true; } } } if (totelem[1]) { pb = pblock[1] = MEM_callocN(sizeof(char) * totelem[1], "sort_bmelem edge pblock"); sb = sblock[1] = MEM_callocN(sizeof(BMElemSort) * totelem[1], "sort_bmelem edge sblock"); BM_ITER_MESH_INDEX (ed, &iter, em->bm, BM_EDGES_OF_MESH, i) { if (BM_elem_flag_test(ed, flag)) { float co[3]; mid_v3_v3v3(co, ed->v1->co, ed->v2->co); mul_m4_v3(mat, co); pb[i] = false; sb[affected[1]].org_idx = i; sb[affected[1]++].srt = co[coidx] * fact; } else { pb[i] = true; } } } if (totelem[2]) { pb = pblock[2] = MEM_callocN(sizeof(char) * totelem[2], "sort_bmelem face pblock"); sb = sblock[2] = MEM_callocN(sizeof(BMElemSort) * totelem[2], "sort_bmelem face sblock"); BM_ITER_MESH_INDEX (fa, &iter, em->bm, BM_FACES_OF_MESH, i) { if (BM_elem_flag_test(fa, flag)) { float co[3]; BM_face_calc_center_median(fa, co); mul_m4_v3(mat, co); pb[i] = false; sb[affected[2]].org_idx = i; sb[affected[2]++].srt = co[coidx] * fact; } else { pb[i] = true; } } } } else if (action == SRT_CURSOR_DISTANCE) { float cur[3]; float mat[4][4]; float fact = reverse ? -1.0 : 1.0; copy_v3_v3(cur, scene->cursor.location); invert_m4_m4(mat, ob->obmat); mul_m4_v3(mat, cur); if (totelem[0]) { pb = pblock[0] = MEM_callocN(sizeof(char) * totelem[0], "sort_bmelem vert pblock"); sb = sblock[0] = MEM_callocN(sizeof(BMElemSort) * totelem[0], "sort_bmelem vert sblock"); BM_ITER_MESH_INDEX (ve, &iter, em->bm, BM_VERTS_OF_MESH, i) { if (BM_elem_flag_test(ve, flag)) { pb[i] = false; sb[affected[0]].org_idx = i; sb[affected[0]++].srt = len_squared_v3v3(cur, ve->co) * fact; } else { pb[i] = true; } } } if (totelem[1]) { pb = pblock[1] = MEM_callocN(sizeof(char) * totelem[1], "sort_bmelem edge pblock"); sb = sblock[1] = MEM_callocN(sizeof(BMElemSort) * totelem[1], "sort_bmelem edge sblock"); BM_ITER_MESH_INDEX (ed, &iter, em->bm, BM_EDGES_OF_MESH, i) { if (BM_elem_flag_test(ed, flag)) { float co[3]; mid_v3_v3v3(co, ed->v1->co, ed->v2->co); pb[i] = false; sb[affected[1]].org_idx = i; sb[affected[1]++].srt = len_squared_v3v3(cur, co) * fact; } else { pb[i] = true; } } } if (totelem[2]) { pb = pblock[2] = MEM_callocN(sizeof(char) * totelem[2], "sort_bmelem face pblock"); sb = sblock[2] = MEM_callocN(sizeof(BMElemSort) * totelem[2], "sort_bmelem face sblock"); BM_ITER_MESH_INDEX (fa, &iter, em->bm, BM_FACES_OF_MESH, i) { if (BM_elem_flag_test(fa, flag)) { float co[3]; BM_face_calc_center_median(fa, co); pb[i] = false; sb[affected[2]].org_idx = i; sb[affected[2]++].srt = len_squared_v3v3(cur, co) * fact; } else { pb[i] = true; } } } } /* Faces only! */ else if (action == SRT_MATERIAL && totelem[2]) { pb = pblock[2] = MEM_callocN(sizeof(char) * totelem[2], "sort_bmelem face pblock"); sb = sblock[2] = MEM_callocN(sizeof(BMElemSort) * totelem[2], "sort_bmelem face sblock"); BM_ITER_MESH_INDEX (fa, &iter, em->bm, BM_FACES_OF_MESH, i) { if (BM_elem_flag_test(fa, flag)) { /* Reverse materials' order, not order of faces inside each mat! */ /* Note: cannot use totcol, as mat_nr may sometimes be greater... */ float srt = reverse ? (float)(MAXMAT - fa->mat_nr) : (float)fa->mat_nr; pb[i] = false; sb[affected[2]].org_idx = i; /* Multiplying with totface and adding i ensures us * we keep current order for all faces of same mat. */ sb[affected[2]++].srt = srt * ((float)totelem[2]) + ((float)i); // printf("e: %d; srt: %f; final: %f\n", // i, srt, srt * ((float)totface) + ((float)i)); } else { pb[i] = true; } } } else if (action == SRT_SELECTED) { uint *tbuf[3] = {NULL, NULL, NULL}, *tb; if (totelem[0]) { tb = tbuf[0] = MEM_callocN(sizeof(int) * totelem[0], "sort_bmelem vert tbuf"); mp = map[0] = MEM_callocN(sizeof(int) * totelem[0], "sort_bmelem vert map"); BM_ITER_MESH_INDEX (ve, &iter, em->bm, BM_VERTS_OF_MESH, i) { if (BM_elem_flag_test(ve, flag)) { mp[affected[0]++] = i; } else { *tb = i; tb++; } } } if (totelem[1]) { tb = tbuf[1] = MEM_callocN(sizeof(int) * totelem[1], "sort_bmelem edge tbuf"); mp = map[1] = MEM_callocN(sizeof(int) * totelem[1], "sort_bmelem edge map"); BM_ITER_MESH_INDEX (ed, &iter, em->bm, BM_EDGES_OF_MESH, i) { if (BM_elem_flag_test(ed, flag)) { mp[affected[1]++] = i; } else { *tb = i; tb++; } } } if (totelem[2]) { tb = tbuf[2] = MEM_callocN(sizeof(int) * totelem[2], "sort_bmelem face tbuf"); mp = map[2] = MEM_callocN(sizeof(int) * totelem[2], "sort_bmelem face map"); BM_ITER_MESH_INDEX (fa, &iter, em->bm, BM_FACES_OF_MESH, i) { if (BM_elem_flag_test(fa, flag)) { mp[affected[2]++] = i; } else { *tb = i; tb++; } } } for (j = 3; j--;) { int tot = totelem[j]; int aff = affected[j]; tb = tbuf[j]; mp = map[j]; if (!(tb && mp)) { continue; } if (ELEM(aff, 0, tot)) { MEM_freeN(tb); MEM_freeN(mp); map[j] = NULL; continue; } if (reverse) { memcpy(tb + (tot - aff), mp, aff * sizeof(int)); } else { memcpy(mp + aff, tb, (tot - aff) * sizeof(int)); tb = mp; mp = map[j] = tbuf[j]; tbuf[j] = tb; } /* Reverse mapping, we want an org2new one! */ for (i = tot, tb = tbuf[j] + tot - 1; i--; tb--) { mp[*tb] = i; } MEM_freeN(tbuf[j]); } } else if (action == SRT_RANDOMIZE) { if (totelem[0]) { /* Re-init random generator for each element type, to get consistent random when * enabling/disabling an element type. */ RNG *rng = BLI_rng_new_srandom(seed); pb = pblock[0] = MEM_callocN(sizeof(char) * totelem[0], "sort_bmelem vert pblock"); sb = sblock[0] = MEM_callocN(sizeof(BMElemSort) * totelem[0], "sort_bmelem vert sblock"); BM_ITER_MESH_INDEX (ve, &iter, em->bm, BM_VERTS_OF_MESH, i) { if (BM_elem_flag_test(ve, flag)) { pb[i] = false; sb[affected[0]].org_idx = i; sb[affected[0]++].srt = BLI_rng_get_float(rng); } else { pb[i] = true; } } BLI_rng_free(rng); } if (totelem[1]) { RNG *rng = BLI_rng_new_srandom(seed); pb = pblock[1] = MEM_callocN(sizeof(char) * totelem[1], "sort_bmelem edge pblock"); sb = sblock[1] = MEM_callocN(sizeof(BMElemSort) * totelem[1], "sort_bmelem edge sblock"); BM_ITER_MESH_INDEX (ed, &iter, em->bm, BM_EDGES_OF_MESH, i) { if (BM_elem_flag_test(ed, flag)) { pb[i] = false; sb[affected[1]].org_idx = i; sb[affected[1]++].srt = BLI_rng_get_float(rng); } else { pb[i] = true; } } BLI_rng_free(rng); } if (totelem[2]) { RNG *rng = BLI_rng_new_srandom(seed); pb = pblock[2] = MEM_callocN(sizeof(char) * totelem[2], "sort_bmelem face pblock"); sb = sblock[2] = MEM_callocN(sizeof(BMElemSort) * totelem[2], "sort_bmelem face sblock"); BM_ITER_MESH_INDEX (fa, &iter, em->bm, BM_FACES_OF_MESH, i) { if (BM_elem_flag_test(fa, flag)) { pb[i] = false; sb[affected[2]].org_idx = i; sb[affected[2]++].srt = BLI_rng_get_float(rng); } else { pb[i] = true; } } BLI_rng_free(rng); } } else if (action == SRT_REVERSE) { if (totelem[0]) { pb = pblock[0] = MEM_callocN(sizeof(char) * totelem[0], "sort_bmelem vert pblock"); sb = sblock[0] = MEM_callocN(sizeof(BMElemSort) * totelem[0], "sort_bmelem vert sblock"); BM_ITER_MESH_INDEX (ve, &iter, em->bm, BM_VERTS_OF_MESH, i) { if (BM_elem_flag_test(ve, flag)) { pb[i] = false; sb[affected[0]].org_idx = i; sb[affected[0]++].srt = (float)-i; } else { pb[i] = true; } } } if (totelem[1]) { pb = pblock[1] = MEM_callocN(sizeof(char) * totelem[1], "sort_bmelem edge pblock"); sb = sblock[1] = MEM_callocN(sizeof(BMElemSort) * totelem[1], "sort_bmelem edge sblock"); BM_ITER_MESH_INDEX (ed, &iter, em->bm, BM_EDGES_OF_MESH, i) { if (BM_elem_flag_test(ed, flag)) { pb[i] = false; sb[affected[1]].org_idx = i; sb[affected[1]++].srt = (float)-i; } else { pb[i] = true; } } } if (totelem[2]) { pb = pblock[2] = MEM_callocN(sizeof(char) * totelem[2], "sort_bmelem face pblock"); sb = sblock[2] = MEM_callocN(sizeof(BMElemSort) * totelem[2], "sort_bmelem face sblock"); BM_ITER_MESH_INDEX (fa, &iter, em->bm, BM_FACES_OF_MESH, i) { if (BM_elem_flag_test(fa, flag)) { pb[i] = false; sb[affected[2]].org_idx = i; sb[affected[2]++].srt = (float)-i; } else { pb[i] = true; } } } } /* printf("%d vertices: %d to be affected...\n", totelem[0], affected[0]);*/ /* printf("%d edges: %d to be affected...\n", totelem[1], affected[1]);*/ /* printf("%d faces: %d to be affected...\n", totelem[2], affected[2]);*/ if (affected[0] == 0 && affected[1] == 0 && affected[2] == 0) { for (j = 3; j--;) { if (pblock[j]) { MEM_freeN(pblock[j]); } if (sblock[j]) { MEM_freeN(sblock[j]); } if (map[j]) { MEM_freeN(map[j]); } } return; } /* Sort affected elements, and populate mapping arrays, if needed. */ for (j = 3; j--;) { pb = pblock[j]; sb = sblock[j]; if (pb && sb && !map[j]) { const char *p_blk; BMElemSort *s_blk; int tot = totelem[j]; int aff = affected[j]; qsort(sb, aff, sizeof(BMElemSort), bmelemsort_comp); mp = map[j] = MEM_mallocN(sizeof(int) * tot, "sort_bmelem map"); p_blk = pb + tot - 1; s_blk = sb + aff - 1; for (i = tot; i--; p_blk--) { if (*p_blk) { /* Protected! */ mp[i] = i; } else { mp[s_blk->org_idx] = i; s_blk--; } } } if (pb) { MEM_freeN(pb); } if (sb) { MEM_freeN(sb); } } BM_mesh_remap(em->bm, map[0], map[1], map[2]); DEG_id_tag_update(ob->data, ID_RECALC_GEOMETRY); WM_event_add_notifier(C, NC_GEOM | ND_DATA, ob->data); for (j = 3; j--;) { if (map[j]) { MEM_freeN(map[j]); } } } static int edbm_sort_elements_exec(bContext *C, wmOperator *op) { Scene *scene = CTX_data_scene(C); ViewLayer *view_layer = CTX_data_view_layer(C); Object *ob_active = CTX_data_edit_object(C); /* may be NULL */ RegionView3D *rv3d = ED_view3d_context_rv3d(C); const int action = RNA_enum_get(op->ptr, "type"); PropertyRNA *prop_elem_types = RNA_struct_find_property(op->ptr, "elements"); const bool use_reverse = RNA_boolean_get(op->ptr, "reverse"); uint seed = RNA_int_get(op->ptr, "seed"); int elem_types = 0; if (ELEM(action, SRT_VIEW_ZAXIS, SRT_VIEW_XAXIS)) { if (rv3d == NULL) { BKE_report(op->reports, RPT_ERROR, "View not found, cannot sort by view axis"); return OPERATOR_CANCELLED; } } /* If no elem_types set, use current selection mode to set it! */ if (RNA_property_is_set(op->ptr, prop_elem_types)) { elem_types = RNA_property_enum_get(op->ptr, prop_elem_types); } else { BMEditMesh *em = BKE_editmesh_from_object(ob_active); if (em->selectmode & SCE_SELECT_VERTEX) { elem_types |= BM_VERT; } if (em->selectmode & SCE_SELECT_EDGE) { elem_types |= BM_EDGE; } if (em->selectmode & SCE_SELECT_FACE) { elem_types |= BM_FACE; } RNA_enum_set(op->ptr, "elements", elem_types); } uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *ob = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(ob); BMesh *bm = em->bm; if (!((elem_types & BM_VERT && bm->totvertsel > 0) || (elem_types & BM_EDGE && bm->totedgesel > 0) || (elem_types & BM_FACE && bm->totfacesel > 0))) { continue; } int seed_iter = seed; /* This gives a consistent result regardless of object order */ if (ob_index) { seed_iter += BLI_ghashutil_strhash_p(ob->id.name); } sort_bmelem_flag( C, scene, ob, rv3d, elem_types, BM_ELEM_SELECT, action, use_reverse, seed_iter); } MEM_freeN(objects); return OPERATOR_FINISHED; } static bool edbm_sort_elements_poll_property(const bContext *UNUSED(C), wmOperator *op, const PropertyRNA *prop) { const char *prop_id = RNA_property_identifier(prop); const int action = RNA_enum_get(op->ptr, "type"); /* Only show seed for randomize action! */ if (STREQ(prop_id, "seed")) { if (action == SRT_RANDOMIZE) { return true; } else { return false; } } /* Hide seed for reverse and randomize actions! */ if (STREQ(prop_id, "reverse")) { if (ELEM(action, SRT_RANDOMIZE, SRT_REVERSE)) { return false; } else { return true; } } return true; } void MESH_OT_sort_elements(wmOperatorType *ot) { static const EnumPropertyItem type_items[] = { {SRT_VIEW_ZAXIS, "VIEW_ZAXIS", 0, "View Z Axis", "Sort selected elements from farthest to nearest one in current view"}, {SRT_VIEW_XAXIS, "VIEW_XAXIS", 0, "View X Axis", "Sort selected elements from left to right one in current view"}, {SRT_CURSOR_DISTANCE, "CURSOR_DISTANCE", 0, "Cursor Distance", "Sort selected elements from nearest to farthest from 3D cursor"}, {SRT_MATERIAL, "MATERIAL", 0, "Material", "Sort selected elements from smallest to greatest material index (faces only!)"}, {SRT_SELECTED, "SELECTED", 0, "Selected", "Move all selected elements in first places, preserving their relative order " "(WARNING: this will affect unselected elements' indices as well!)"}, {SRT_RANDOMIZE, "RANDOMIZE", 0, "Randomize", "Randomize order of selected elements"}, {SRT_REVERSE, "REVERSE", 0, "Reverse", "Reverse current order of selected elements"}, {0, NULL, 0, NULL, NULL}, }; static const EnumPropertyItem elem_items[] = { {BM_VERT, "VERT", 0, "Vertices", ""}, {BM_EDGE, "EDGE", 0, "Edges", ""}, {BM_FACE, "FACE", 0, "Faces", ""}, {0, NULL, 0, NULL, NULL}, }; /* identifiers */ ot->name = "Sort Mesh Elements"; ot->description = "The order of selected vertices/edges/faces is modified, based on a given method"; ot->idname = "MESH_OT_sort_elements"; /* api callbacks */ ot->invoke = WM_menu_invoke; ot->exec = edbm_sort_elements_exec; ot->poll = ED_operator_editmesh; ot->poll_property = edbm_sort_elements_poll_property; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; /* properties */ ot->prop = RNA_def_enum(ot->srna, "type", type_items, SRT_VIEW_ZAXIS, "Type", "Type of re-ordering operation to apply"); RNA_def_enum_flag(ot->srna, "elements", elem_items, BM_VERT, "Elements", "Which elements to affect (vertices, edges and/or faces)"); RNA_def_boolean(ot->srna, "reverse", false, "Reverse", "Reverse the sorting effect"); RNA_def_int(ot->srna, "seed", 0, 0, INT_MAX, "Seed", "Seed for random-based operations", 0, 255); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Bridge Operator * \{ */ enum { MESH_BRIDGELOOP_SINGLE = 0, MESH_BRIDGELOOP_CLOSED = 1, MESH_BRIDGELOOP_PAIRS = 2, }; static int edbm_bridge_tag_boundary_edges(BMesh *bm) { /* tags boundary edges from a face selection */ BMIter iter; BMFace *f; BMEdge *e; int totface_del = 0; BM_mesh_elem_hflag_disable_all(bm, BM_EDGE | BM_FACE, BM_ELEM_TAG, false); BM_ITER_MESH (e, &iter, bm, BM_EDGES_OF_MESH) { if (BM_elem_flag_test(e, BM_ELEM_SELECT)) { if (BM_edge_is_wire(e) || BM_edge_is_boundary(e)) { BM_elem_flag_enable(e, BM_ELEM_TAG); } else { BMIter fiter; bool is_all_sel = true; /* check if its only used by selected faces */ BM_ITER_ELEM (f, &fiter, e, BM_FACES_OF_EDGE) { if (BM_elem_flag_test(f, BM_ELEM_SELECT)) { /* tag face for removal*/ if (!BM_elem_flag_test(f, BM_ELEM_TAG)) { BM_elem_flag_enable(f, BM_ELEM_TAG); totface_del++; } } else { is_all_sel = false; } } if (is_all_sel == false) { BM_elem_flag_enable(e, BM_ELEM_TAG); } } } } return totface_del; } static int edbm_bridge_edge_loops_for_single_editmesh(wmOperator *op, BMEditMesh *em, struct Mesh *me, const bool use_pairs, const bool use_cyclic, const bool use_merge, const float merge_factor, const int twist_offset) { BMOperator bmop; char edge_hflag; int totface_del = 0; BMFace **totface_del_arr = NULL; const bool use_faces = (em->bm->totfacesel != 0); if (use_faces) { BMIter iter; BMFace *f; int i; totface_del = edbm_bridge_tag_boundary_edges(em->bm); totface_del_arr = MEM_mallocN(sizeof(*totface_del_arr) * totface_del, __func__); i = 0; BM_ITER_MESH (f, &iter, em->bm, BM_FACES_OF_MESH) { if (BM_elem_flag_test(f, BM_ELEM_TAG)) { totface_del_arr[i++] = f; } } edge_hflag = BM_ELEM_TAG; } else { edge_hflag = BM_ELEM_SELECT; } EDBM_op_init(em, &bmop, op, "bridge_loops edges=%he use_pairs=%b use_cyclic=%b use_merge=%b merge_factor=%f " "twist_offset=%i", edge_hflag, use_pairs, use_cyclic, use_merge, merge_factor, twist_offset); if (use_faces && totface_del) { int i; BM_mesh_elem_hflag_disable_all(em->bm, BM_FACE, BM_ELEM_TAG, false); for (i = 0; i < totface_del; i++) { BM_elem_flag_enable(totface_del_arr[i], BM_ELEM_TAG); } BMO_op_callf(em->bm, BMO_FLAG_DEFAULTS, "delete geom=%hf context=%i", BM_ELEM_TAG, DEL_FACES_KEEP_BOUNDARY); } BMO_op_exec(em->bm, &bmop); if (!BMO_error_occurred(em->bm)) { /* when merge is used the edges are joined and remain selected */ if (use_merge == false) { EDBM_flag_disable_all(em, BM_ELEM_SELECT); BMO_slot_buffer_hflag_enable( em->bm, bmop.slots_out, "faces.out", BM_FACE, BM_ELEM_SELECT, true); } if (use_merge == false) { struct EdgeRingOpSubdProps op_props; mesh_operator_edgering_props_get(op, &op_props); if (op_props.cuts) { BMOperator bmop_subd; /* we only need face normals updated */ EDBM_mesh_normals_update(em); BMO_op_initf(em->bm, &bmop_subd, 0, "subdivide_edgering edges=%S interp_mode=%i cuts=%i smooth=%f " "profile_shape=%i profile_shape_factor=%f", &bmop, "edges.out", op_props.interp_mode, op_props.cuts, op_props.smooth, op_props.profile_shape, op_props.profile_shape_factor); BMO_op_exec(em->bm, &bmop_subd); BMO_slot_buffer_hflag_enable( em->bm, bmop_subd.slots_out, "faces.out", BM_FACE, BM_ELEM_SELECT, true); BMO_op_finish(em->bm, &bmop_subd); } } } if (totface_del_arr) { MEM_freeN(totface_del_arr); } if (EDBM_op_finish(em, &bmop, op, true)) { EDBM_update_generic(me, true, true); } /* Always return finished so the user can select different options. */ return OPERATOR_FINISHED; } static int edbm_bridge_edge_loops_exec(bContext *C, wmOperator *op) { const int type = RNA_enum_get(op->ptr, "type"); const bool use_pairs = (type == MESH_BRIDGELOOP_PAIRS); const bool use_cyclic = (type == MESH_BRIDGELOOP_CLOSED); const bool use_merge = RNA_boolean_get(op->ptr, "use_merge"); const float merge_factor = RNA_float_get(op->ptr, "merge_factor"); const int twist_offset = RNA_int_get(op->ptr, "twist_offset"); ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); if (em->bm->totvertsel == 0) { continue; } edbm_bridge_edge_loops_for_single_editmesh( op, em, obedit->data, use_pairs, use_cyclic, use_merge, merge_factor, twist_offset); } MEM_freeN(objects); return OPERATOR_FINISHED; } void MESH_OT_bridge_edge_loops(wmOperatorType *ot) { static const EnumPropertyItem type_items[] = { {MESH_BRIDGELOOP_SINGLE, "SINGLE", 0, "Open Loop", ""}, {MESH_BRIDGELOOP_CLOSED, "CLOSED", 0, "Closed Loop", ""}, {MESH_BRIDGELOOP_PAIRS, "PAIRS", 0, "Loop Pairs", ""}, {0, NULL, 0, NULL, NULL}, }; /* identifiers */ ot->name = "Bridge Edge Loops"; ot->description = "Create a bridge of faces between two or more selected edge loops"; ot->idname = "MESH_OT_bridge_edge_loops"; /* api callbacks */ ot->exec = edbm_bridge_edge_loops_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; ot->prop = RNA_def_enum(ot->srna, "type", type_items, MESH_BRIDGELOOP_SINGLE, "Connect Loops", "Method of bridging multiple loops"); RNA_def_boolean(ot->srna, "use_merge", false, "Merge", "Merge rather than creating faces"); RNA_def_float(ot->srna, "merge_factor", 0.5f, 0.0f, 1.0f, "Merge Factor", "", 0.0f, 1.0f); RNA_def_int(ot->srna, "twist_offset", 0, -1000, 1000, "Twist", "Twist offset for closed loops", -1000, 1000); mesh_operator_edgering_props(ot, 0, 0); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Wire-Frame Operator * \{ */ static int edbm_wireframe_exec(bContext *C, wmOperator *op) { const bool use_boundary = RNA_boolean_get(op->ptr, "use_boundary"); const bool use_even_offset = RNA_boolean_get(op->ptr, "use_even_offset"); const bool use_replace = RNA_boolean_get(op->ptr, "use_replace"); const bool use_relative_offset = RNA_boolean_get(op->ptr, "use_relative_offset"); const bool use_crease = RNA_boolean_get(op->ptr, "use_crease"); const float crease_weight = RNA_float_get(op->ptr, "crease_weight"); const float thickness = RNA_float_get(op->ptr, "thickness"); const float offset = RNA_float_get(op->ptr, "offset"); ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); if (em->bm->totfacesel == 0) { continue; } BMOperator bmop; EDBM_op_init(em, &bmop, op, "wireframe faces=%hf use_replace=%b use_boundary=%b use_even_offset=%b " "use_relative_offset=%b " "use_crease=%b crease_weight=%f thickness=%f offset=%f", BM_ELEM_SELECT, use_replace, use_boundary, use_even_offset, use_relative_offset, use_crease, crease_weight, thickness, offset); BMO_op_exec(em->bm, &bmop); BM_mesh_elem_hflag_disable_all(em->bm, BM_VERT | BM_EDGE | BM_FACE, BM_ELEM_SELECT, false); BMO_slot_buffer_hflag_enable( em->bm, bmop.slots_out, "faces.out", BM_FACE, BM_ELEM_SELECT, true); if (!EDBM_op_finish(em, &bmop, op, true)) { continue; } EDBM_update_generic(obedit->data, true, true); } MEM_freeN(objects); return OPERATOR_FINISHED; } void MESH_OT_wireframe(wmOperatorType *ot) { PropertyRNA *prop; /* identifiers */ ot->name = "Wire Frame"; ot->idname = "MESH_OT_wireframe"; ot->description = "Create a solid wire-frame from faces"; /* api callbacks */ ot->exec = edbm_wireframe_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; /* properties */ RNA_def_boolean(ot->srna, "use_boundary", true, "Boundary", "Inset face boundaries"); RNA_def_boolean(ot->srna, "use_even_offset", true, "Offset Even", "Scale the offset to give more even thickness"); RNA_def_boolean(ot->srna, "use_relative_offset", false, "Offset Relative", "Scale the offset by surrounding geometry"); RNA_def_boolean(ot->srna, "use_replace", true, "Replace", "Remove original faces"); prop = RNA_def_float_distance( ot->srna, "thickness", 0.01f, 0.0f, 1e4f, "Thickness", "", 0.0f, 10.0f); /* use 1 rather then 10 for max else dragging the button moves too far */ RNA_def_property_ui_range(prop, 0.0, 1.0, 0.01, 4); RNA_def_float_distance(ot->srna, "offset", 0.01f, 0.0f, 1e4f, "Offset", "", 0.0f, 10.0f); RNA_def_boolean(ot->srna, "use_crease", false, "Crease", "Crease hub edges for an improved subdivision surface"); prop = RNA_def_float( ot->srna, "crease_weight", 0.01f, 0.0f, 1e3f, "Crease weight", "", 0.0f, 1.0f); RNA_def_property_ui_range(prop, 0.0, 1.0, 0.1, 2); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Offset Edge-Loop Operator * \{ */ static int edbm_offset_edgeloop_exec(bContext *C, wmOperator *op) { const bool use_cap_endpoint = RNA_boolean_get(op->ptr, "use_cap_endpoint"); bool changed_multi = false; Scene *scene = CTX_data_scene(C); ViewLayer *view_layer = CTX_data_view_layer(C); uint bases_len = 0; Base **bases = BKE_view_layer_array_from_bases_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &bases_len); for (uint base_index = 0; base_index < bases_len; base_index++) { Object *obedit = bases[base_index]->object; BMEditMesh *em = BKE_editmesh_from_object(obedit); if (em->bm->totedgesel == 0) { continue; } BMOperator bmop; EDBM_op_init(em, &bmop, op, "offset_edgeloops edges=%he use_cap_endpoint=%b", BM_ELEM_SELECT, use_cap_endpoint); BMO_op_exec(em->bm, &bmop); BM_mesh_elem_hflag_disable_all(em->bm, BM_VERT | BM_EDGE | BM_FACE, BM_ELEM_SELECT, false); BMO_slot_buffer_hflag_enable( em->bm, bmop.slots_out, "edges.out", BM_EDGE, BM_ELEM_SELECT, true); if (EDBM_op_finish(em, &bmop, op, true)) { EDBM_update_generic(obedit->data, true, true); changed_multi = true; } } if (changed_multi) { /** If in face-only select mode, switch to edge select mode so that * an edge-only selection is not inconsistent state. * * We need to run this for all objects, even when nothing is selected. * This way we keep them in sync. */ if (scene->toolsettings->selectmode == SCE_SELECT_FACE) { EDBM_selectmode_disable_multi_ex(scene, bases, bases_len, SCE_SELECT_FACE, SCE_SELECT_EDGE); } } MEM_freeN(bases); return changed_multi ? OPERATOR_FINISHED : OPERATOR_CANCELLED; } void MESH_OT_offset_edge_loops(wmOperatorType *ot) { /* identifiers */ ot->name = "Offset Edge Loop"; ot->idname = "MESH_OT_offset_edge_loops"; ot->description = "Create offset edge loop from the current selection"; /* api callbacks */ ot->exec = edbm_offset_edgeloop_exec; ot->poll = ED_operator_editmesh; /* Keep internal, since this is only meant to be accessed via * 'MESH_OT_offset_edge_loops_slide'. */ /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO | OPTYPE_INTERNAL; RNA_def_boolean( ot->srna, "use_cap_endpoint", false, "Cap Endpoint", "Extend loop around end-points"); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Convex Hull Operator * \{ */ #ifdef WITH_BULLET static int edbm_convex_hull_exec(bContext *C, wmOperator *op) { const bool use_existing_faces = RNA_boolean_get(op->ptr, "use_existing_faces"); const bool delete_unused = RNA_boolean_get(op->ptr, "delete_unused"); const bool make_holes = RNA_boolean_get(op->ptr, "make_holes"); const bool join_triangles = RNA_boolean_get(op->ptr, "join_triangles"); float angle_face_threshold = RNA_float_get(op->ptr, "face_threshold"); float angle_shape_threshold = RNA_float_get(op->ptr, "shape_threshold"); ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); if (em->bm->totvertsel == 0) { continue; } BMOperator bmop; EDBM_op_init(em, &bmop, op, "convex_hull input=%hvef " "use_existing_faces=%b", BM_ELEM_SELECT, use_existing_faces); BMO_op_exec(em->bm, &bmop); /* Hull fails if input is coplanar */ if (BMO_error_occurred(em->bm)) { EDBM_op_finish(em, &bmop, op, true); continue; } BMO_slot_buffer_hflag_enable( em->bm, bmop.slots_out, "geom.out", BM_FACE, BM_ELEM_SELECT, true); /* Delete unused vertices, edges, and faces */ if (delete_unused) { if (!EDBM_op_callf( em, op, "delete geom=%S context=%i", &bmop, "geom_unused.out", DEL_ONLYTAGGED)) { EDBM_op_finish(em, &bmop, op, true); continue; } } /* Delete hole edges/faces */ if (make_holes) { if (!EDBM_op_callf( em, op, "delete geom=%S context=%i", &bmop, "geom_holes.out", DEL_ONLYTAGGED)) { EDBM_op_finish(em, &bmop, op, true); continue; } } /* Merge adjacent triangles */ if (join_triangles) { if (!EDBM_op_call_and_selectf(em, op, "faces.out", true, "join_triangles faces=%S " "angle_face_threshold=%f angle_shape_threshold=%f", &bmop, "geom.out", angle_face_threshold, angle_shape_threshold)) { EDBM_op_finish(em, &bmop, op, true); continue; } } if (!EDBM_op_finish(em, &bmop, op, true)) { continue; } EDBM_update_generic(obedit->data, true, true); EDBM_selectmode_flush(em); } MEM_freeN(objects); return OPERATOR_FINISHED; } void MESH_OT_convex_hull(wmOperatorType *ot) { /* identifiers */ ot->name = "Convex Hull"; ot->description = "Enclose selected vertices in a convex polyhedron"; ot->idname = "MESH_OT_convex_hull"; /* api callbacks */ ot->exec = edbm_convex_hull_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; /* props */ RNA_def_boolean(ot->srna, "delete_unused", true, "Delete Unused", "Delete selected elements that are not used by the hull"); RNA_def_boolean(ot->srna, "use_existing_faces", true, "Use Existing Faces", "Skip hull triangles that are covered by a pre-existing face"); RNA_def_boolean(ot->srna, "make_holes", false, "Make Holes", "Delete selected faces that are used by the hull"); RNA_def_boolean( ot->srna, "join_triangles", true, "Join Triangles", "Merge adjacent triangles into quads"); join_triangle_props(ot); } #endif /* WITH_BULLET */ /** \} */ /* -------------------------------------------------------------------- */ /** \name Symmetrize Operator * \{ */ static int mesh_symmetrize_exec(bContext *C, wmOperator *op) { const float thresh = RNA_float_get(op->ptr, "threshold"); ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); if (em->bm->totvertsel == 0) { continue; } BMOperator bmop; EDBM_op_init(em, &bmop, op, "symmetrize input=%hvef direction=%i dist=%f", BM_ELEM_SELECT, RNA_enum_get(op->ptr, "direction"), thresh); BMO_op_exec(em->bm, &bmop); EDBM_flag_disable_all(em, BM_ELEM_SELECT); BMO_slot_buffer_hflag_enable( em->bm, bmop.slots_out, "geom.out", BM_ALL_NOLOOP, BM_ELEM_SELECT, true); if (!EDBM_op_finish(em, &bmop, op, true)) { continue; } else { EDBM_update_generic(obedit->data, true, true); EDBM_selectmode_flush(em); } } MEM_freeN(objects); return OPERATOR_FINISHED; } void MESH_OT_symmetrize(struct wmOperatorType *ot) { /* identifiers */ ot->name = "Symmetrize"; ot->description = "Enforce symmetry (both form and topological) across an axis"; ot->idname = "MESH_OT_symmetrize"; /* api callbacks */ ot->exec = mesh_symmetrize_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; ot->prop = RNA_def_enum(ot->srna, "direction", rna_enum_symmetrize_direction_items, BMO_SYMMETRIZE_NEGATIVE_X, "Direction", "Which sides to copy from and to"); RNA_def_float(ot->srna, "threshold", 1e-4f, 0.0f, 10.0f, "Threshold", "Limit for snap middle vertices to the axis center", 1e-5f, 0.1f); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Snap to Symmetry Operator * \{ */ static int mesh_symmetry_snap_exec(bContext *C, wmOperator *op) { const float eps = 0.00001f; const float eps_sq = eps * eps; const bool use_topology = false; const float thresh = RNA_float_get(op->ptr, "threshold"); const float fac = RNA_float_get(op->ptr, "factor"); const bool use_center = RNA_boolean_get(op->ptr, "use_center"); const int axis_dir = RNA_enum_get(op->ptr, "direction"); /* Vertices stats (total over all selected objects). */ int totvertfound = 0, totvertmirr = 0, totvertfail = 0; /* Axis. */ int axis = axis_dir % 3; bool axis_sign = axis != axis_dir; ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); BMesh *bm = em->bm; if (em->bm->totvertsel == 0) { continue; } /* Only allocate memory after checking whether to skip object. */ int *index = MEM_mallocN(bm->totvert * sizeof(*index), __func__); /* Vertex iter. */ BMIter iter; BMVert *v; int i; EDBM_verts_mirror_cache_begin_ex(em, axis, true, true, use_topology, thresh, index); BM_mesh_elem_table_ensure(bm, BM_VERT); BM_mesh_elem_hflag_disable_all(bm, BM_VERT, BM_ELEM_TAG, false); BM_ITER_MESH_INDEX (v, &iter, bm, BM_VERTS_OF_MESH, i) { if ((BM_elem_flag_test(v, BM_ELEM_SELECT) != false) && (BM_elem_flag_test(v, BM_ELEM_TAG) == false)) { int i_mirr = index[i]; if (i_mirr != -1) { BMVert *v_mirr = BM_vert_at_index(bm, index[i]); if (v != v_mirr) { float co[3], co_mirr[3]; if ((v->co[axis] > v_mirr->co[axis]) == axis_sign) { SWAP(BMVert *, v, v_mirr); } copy_v3_v3(co_mirr, v_mirr->co); co_mirr[axis] *= -1.0f; if (len_squared_v3v3(v->co, co_mirr) > eps_sq) { totvertmirr++; } interp_v3_v3v3(co, v->co, co_mirr, fac); copy_v3_v3(v->co, co); co[axis] *= -1.0f; copy_v3_v3(v_mirr->co, co); BM_elem_flag_enable(v, BM_ELEM_TAG); BM_elem_flag_enable(v_mirr, BM_ELEM_TAG); totvertfound++; } else { if (use_center) { if (fabsf(v->co[axis]) > eps) { totvertmirr++; } v->co[axis] = 0.0f; } BM_elem_flag_enable(v, BM_ELEM_TAG); totvertfound++; } } else { totvertfail++; } } } EDBM_update_generic(obedit->data, false, false); /* No need to end cache, just free the array. */ MEM_freeN(index); } MEM_freeN(objects); if (totvertfail) { BKE_reportf(op->reports, RPT_WARNING, "%d already symmetrical, %d pairs mirrored, %d failed", totvertfound - totvertmirr, totvertmirr, totvertfail); } else { BKE_reportf(op->reports, RPT_INFO, "%d already symmetrical, %d pairs mirrored", totvertfound - totvertmirr, totvertmirr); } return OPERATOR_FINISHED; } void MESH_OT_symmetry_snap(struct wmOperatorType *ot) { /* identifiers */ ot->name = "Snap to Symmetry"; ot->description = "Snap vertex pairs to their mirrored locations"; ot->idname = "MESH_OT_symmetry_snap"; /* api callbacks */ ot->exec = mesh_symmetry_snap_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; ot->prop = RNA_def_enum(ot->srna, "direction", rna_enum_symmetrize_direction_items, BMO_SYMMETRIZE_NEGATIVE_X, "Direction", "Which sides to copy from and to"); RNA_def_float_distance(ot->srna, "threshold", 0.05f, 0.0f, 10.0f, "Threshold", "Distance within which matching vertices are searched", 1e-4f, 1.0f); RNA_def_float(ot->srna, "factor", 0.5f, 0.0f, 1.0f, "Factor", "Mix factor of the locations of the vertices", 0.0f, 1.0f); RNA_def_boolean( ot->srna, "use_center", true, "Center", "Snap middle vertices to the axis center"); } /** \} */ #ifdef WITH_FREESTYLE /* -------------------------------------------------------------------- */ /** \name Mark Edge (Freestyle) Operator * \{ */ static int edbm_mark_freestyle_edge_exec(bContext *C, wmOperator *op) { BMEdge *eed; BMIter iter; FreestyleEdge *fed; const bool clear = RNA_boolean_get(op->ptr, "clear"); ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); if (em == NULL) { continue; } BMesh *bm = em->bm; if (bm->totedgesel == 0) { continue; } if (!CustomData_has_layer(&em->bm->edata, CD_FREESTYLE_EDGE)) { BM_data_layer_add(em->bm, &em->bm->edata, CD_FREESTYLE_EDGE); } if (clear) { BM_ITER_MESH (eed, &iter, em->bm, BM_EDGES_OF_MESH) { if (BM_elem_flag_test(eed, BM_ELEM_SELECT) && !BM_elem_flag_test(eed, BM_ELEM_HIDDEN)) { fed = CustomData_bmesh_get(&em->bm->edata, eed->head.data, CD_FREESTYLE_EDGE); fed->flag &= ~FREESTYLE_EDGE_MARK; } } } else { BM_ITER_MESH (eed, &iter, em->bm, BM_EDGES_OF_MESH) { if (BM_elem_flag_test(eed, BM_ELEM_SELECT) && !BM_elem_flag_test(eed, BM_ELEM_HIDDEN)) { fed = CustomData_bmesh_get(&em->bm->edata, eed->head.data, CD_FREESTYLE_EDGE); fed->flag |= FREESTYLE_EDGE_MARK; } } } DEG_id_tag_update(obedit->data, ID_RECALC_GEOMETRY); WM_event_add_notifier(C, NC_GEOM | ND_DATA, obedit->data); } MEM_freeN(objects); return OPERATOR_FINISHED; } void MESH_OT_mark_freestyle_edge(wmOperatorType *ot) { PropertyRNA *prop; /* identifiers */ ot->name = "Mark Freestyle Edge"; ot->description = "(Un)mark selected edges as Freestyle feature edges"; ot->idname = "MESH_OT_mark_freestyle_edge"; /* api callbacks */ ot->exec = edbm_mark_freestyle_edge_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; prop = RNA_def_boolean(ot->srna, "clear", false, "Clear", ""); RNA_def_property_flag(prop, PROP_HIDDEN | PROP_SKIP_SAVE); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Mark Face (Freestyle) Operator * \{ */ static int edbm_mark_freestyle_face_exec(bContext *C, wmOperator *op) { BMFace *efa; BMIter iter; FreestyleFace *ffa; const bool clear = RNA_boolean_get(op->ptr, "clear"); ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); if (em == NULL) { continue; } if (em->bm->totfacesel == 0) { continue; } if (!CustomData_has_layer(&em->bm->pdata, CD_FREESTYLE_FACE)) { BM_data_layer_add(em->bm, &em->bm->pdata, CD_FREESTYLE_FACE); } if (clear) { BM_ITER_MESH (efa, &iter, em->bm, BM_FACES_OF_MESH) { if (BM_elem_flag_test(efa, BM_ELEM_SELECT) && !BM_elem_flag_test(efa, BM_ELEM_HIDDEN)) { ffa = CustomData_bmesh_get(&em->bm->pdata, efa->head.data, CD_FREESTYLE_FACE); ffa->flag &= ~FREESTYLE_FACE_MARK; } } } else { BM_ITER_MESH (efa, &iter, em->bm, BM_FACES_OF_MESH) { if (BM_elem_flag_test(efa, BM_ELEM_SELECT) && !BM_elem_flag_test(efa, BM_ELEM_HIDDEN)) { ffa = CustomData_bmesh_get(&em->bm->pdata, efa->head.data, CD_FREESTYLE_FACE); ffa->flag |= FREESTYLE_FACE_MARK; } } } DEG_id_tag_update(obedit->data, ID_RECALC_GEOMETRY); WM_event_add_notifier(C, NC_GEOM | ND_DATA, obedit->data); } MEM_freeN(objects); return OPERATOR_FINISHED; } void MESH_OT_mark_freestyle_face(wmOperatorType *ot) { PropertyRNA *prop; /* identifiers */ ot->name = "Mark Freestyle Face"; ot->description = "(Un)mark selected faces for exclusion from Freestyle feature edge detection"; ot->idname = "MESH_OT_mark_freestyle_face"; /* api callbacks */ ot->exec = edbm_mark_freestyle_face_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; prop = RNA_def_boolean(ot->srna, "clear", false, "Clear", ""); RNA_def_property_flag(prop, PROP_HIDDEN | PROP_SKIP_SAVE); } /** \} */ #endif /* WITH_FREESTYLE */ /* -------------------------------------------------------------------- */ /** \name Loop Normals Editing Tools Modal Map * \{ */ /* NOTE: these defines are saved in keymap files, do not change values but just add new ones */ /* NOTE: We could add more here, like e.g. a switch between local or global coordinates of target, * use numinput to type in explicit vector values... */ enum { /* Generic commands. */ EDBM_CLNOR_MODAL_CANCEL = 1, EDBM_CLNOR_MODAL_CONFIRM = 2, /* Point To operator. */ EDBM_CLNOR_MODAL_POINTTO_RESET = 101, EDBM_CLNOR_MODAL_POINTTO_INVERT = 102, EDBM_CLNOR_MODAL_POINTTO_SPHERIZE = 103, EDBM_CLNOR_MODAL_POINTTO_ALIGN = 104, EDBM_CLNOR_MODAL_POINTTO_USE_MOUSE = 110, EDBM_CLNOR_MODAL_POINTTO_USE_PIVOT = 111, EDBM_CLNOR_MODAL_POINTTO_USE_OBJECT = 112, EDBM_CLNOR_MODAL_POINTTO_SET_USE_3DCURSOR = 113, EDBM_CLNOR_MODAL_POINTTO_SET_USE_SELECTED = 114, }; /* called in transform_ops.c, on each regeneration of keymaps */ wmKeyMap *point_normals_modal_keymap(wmKeyConfig *keyconf) { static const EnumPropertyItem modal_items[] = { {EDBM_CLNOR_MODAL_CANCEL, "CANCEL", 0, "Cancel", ""}, {EDBM_CLNOR_MODAL_CONFIRM, "CONFIRM", 0, "Confirm", ""}, /* Point To operator. */ {EDBM_CLNOR_MODAL_POINTTO_RESET, "RESET", 0, "Reset", "Reset normals to initial ones"}, {EDBM_CLNOR_MODAL_POINTTO_INVERT, "INVERT", 0, "Invert", "Toggle inversion of affected normals"}, {EDBM_CLNOR_MODAL_POINTTO_SPHERIZE, "SPHERIZE", 0, "Spherize", "Interpolate between new and original normals"}, {EDBM_CLNOR_MODAL_POINTTO_ALIGN, "ALIGN", 0, "Align", "Make all affected normals parallel"}, {EDBM_CLNOR_MODAL_POINTTO_USE_MOUSE, "USE_MOUSE", 0, "Use Mouse", "Follow mouse cursor position"}, {EDBM_CLNOR_MODAL_POINTTO_USE_PIVOT, "USE_PIVOT", 0, "Use Pivot", "Use current rotation/scaling pivot point coordinates"}, {EDBM_CLNOR_MODAL_POINTTO_USE_OBJECT, "USE_OBJECT", 0, "Use Object", "Use current edited object's location"}, {EDBM_CLNOR_MODAL_POINTTO_SET_USE_3DCURSOR, "SET_USE_3DCURSOR", 0, "Set and Use 3D Cursor", "Set new 3D cursor position and use it"}, {EDBM_CLNOR_MODAL_POINTTO_SET_USE_SELECTED, "SET_USE_SELECTED", 0, "Select and Use Mesh Item", "Select new active mesh element and use its location"}, {0, NULL, 0, NULL, NULL}, }; static const char *keymap_name = "Custom Normals Modal Map"; wmKeyMap *keymap = WM_modalkeymap_find(keyconf, keymap_name); /* We only need to add map once */ if (keymap && keymap->modal_items) { return NULL; } keymap = WM_modalkeymap_ensure(keyconf, keymap_name, modal_items); WM_modalkeymap_assign(keymap, "MESH_OT_point_normals"); return keymap; } #define CLNORS_VALID_VEC_LEN (1e-4f) /** \} */ /* -------------------------------------------------------------------- */ /** \name Loop Normals 'Point To' Operator * \{ */ enum { EDBM_CLNOR_POINTTO_MODE_COORDINATES = 1, EDBM_CLNOR_POINTTO_MODE_MOUSE = 2, }; static EnumPropertyItem clnors_pointto_mode_items[] = { {EDBM_CLNOR_POINTTO_MODE_COORDINATES, "COORDINATES", 0, "Coordinates", "Use static coordinates (defined by various means)"}, {EDBM_CLNOR_POINTTO_MODE_MOUSE, "MOUSE", 0, "Mouse", "Follow mouse cursor"}, {0, NULL, 0, NULL, NULL}, }; /* Initialize loop normal data */ static bool point_normals_init(bContext *C, wmOperator *op) { Object *obedit = CTX_data_edit_object(C); BMEditMesh *em = BKE_editmesh_from_object(obedit); BMesh *bm = em->bm; BKE_editmesh_ensure_autosmooth(em, obedit->data); BKE_editmesh_lnorspace_update(em, obedit->data); BMLoopNorEditDataArray *lnors_ed_arr = BM_loop_normal_editdata_array_init(bm, false); op->customdata = lnors_ed_arr; return (lnors_ed_arr->totloop != 0); } static bool point_normals_ensure(bContext *C, wmOperator *op) { if (op->customdata != NULL) { return true; } return point_normals_init(C, op); } static void point_normals_free(wmOperator *op) { if (op->customdata != NULL) { BMLoopNorEditDataArray *lnors_ed_arr = op->customdata; BM_loop_normal_editdata_array_free(lnors_ed_arr); op->customdata = NULL; } } static void point_normals_cancel(bContext *C, wmOperator *op) { point_normals_free(op); ED_area_status_text(CTX_wm_area(C), NULL); } static void point_normals_update_header(bContext *C, wmOperator *op) { char header[UI_MAX_DRAW_STR]; char buf[UI_MAX_DRAW_STR]; char *p = buf; int available_len = sizeof(buf); #define WM_MODALKEY(_id) \ WM_modalkeymap_operator_items_to_string_buf( \ op->type, (_id), true, UI_MAX_SHORTCUT_STR, &available_len, &p) BLI_snprintf(header, sizeof(header), TIP_("%s: confirm, %s: cancel, " "%s: point to mouse (%s), %s: point to Pivot, " "%s: point to object origin, %s: reset normals, " "%s: set & point to 3D cursor, %s: select & point to mesh item, " "%s: invert normals (%s), %s: spherize (%s), %s: align (%s)"), WM_MODALKEY(EDBM_CLNOR_MODAL_CONFIRM), WM_MODALKEY(EDBM_CLNOR_MODAL_CANCEL), WM_MODALKEY(EDBM_CLNOR_MODAL_POINTTO_USE_MOUSE), WM_bool_as_string(RNA_enum_get(op->ptr, "mode") == EDBM_CLNOR_POINTTO_MODE_MOUSE), WM_MODALKEY(EDBM_CLNOR_MODAL_POINTTO_USE_PIVOT), WM_MODALKEY(EDBM_CLNOR_MODAL_POINTTO_USE_OBJECT), WM_MODALKEY(EDBM_CLNOR_MODAL_POINTTO_RESET), WM_MODALKEY(EDBM_CLNOR_MODAL_POINTTO_SET_USE_3DCURSOR), WM_MODALKEY(EDBM_CLNOR_MODAL_POINTTO_SET_USE_SELECTED), WM_MODALKEY(EDBM_CLNOR_MODAL_POINTTO_INVERT), WM_bool_as_string(RNA_boolean_get(op->ptr, "invert")), WM_MODALKEY(EDBM_CLNOR_MODAL_POINTTO_SPHERIZE), WM_bool_as_string(RNA_boolean_get(op->ptr, "spherize")), WM_MODALKEY(EDBM_CLNOR_MODAL_POINTTO_ALIGN), WM_bool_as_string(RNA_boolean_get(op->ptr, "align"))); #undef WM_MODALKEY ED_area_status_text(CTX_wm_area(C), header); } /* TODO move that to generic function in BMesh? */ static void bmesh_selected_verts_center_calc(BMesh *bm, float *r_center) { BMVert *v; BMIter viter; int i = 0; zero_v3(r_center); BM_ITER_MESH (v, &viter, bm, BM_VERTS_OF_MESH) { if (BM_elem_flag_test(v, BM_ELEM_SELECT)) { add_v3_v3(r_center, v->co); i++; } } mul_v3_fl(r_center, 1.0f / (float)i); } static void point_normals_apply(bContext *C, wmOperator *op, float target[3], const bool do_reset) { Object *obedit = CTX_data_edit_object(C); BMesh *bm = BKE_editmesh_from_object(obedit)->bm; BMLoopNorEditDataArray *lnors_ed_arr = op->customdata; const bool do_invert = RNA_boolean_get(op->ptr, "invert"); const bool do_spherize = RNA_boolean_get(op->ptr, "spherize"); const bool do_align = RNA_boolean_get(op->ptr, "align"); float center[3]; if (do_align && !do_reset) { bmesh_selected_verts_center_calc(bm, center); } sub_v3_v3(target, obedit->loc); /* Move target to local coordinates. */ BMLoopNorEditData *lnor_ed = lnors_ed_arr->lnor_editdata; for (int i = 0; i < lnors_ed_arr->totloop; i++, lnor_ed++) { if (do_reset) { copy_v3_v3(lnor_ed->nloc, lnor_ed->niloc); } else if (do_spherize) { /* Note that this is *not* real spherical interpolation. * Probably good enough in this case though? */ const float strength = RNA_float_get(op->ptr, "spherize_strength"); float spherized_normal[3]; sub_v3_v3v3(spherized_normal, target, lnor_ed->loc); /* otherwise, multiplication by strength is meaningless... */ normalize_v3(spherized_normal); mul_v3_fl(spherized_normal, strength); mul_v3_v3fl(lnor_ed->nloc, lnor_ed->niloc, 1.0f - strength); add_v3_v3(lnor_ed->nloc, spherized_normal); } else if (do_align) { sub_v3_v3v3(lnor_ed->nloc, target, center); } else { sub_v3_v3v3(lnor_ed->nloc, target, lnor_ed->loc); } if (do_invert && !do_reset) { negate_v3(lnor_ed->nloc); } if (normalize_v3(lnor_ed->nloc) >= CLNORS_VALID_VEC_LEN) { BKE_lnor_space_custom_normal_to_data( bm->lnor_spacearr->lspacearr[lnor_ed->loop_index], lnor_ed->nloc, lnor_ed->clnors_data); } } } static int edbm_point_normals_modal(bContext *C, wmOperator *op, const wmEvent *event) { /* As this operator passes events through, we can't be sure the user didn't exit edit-mode. * or performed some other operation. */ if (!WM_operator_poll(C, op->type)) { point_normals_cancel(C, op); return OPERATOR_CANCELLED; } View3D *v3d = CTX_wm_view3d(C); Scene *scene = CTX_data_scene(C); Object *obedit = CTX_data_edit_object(C); BMEditMesh *em = BKE_editmesh_from_object(obedit); BMesh *bm = em->bm; float target[3]; int ret = OPERATOR_PASS_THROUGH; int mode = RNA_enum_get(op->ptr, "mode"); int new_mode = mode; bool force_mousemove = false; bool do_reset = false; PropertyRNA *prop_target = RNA_struct_find_property(op->ptr, "target_location"); if (event->type == EVT_MODAL_MAP) { switch (event->val) { case EDBM_CLNOR_MODAL_CONFIRM: RNA_property_float_get_array(op->ptr, prop_target, target); ret = OPERATOR_FINISHED; break; case EDBM_CLNOR_MODAL_CANCEL: do_reset = true; ret = OPERATOR_CANCELLED; break; case EDBM_CLNOR_MODAL_POINTTO_RESET: do_reset = true; ret = OPERATOR_RUNNING_MODAL; break; case EDBM_CLNOR_MODAL_POINTTO_INVERT: { PropertyRNA *prop_invert = RNA_struct_find_property(op->ptr, "invert"); RNA_property_boolean_set( op->ptr, prop_invert, !RNA_property_boolean_get(op->ptr, prop_invert)); RNA_property_float_get_array(op->ptr, prop_target, target); ret = OPERATOR_RUNNING_MODAL; break; } case EDBM_CLNOR_MODAL_POINTTO_SPHERIZE: { PropertyRNA *prop_spherize = RNA_struct_find_property(op->ptr, "spherize"); RNA_property_boolean_set( op->ptr, prop_spherize, !RNA_property_boolean_get(op->ptr, prop_spherize)); RNA_property_float_get_array(op->ptr, prop_target, target); ret = OPERATOR_RUNNING_MODAL; break; } case EDBM_CLNOR_MODAL_POINTTO_ALIGN: { PropertyRNA *prop_align = RNA_struct_find_property(op->ptr, "align"); RNA_property_boolean_set( op->ptr, prop_align, !RNA_property_boolean_get(op->ptr, prop_align)); RNA_property_float_get_array(op->ptr, prop_target, target); ret = OPERATOR_RUNNING_MODAL; break; } case EDBM_CLNOR_MODAL_POINTTO_USE_MOUSE: new_mode = EDBM_CLNOR_POINTTO_MODE_MOUSE; /* We want to immediately update to mouse cursor position... */ force_mousemove = true; ret = OPERATOR_RUNNING_MODAL; break; case EDBM_CLNOR_MODAL_POINTTO_USE_OBJECT: new_mode = EDBM_CLNOR_POINTTO_MODE_COORDINATES; copy_v3_v3(target, obedit->loc); ret = OPERATOR_RUNNING_MODAL; break; case EDBM_CLNOR_MODAL_POINTTO_SET_USE_3DCURSOR: new_mode = EDBM_CLNOR_POINTTO_MODE_COORDINATES; ED_view3d_cursor3d_update(C, event->mval, false, V3D_CURSOR_ORIENT_NONE); copy_v3_v3(target, scene->cursor.location); ret = OPERATOR_RUNNING_MODAL; break; case EDBM_CLNOR_MODAL_POINTTO_SET_USE_SELECTED: new_mode = EDBM_CLNOR_POINTTO_MODE_COORDINATES; view3d_operator_needs_opengl(C); if (EDBM_select_pick(C, event->mval, false, false, false)) { /* Point to newly selected active. */ ED_object_calc_active_center_for_editmode(obedit, false, target); add_v3_v3(target, obedit->loc); ret = OPERATOR_RUNNING_MODAL; } break; case EDBM_CLNOR_MODAL_POINTTO_USE_PIVOT: new_mode = EDBM_CLNOR_POINTTO_MODE_COORDINATES; switch (scene->toolsettings->transform_pivot_point) { case V3D_AROUND_CENTER_BOUNDS: /* calculateCenterBound */ { BMVert *v; BMIter viter; float min[3], max[3]; int i = 0; BM_ITER_MESH (v, &viter, bm, BM_VERTS_OF_MESH) { if (BM_elem_flag_test(v, BM_ELEM_SELECT)) { if (i) { minmax_v3v3_v3(min, max, v->co); } else { copy_v3_v3(min, v->co); copy_v3_v3(max, v->co); } i++; } } mid_v3_v3v3(target, min, max); add_v3_v3(target, obedit->loc); break; } case V3D_AROUND_CENTER_MEDIAN: { bmesh_selected_verts_center_calc(bm, target); add_v3_v3(target, obedit->loc); break; } case V3D_AROUND_CURSOR: copy_v3_v3(target, scene->cursor.location); break; case V3D_AROUND_ACTIVE: if (!ED_object_calc_active_center_for_editmode(obedit, false, target)) { zero_v3(target); } add_v3_v3(target, obedit->loc); break; default: BKE_report(op->reports, RPT_WARNING, "Does not support Individual Origin as pivot"); copy_v3_v3(target, obedit->loc); } ret = OPERATOR_RUNNING_MODAL; break; default: break; } } if (new_mode != mode) { mode = new_mode; RNA_enum_set(op->ptr, "mode", mode); } /* Only handle mousemove event in case we are in mouse mode. */ if (event->type == MOUSEMOVE || force_mousemove) { if (mode == EDBM_CLNOR_POINTTO_MODE_MOUSE) { ARegion *region = CTX_wm_region(C); float center[3]; bmesh_selected_verts_center_calc(bm, center); ED_view3d_win_to_3d_int(v3d, region, center, event->mval, target); ret = OPERATOR_RUNNING_MODAL; } } if (ret != OPERATOR_PASS_THROUGH) { if (!ELEM(ret, OPERATOR_CANCELLED, OPERATOR_FINISHED)) { RNA_property_float_set_array(op->ptr, prop_target, target); } if (point_normals_ensure(C, op)) { point_normals_apply(C, op, target, do_reset); EDBM_update_generic(obedit->data, true, false); /* Recheck bools. */ point_normals_update_header(C, op); } else { ret = OPERATOR_CANCELLED; } } if (ELEM(ret, OPERATOR_CANCELLED, OPERATOR_FINISHED)) { point_normals_cancel(C, op); } /* If we allow other tools to run, we can't be sure if they will re-allocate * the data this operator uses, see: T68159. * Free the data here, then use #point_normals_ensure to add it back on demand. */ if (ret == OPERATOR_PASS_THROUGH) { /* Don't free on mouse-move, causes creation/freeing of the loop data in an inefficient way. */ if (!ELEM(event->type, MOUSEMOVE, INBETWEEN_MOUSEMOVE)) { point_normals_free(op); } } return ret; } static int edbm_point_normals_invoke(bContext *C, wmOperator *op, const wmEvent *UNUSED(event)) { if (!point_normals_init(C, op)) { point_normals_cancel(C, op); return OPERATOR_CANCELLED; } WM_event_add_modal_handler(C, op); point_normals_update_header(C, op); op->flag |= OP_IS_MODAL_GRAB_CURSOR; return OPERATOR_RUNNING_MODAL; } /* TODO: make this work on multiple objects at once */ static int edbm_point_normals_exec(bContext *C, wmOperator *op) { Object *obedit = CTX_data_edit_object(C); if (!point_normals_init(C, op)) { point_normals_cancel(C, op); return OPERATOR_CANCELLED; } /* Note that 'mode' is ignored in exec case, * we directly use vector stored in target_location, whatever that is. */ float target[3]; RNA_float_get_array(op->ptr, "target_location", target); point_normals_apply(C, op, target, false); EDBM_update_generic(obedit->data, true, false); point_normals_cancel(C, op); return OPERATOR_FINISHED; } static bool point_normals_draw_check_prop(PointerRNA *ptr, PropertyRNA *prop, void *UNUSED(user_data)) { const char *prop_id = RNA_property_identifier(prop); /* Only show strength option if spherize is enabled. */ if (STREQ(prop_id, "spherize_strength")) { return (bool)RNA_boolean_get(ptr, "spherize"); } /* Else, show it! */ return true; } static void edbm_point_normals_ui(bContext *C, wmOperator *op) { uiLayout *layout = op->layout; wmWindowManager *wm = CTX_wm_manager(C); PointerRNA ptr; RNA_pointer_create(&wm->id, op->type->srna, op->properties, &ptr); /* Main auto-draw call */ uiDefAutoButsRNA(layout, &ptr, point_normals_draw_check_prop, NULL, NULL, '\0', false); } void MESH_OT_point_normals(struct wmOperatorType *ot) { /* identifiers */ ot->name = "Point Normals to Target"; ot->description = "Point selected custom normals to specified Target"; ot->idname = "MESH_OT_point_normals"; /* api callbacks */ ot->exec = edbm_point_normals_exec; ot->invoke = edbm_point_normals_invoke; ot->modal = edbm_point_normals_modal; ot->poll = ED_operator_editmesh; ot->ui = edbm_point_normals_ui; ot->cancel = point_normals_cancel; /* flags */ ot->flag = OPTYPE_BLOCKING | OPTYPE_REGISTER | OPTYPE_UNDO; ot->prop = RNA_def_enum(ot->srna, "mode", clnors_pointto_mode_items, EDBM_CLNOR_POINTTO_MODE_COORDINATES, "Mode", "How to define coordinates to point custom normals to"); RNA_def_property_flag(ot->prop, PROP_HIDDEN); RNA_def_boolean(ot->srna, "invert", false, "Invert", "Invert affected normals"); RNA_def_boolean(ot->srna, "align", false, "Align", "Make all affected normals parallel"); RNA_def_float_vector_xyz(ot->srna, "target_location", 3, NULL, -FLT_MAX, FLT_MAX, "Target", "Target location to which normals will point", -1000.0f, 1000.0f); RNA_def_boolean( ot->srna, "spherize", false, "Spherize", "Interpolate between original and new normals"); RNA_def_float(ot->srna, "spherize_strength", 0.1, 0.0f, 1.0f, "Spherize Strength", "Ratio of spherized normal to original normal", 0.0f, 1.0f); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Split/Merge Loop Normals Operator * \{ */ static void normals_merge(BMesh *bm, BMLoopNorEditDataArray *lnors_ed_arr) { BMLoopNorEditData *lnor_ed = lnors_ed_arr->lnor_editdata; BLI_SMALLSTACK_DECLARE(clnors, short *); BLI_assert(bm->lnor_spacearr->data_type == MLNOR_SPACEARR_BMLOOP_PTR); BM_normals_loops_edges_tag(bm, false); for (int i = 0; i < lnors_ed_arr->totloop; i++, lnor_ed++) { BLI_assert(BLI_SMALLSTACK_IS_EMPTY(clnors)); if (BM_elem_flag_test(lnor_ed->loop, BM_ELEM_TAG)) { continue; } MLoopNorSpace *lnor_space = bm->lnor_spacearr->lspacearr[lnor_ed->loop_index]; if ((lnor_space->flags & MLNOR_SPACE_IS_SINGLE) == 0) { LinkNode *loops = lnor_space->loops; float avg_normal[3] = {0.0f, 0.0f, 0.0f}; short *clnors_data; for (; loops; loops = loops->next) { BMLoop *l = loops->link; const int loop_index = BM_elem_index_get(l); BMLoopNorEditData *lnor_ed_tmp = lnors_ed_arr->lidx_to_lnor_editdata[loop_index]; BLI_assert(lnor_ed_tmp->loop_index == loop_index && lnor_ed_tmp->loop == l); add_v3_v3(avg_normal, lnor_ed_tmp->nloc); BLI_SMALLSTACK_PUSH(clnors, lnor_ed_tmp->clnors_data); BM_elem_flag_enable(l, BM_ELEM_TAG); } if (normalize_v3(avg_normal) < CLNORS_VALID_VEC_LEN) { /* If avg normal is nearly 0, set clnor to default value. */ zero_v3(avg_normal); } while ((clnors_data = BLI_SMALLSTACK_POP(clnors))) { BKE_lnor_space_custom_normal_to_data(lnor_space, avg_normal, clnors_data); } } } } static void normals_split(BMesh *bm) { BMFace *f; BMLoop *l, *l_curr, *l_first; BMIter fiter; BLI_assert(bm->lnor_spacearr->data_type == MLNOR_SPACEARR_BMLOOP_PTR); BM_normals_loops_edges_tag(bm, true); BLI_SMALLSTACK_DECLARE(loop_stack, BMLoop *); const int cd_clnors_offset = CustomData_get_offset(&bm->ldata, CD_CUSTOMLOOPNORMAL); BM_ITER_MESH (f, &fiter, bm, BM_FACES_OF_MESH) { BLI_assert(BLI_SMALLSTACK_IS_EMPTY(loop_stack)); l_curr = l_first = BM_FACE_FIRST_LOOP(f); do { if (BM_elem_flag_test(l_curr->v, BM_ELEM_SELECT) && (!BM_elem_flag_test(l_curr->e, BM_ELEM_TAG) || (!BM_elem_flag_test(l_curr, BM_ELEM_TAG) && BM_loop_check_cyclic_smooth_fan(l_curr)))) { if (!BM_elem_flag_test(l_curr->e, BM_ELEM_TAG) && !BM_elem_flag_test(l_curr->prev->e, BM_ELEM_TAG)) { const int loop_index = BM_elem_index_get(l_curr); short *clnors = BM_ELEM_CD_GET_VOID_P(l_curr, cd_clnors_offset); BKE_lnor_space_custom_normal_to_data( bm->lnor_spacearr->lspacearr[loop_index], f->no, clnors); } else { BMVert *v_pivot = l_curr->v; UNUSED_VARS_NDEBUG(v_pivot); BMEdge *e_next; const BMEdge *e_org = l_curr->e; BMLoop *lfan_pivot, *lfan_pivot_next; lfan_pivot = l_curr; e_next = lfan_pivot->e; float avg_normal[3] = {0.0f}; while (true) { lfan_pivot_next = BM_vert_step_fan_loop(lfan_pivot, &e_next); if (lfan_pivot_next) { BLI_assert(lfan_pivot_next->v == v_pivot); } else { e_next = (lfan_pivot->e == e_next) ? lfan_pivot->prev->e : lfan_pivot->e; } BLI_SMALLSTACK_PUSH(loop_stack, lfan_pivot); add_v3_v3(avg_normal, lfan_pivot->f->no); if (!BM_elem_flag_test(e_next, BM_ELEM_TAG) || (e_next == e_org)) { break; } lfan_pivot = lfan_pivot_next; } if (normalize_v3(avg_normal) < CLNORS_VALID_VEC_LEN) { /* If avg normal is nearly 0, set clnor to default value. */ zero_v3(avg_normal); } while ((l = BLI_SMALLSTACK_POP(loop_stack))) { const int l_index = BM_elem_index_get(l); short *clnors = BM_ELEM_CD_GET_VOID_P(l, cd_clnors_offset); BKE_lnor_space_custom_normal_to_data( bm->lnor_spacearr->lspacearr[l_index], avg_normal, clnors); } } } } while ((l_curr = l_curr->next) != l_first); } } static int normals_split_merge(bContext *C, const bool do_merge) { ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); BMesh *bm = em->bm; BMEdge *e; BMIter eiter; BKE_editmesh_ensure_autosmooth(em, obedit->data); BKE_editmesh_lnorspace_update(em, obedit->data); /* Note that we need temp lnor editing data for all loops of all affected vertices, since by * setting some faces/edges as smooth we are going to change clnors spaces... See also T65809. */ BMLoopNorEditDataArray *lnors_ed_arr = do_merge ? BM_loop_normal_editdata_array_init(bm, true) : NULL; mesh_set_smooth_faces(em, do_merge); BM_ITER_MESH (e, &eiter, bm, BM_EDGES_OF_MESH) { if (BM_elem_flag_test(e, BM_ELEM_SELECT)) { BM_elem_flag_set(e, BM_ELEM_SMOOTH, do_merge); } } bm->spacearr_dirty |= BM_SPACEARR_DIRTY_ALL; BKE_editmesh_lnorspace_update(em, obedit->data); if (do_merge) { normals_merge(bm, lnors_ed_arr); } else { normals_split(bm); } if (lnors_ed_arr) { BM_loop_normal_editdata_array_free(lnors_ed_arr); } EDBM_update_generic(obedit->data, true, false); } MEM_freeN(objects); return OPERATOR_FINISHED; } static int edbm_merge_normals_exec(bContext *C, wmOperator *UNUSED(op)) { return normals_split_merge(C, true); } void MESH_OT_merge_normals(struct wmOperatorType *ot) { /* identifiers */ ot->name = "Merge Normals"; ot->description = "Merge custom normals of selected vertices"; ot->idname = "MESH_OT_merge_normals"; /* api callbacks */ ot->exec = edbm_merge_normals_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; } static int edbm_split_normals_exec(bContext *C, wmOperator *UNUSED(op)) { return normals_split_merge(C, false); } void MESH_OT_split_normals(struct wmOperatorType *ot) { /* identifiers */ ot->name = "Split Normals"; ot->description = "Split custom normals of selected vertices"; ot->idname = "MESH_OT_split_normals"; /* api callbacks */ ot->exec = edbm_split_normals_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; } /** \} */ /* -------------------------------------------------------------------- */ /** \name Average Loop Normals Operator * \{ */ enum { EDBM_CLNOR_AVERAGE_LOOP = 1, EDBM_CLNOR_AVERAGE_FACE_AREA = 2, EDBM_CLNOR_AVERAGE_ANGLE = 3, }; static EnumPropertyItem average_method_items[] = { {EDBM_CLNOR_AVERAGE_LOOP, "CUSTOM_NORMAL", 0, "Custom Normal", "Take Average of vert Normals"}, {EDBM_CLNOR_AVERAGE_FACE_AREA, "FACE_AREA", 0, "Face Area", "Set all vert normals by Face Area"}, {EDBM_CLNOR_AVERAGE_ANGLE, "CORNER_ANGLE", 0, "Corner Angle", "Set all vert normals by Corner Angle"}, {0, NULL, 0, NULL, NULL}, }; static int edbm_average_normals_exec(bContext *C, wmOperator *op) { ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); const int average_type = RNA_enum_get(op->ptr, "average_type"); const float absweight = (float)RNA_int_get(op->ptr, "weight"); const float threshold = RNA_float_get(op->ptr, "threshold"); HeapSimple *loop_weight = BLI_heapsimple_new(); BLI_SMALLSTACK_DECLARE(loop_stack, BMLoop *); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { BLI_assert(BLI_SMALLSTACK_IS_EMPTY(loop_stack)); BLI_assert(BLI_heapsimple_is_empty(loop_weight)); Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); BMesh *bm = em->bm; BMFace *f; BMLoop *l, *l_curr, *l_first; BMIter fiter; BKE_editmesh_ensure_autosmooth(em, obedit->data); bm->spacearr_dirty |= BM_SPACEARR_DIRTY_ALL; BKE_editmesh_lnorspace_update(em, obedit->data); const int cd_clnors_offset = CustomData_get_offset(&bm->ldata, CD_CUSTOMLOOPNORMAL); float weight = absweight / 50.0f; if (absweight == 100.0f) { weight = (float)SHRT_MAX; } else if (absweight == 1.0f) { weight = 1 / (float)SHRT_MAX; } else if ((weight - 1) * 25 > 1) { weight = (weight - 1) * 25; } BM_normals_loops_edges_tag(bm, true); BM_ITER_MESH (f, &fiter, bm, BM_FACES_OF_MESH) { l_curr = l_first = BM_FACE_FIRST_LOOP(f); do { if (BM_elem_flag_test(l_curr->v, BM_ELEM_SELECT) && (!BM_elem_flag_test(l_curr->e, BM_ELEM_TAG) || (!BM_elem_flag_test(l_curr, BM_ELEM_TAG) && BM_loop_check_cyclic_smooth_fan(l_curr)))) { if (!BM_elem_flag_test(l_curr->e, BM_ELEM_TAG) && !BM_elem_flag_test(l_curr->prev->e, BM_ELEM_TAG)) { const int loop_index = BM_elem_index_get(l_curr); short *clnors = BM_ELEM_CD_GET_VOID_P(l_curr, cd_clnors_offset); BKE_lnor_space_custom_normal_to_data( bm->lnor_spacearr->lspacearr[loop_index], f->no, clnors); } else { BMVert *v_pivot = l_curr->v; UNUSED_VARS_NDEBUG(v_pivot); BMEdge *e_next; const BMEdge *e_org = l_curr->e; BMLoop *lfan_pivot, *lfan_pivot_next; lfan_pivot = l_curr; e_next = lfan_pivot->e; while (true) { lfan_pivot_next = BM_vert_step_fan_loop(lfan_pivot, &e_next); if (lfan_pivot_next) { BLI_assert(lfan_pivot_next->v == v_pivot); } else { e_next = (lfan_pivot->e == e_next) ? lfan_pivot->prev->e : lfan_pivot->e; } float val = 1.0f; if (average_type == EDBM_CLNOR_AVERAGE_FACE_AREA) { val = 1.0f / BM_face_calc_area(lfan_pivot->f); } else if (average_type == EDBM_CLNOR_AVERAGE_ANGLE) { val = 1.0f / BM_loop_calc_face_angle(lfan_pivot); } BLI_heapsimple_insert(loop_weight, val, lfan_pivot); if (!BM_elem_flag_test(e_next, BM_ELEM_TAG) || (e_next == e_org)) { break; } lfan_pivot = lfan_pivot_next; } float wnor[3], avg_normal[3] = {0.0f}, count = 0; float val = BLI_heapsimple_top_value(loop_weight); while (!BLI_heapsimple_is_empty(loop_weight)) { const float cur_val = BLI_heapsimple_top_value(loop_weight); if (!compare_ff(val, cur_val, threshold)) { count++; val = cur_val; } l = BLI_heapsimple_pop_min(loop_weight); BLI_SMALLSTACK_PUSH(loop_stack, l); const float n_weight = pow(weight, count); if (average_type == EDBM_CLNOR_AVERAGE_LOOP) { const int l_index = BM_elem_index_get(l); short *clnors = BM_ELEM_CD_GET_VOID_P(l, cd_clnors_offset); BKE_lnor_space_custom_data_to_normal( bm->lnor_spacearr->lspacearr[l_index], clnors, wnor); } else { copy_v3_v3(wnor, l->f->no); } mul_v3_fl(wnor, (1.0f / cur_val) * (1.0f / n_weight)); add_v3_v3(avg_normal, wnor); } if (normalize_v3(avg_normal) < CLNORS_VALID_VEC_LEN) { /* If avg normal is nearly 0, set clnor to default value. */ zero_v3(avg_normal); } while ((l = BLI_SMALLSTACK_POP(loop_stack))) { const int l_index = BM_elem_index_get(l); short *clnors = BM_ELEM_CD_GET_VOID_P(l, cd_clnors_offset); BKE_lnor_space_custom_normal_to_data( bm->lnor_spacearr->lspacearr[l_index], avg_normal, clnors); } } } } while ((l_curr = l_curr->next) != l_first); } EDBM_update_generic(obedit->data, true, false); } BLI_heapsimple_free(loop_weight, NULL); MEM_freeN(objects); return OPERATOR_FINISHED; } static bool average_normals_draw_check_prop(PointerRNA *ptr, PropertyRNA *prop, void *UNUSED(user_data)) { const char *prop_id = RNA_property_identifier(prop); const int average_type = RNA_enum_get(ptr, "average_type"); /* Only show weight/threshold options in loop average type. */ if (STREQ(prop_id, "weight")) { return (average_type == EDBM_CLNOR_AVERAGE_LOOP); } else if (STREQ(prop_id, "threshold")) { return (average_type == EDBM_CLNOR_AVERAGE_LOOP); } /* Else, show it! */ return true; } static void edbm_average_normals_ui(bContext *C, wmOperator *op) { uiLayout *layout = op->layout; wmWindowManager *wm = CTX_wm_manager(C); PointerRNA ptr; RNA_pointer_create(&wm->id, op->type->srna, op->properties, &ptr); /* Main auto-draw call */ uiDefAutoButsRNA(layout, &ptr, average_normals_draw_check_prop, NULL, NULL, '\0', false); } void MESH_OT_average_normals(struct wmOperatorType *ot) { /* identifiers */ ot->name = "Average Normals"; ot->description = "Average custom normals of selected vertices"; ot->idname = "MESH_OT_average_normals"; /* api callbacks */ ot->exec = edbm_average_normals_exec; ot->poll = ED_operator_editmesh; ot->ui = edbm_average_normals_ui; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; ot->prop = RNA_def_enum(ot->srna, "average_type", average_method_items, EDBM_CLNOR_AVERAGE_LOOP, "Type", "Averaging method"); RNA_def_int(ot->srna, "weight", 50, 1, 100, "Weight", "Weight applied per face", 1, 100); RNA_def_float(ot->srna, "threshold", 0.01f, 0, 10, "Threshold", "Threshold value for different weights to be considered equal", 0, 5); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Custom Normal Interface Tools Operator * \{ */ enum { EDBM_CLNOR_TOOLS_COPY = 1, EDBM_CLNOR_TOOLS_PASTE = 2, EDBM_CLNOR_TOOLS_MULTIPLY = 3, EDBM_CLNOR_TOOLS_ADD = 4, EDBM_CLNOR_TOOLS_RESET = 5, }; static EnumPropertyItem normal_vector_tool_items[] = { {EDBM_CLNOR_TOOLS_COPY, "COPY", 0, "Copy Normal", "Copy normal to buffer"}, {EDBM_CLNOR_TOOLS_PASTE, "PASTE", 0, "Paste Normal", "Paste normal from buffer"}, {EDBM_CLNOR_TOOLS_ADD, "ADD", 0, "Add Normal", "Add normal vector with selection"}, {EDBM_CLNOR_TOOLS_MULTIPLY, "MULTIPLY", 0, "Multiply Normal", "Multiply normal vector with selection"}, {EDBM_CLNOR_TOOLS_RESET, "RESET", 0, "Reset Normal", "Reset buffer and/or normal of selected element"}, {0, NULL, 0, NULL, NULL}, }; static int edbm_normals_tools_exec(bContext *C, wmOperator *op) { Scene *scene = CTX_data_scene(C); ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); const int mode = RNA_enum_get(op->ptr, "mode"); const bool absolute = RNA_boolean_get(op->ptr, "absolute"); float *normal_vector = scene->toolsettings->normal_vector; bool done_copy = false; for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); BMesh *bm = em->bm; if (bm->totloop == 0) { continue; } BKE_editmesh_ensure_autosmooth(em, obedit->data); BKE_editmesh_lnorspace_update(em, obedit->data); BMLoopNorEditDataArray *lnors_ed_arr = BM_loop_normal_editdata_array_init(bm, false); BMLoopNorEditData *lnor_ed = lnors_ed_arr->lnor_editdata; switch (mode) { case EDBM_CLNOR_TOOLS_COPY: if (bm->totfacesel == 0 && bm->totvertsel == 0) { BM_loop_normal_editdata_array_free(lnors_ed_arr); continue; } if (done_copy || (bm->totfacesel != 1 && lnors_ed_arr->totloop != 1 && bm->totvertsel != 1)) { BKE_report(op->reports, RPT_ERROR, "Can only copy one custom normal, vertex normal or face normal"); BM_loop_normal_editdata_array_free(lnors_ed_arr); continue; } if (lnors_ed_arr->totloop == 1) { copy_v3_v3(scene->toolsettings->normal_vector, lnors_ed_arr->lnor_editdata->nloc); } else if (bm->totfacesel == 1) { BMFace *f; BMIter fiter; BM_ITER_MESH (f, &fiter, bm, BM_FACES_OF_MESH) { if (BM_elem_flag_test(f, BM_ELEM_SELECT)) { copy_v3_v3(scene->toolsettings->normal_vector, f->no); } } } else { /* 'Vertex' normal, i.e. common set of loop normals on the same vertex, * only if they are all the same. */ bool are_same_lnors = true; for (int i = 0; i < lnors_ed_arr->totloop; i++, lnor_ed++) { if (!compare_v3v3(lnors_ed_arr->lnor_editdata->nloc, lnor_ed->nloc, 1e-4f)) { are_same_lnors = false; } } if (are_same_lnors) { copy_v3_v3(scene->toolsettings->normal_vector, lnors_ed_arr->lnor_editdata->nloc); } } done_copy = true; break; case EDBM_CLNOR_TOOLS_PASTE: if (!absolute) { if (normalize_v3(normal_vector) < CLNORS_VALID_VEC_LEN) { /* If normal is nearly 0, do nothing. */ break; } } for (int i = 0; i < lnors_ed_arr->totloop; i++, lnor_ed++) { if (absolute) { float abs_normal[3]; copy_v3_v3(abs_normal, lnor_ed->loc); negate_v3(abs_normal); add_v3_v3(abs_normal, normal_vector); if (normalize_v3(abs_normal) < CLNORS_VALID_VEC_LEN) { /* If abs normal is nearly 0, set clnor to initial value. */ copy_v3_v3(abs_normal, lnor_ed->niloc); } BKE_lnor_space_custom_normal_to_data(bm->lnor_spacearr->lspacearr[lnor_ed->loop_index], abs_normal, lnor_ed->clnors_data); } else { BKE_lnor_space_custom_normal_to_data(bm->lnor_spacearr->lspacearr[lnor_ed->loop_index], normal_vector, lnor_ed->clnors_data); } } break; case EDBM_CLNOR_TOOLS_MULTIPLY: for (int i = 0; i < lnors_ed_arr->totloop; i++, lnor_ed++) { mul_v3_v3(lnor_ed->nloc, normal_vector); if (normalize_v3(lnor_ed->nloc) < CLNORS_VALID_VEC_LEN) { /* If abs normal is nearly 0, set clnor to initial value. */ copy_v3_v3(lnor_ed->nloc, lnor_ed->niloc); } BKE_lnor_space_custom_normal_to_data(bm->lnor_spacearr->lspacearr[lnor_ed->loop_index], lnor_ed->nloc, lnor_ed->clnors_data); } break; case EDBM_CLNOR_TOOLS_ADD: for (int i = 0; i < lnors_ed_arr->totloop; i++, lnor_ed++) { add_v3_v3(lnor_ed->nloc, normal_vector); if (normalize_v3(lnor_ed->nloc) < CLNORS_VALID_VEC_LEN) { /* If abs normal is nearly 0, set clnor to initial value. */ copy_v3_v3(lnor_ed->nloc, lnor_ed->niloc); } BKE_lnor_space_custom_normal_to_data(bm->lnor_spacearr->lspacearr[lnor_ed->loop_index], lnor_ed->nloc, lnor_ed->clnors_data); } break; case EDBM_CLNOR_TOOLS_RESET: zero_v3(normal_vector); for (int i = 0; i < lnors_ed_arr->totloop; i++, lnor_ed++) { BKE_lnor_space_custom_normal_to_data(bm->lnor_spacearr->lspacearr[lnor_ed->loop_index], normal_vector, lnor_ed->clnors_data); } break; default: BLI_assert(0); break; } BM_loop_normal_editdata_array_free(lnors_ed_arr); EDBM_update_generic(obedit->data, true, false); } MEM_freeN(objects); return OPERATOR_FINISHED; } static bool normals_tools_draw_check_prop(PointerRNA *ptr, PropertyRNA *prop, void *UNUSED(user_data)) { const char *prop_id = RNA_property_identifier(prop); const int mode = RNA_enum_get(ptr, "mode"); /* Only show absolute option in paste mode. */ if (STREQ(prop_id, "absolute")) { return (mode == EDBM_CLNOR_TOOLS_PASTE); } /* Else, show it! */ return true; } static void edbm_normals_tools_ui(bContext *C, wmOperator *op) { uiLayout *layout = op->layout; wmWindowManager *wm = CTX_wm_manager(C); PointerRNA ptr; RNA_pointer_create(&wm->id, op->type->srna, op->properties, &ptr); /* Main auto-draw call */ uiDefAutoButsRNA(layout, &ptr, normals_tools_draw_check_prop, NULL, NULL, '\0', false); } void MESH_OT_normals_tools(struct wmOperatorType *ot) { /* identifiers */ ot->name = "Normals Vector Tools"; ot->description = "Custom normals tools using Normal Vector of UI"; ot->idname = "MESH_OT_normals_tools"; /* api callbacks */ ot->exec = edbm_normals_tools_exec; ot->poll = ED_operator_editmesh; ot->ui = edbm_normals_tools_ui; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; ot->prop = RNA_def_enum(ot->srna, "mode", normal_vector_tool_items, EDBM_CLNOR_TOOLS_COPY, "Mode", "Mode of tools taking input from Interface"); RNA_def_property_flag(ot->prop, PROP_HIDDEN); RNA_def_boolean(ot->srna, "absolute", false, "Absolute Coordinates", "Copy Absolute coordinates or Normal vector"); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Set Normals from Faces Operator * \{ */ static int edbm_set_normals_from_faces_exec(bContext *C, wmOperator *op) { ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); BMesh *bm = em->bm; BMFace *f; BMVert *v; BMEdge *e; BMLoop *l; BMIter fiter, viter, eiter, liter; const bool keep_sharp = RNA_boolean_get(op->ptr, "keep_sharp"); BKE_editmesh_ensure_autosmooth(em, obedit->data); BKE_editmesh_lnorspace_update(em, obedit->data); float(*vnors)[3] = MEM_callocN(sizeof(*vnors) * bm->totvert, __func__); BM_ITER_MESH (f, &fiter, bm, BM_FACES_OF_MESH) { if (BM_elem_flag_test(f, BM_ELEM_SELECT)) { BM_ITER_ELEM (v, &viter, f, BM_VERTS_OF_FACE) { const int v_index = BM_elem_index_get(v); add_v3_v3(vnors[v_index], f->no); } } } for (int i = 0; i < bm->totvert; i++) { if (!is_zero_v3(vnors[i]) && normalize_v3(vnors[i]) < CLNORS_VALID_VEC_LEN) { zero_v3(vnors[i]); } } BLI_bitmap *loop_set = BLI_BITMAP_NEW(bm->totloop, __func__); const int cd_clnors_offset = CustomData_get_offset(&bm->ldata, CD_CUSTOMLOOPNORMAL); BM_ITER_MESH (f, &fiter, bm, BM_FACES_OF_MESH) { BM_ITER_ELEM (e, &eiter, f, BM_EDGES_OF_FACE) { if (!keep_sharp || (BM_elem_flag_test(e, BM_ELEM_SMOOTH) && BM_elem_flag_test(e, BM_ELEM_SELECT))) { BM_ITER_ELEM (v, &viter, e, BM_VERTS_OF_EDGE) { l = BM_face_vert_share_loop(f, v); const int l_index = BM_elem_index_get(l); const int v_index = BM_elem_index_get(l->v); if (!is_zero_v3(vnors[v_index])) { short *clnors = BM_ELEM_CD_GET_VOID_P(l, cd_clnors_offset); BKE_lnor_space_custom_normal_to_data( bm->lnor_spacearr->lspacearr[l_index], vnors[v_index], clnors); if (bm->lnor_spacearr->lspacearr[l_index]->flags & MLNOR_SPACE_IS_SINGLE) { BLI_BITMAP_ENABLE(loop_set, l_index); } else { LinkNode *loops = bm->lnor_spacearr->lspacearr[l_index]->loops; for (; loops; loops = loops->next) { BLI_BITMAP_ENABLE(loop_set, BM_elem_index_get((BMLoop *)loops->link)); } } } } } } } int v_index; BM_ITER_MESH_INDEX (v, &viter, bm, BM_VERTS_OF_MESH, v_index) { BM_ITER_ELEM (l, &liter, v, BM_LOOPS_OF_VERT) { if (BLI_BITMAP_TEST(loop_set, BM_elem_index_get(l))) { const int loop_index = BM_elem_index_get(l); short *clnors = BM_ELEM_CD_GET_VOID_P(l, cd_clnors_offset); BKE_lnor_space_custom_normal_to_data( bm->lnor_spacearr->lspacearr[loop_index], vnors[v_index], clnors); } } } MEM_freeN(loop_set); MEM_freeN(vnors); EDBM_update_generic(obedit->data, true, false); } MEM_freeN(objects); return OPERATOR_FINISHED; } void MESH_OT_set_normals_from_faces(struct wmOperatorType *ot) { /* identifiers */ ot->name = "Set Normals From Faces"; ot->description = "Set the custom normals from the selected faces ones"; ot->idname = "MESH_OT_set_normals_from_faces"; /* api callbacks */ ot->exec = edbm_set_normals_from_faces_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; RNA_def_boolean(ot->srna, "keep_sharp", 0, "Keep Sharp Edges", "Do not set sharp edges to face"); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Smooth Normal Vectors Operator * \{ */ static int edbm_smooth_normals_exec(bContext *C, wmOperator *op) { ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); BMesh *bm = em->bm; BMFace *f; BMLoop *l; BMIter fiter, liter; BKE_editmesh_ensure_autosmooth(em, obedit->data); BKE_editmesh_lnorspace_update(em, obedit->data); BMLoopNorEditDataArray *lnors_ed_arr = BM_loop_normal_editdata_array_init(bm, false); float(*smooth_normal)[3] = MEM_callocN(sizeof(*smooth_normal) * lnors_ed_arr->totloop, __func__); /* This is weird choice of operation, taking all loops of faces of current vertex. * Could lead to some rather far away loops weighting as much as very close ones * (topologically speaking), with complex polygons. * Using topological distance here (rather than geometrical one) * makes sense imho, but would rather go with a more consistent and flexible code, * we could even add max topological distance to take into account, * and a weighting curve. * Would do that later though, think for now we can live with that choice. --mont29. */ BMLoopNorEditData *lnor_ed = lnors_ed_arr->lnor_editdata; for (int i = 0; i < lnors_ed_arr->totloop; i++, lnor_ed++) { l = lnor_ed->loop; float loop_normal[3]; BM_ITER_ELEM (f, &fiter, l->v, BM_FACES_OF_VERT) { BMLoop *l_other; BM_ITER_ELEM (l_other, &liter, f, BM_LOOPS_OF_FACE) { const int l_index_other = BM_elem_index_get(l_other); short *clnors = BM_ELEM_CD_GET_VOID_P(l_other, lnors_ed_arr->cd_custom_normal_offset); BKE_lnor_space_custom_data_to_normal( bm->lnor_spacearr->lspacearr[l_index_other], clnors, loop_normal); add_v3_v3(smooth_normal[i], loop_normal); } } } const float factor = RNA_float_get(op->ptr, "factor"); lnor_ed = lnors_ed_arr->lnor_editdata; for (int i = 0; i < lnors_ed_arr->totloop; i++, lnor_ed++) { float current_normal[3]; if (normalize_v3(smooth_normal[i]) < CLNORS_VALID_VEC_LEN) { /* Skip in case the smooth normal is invalid. */ continue; } BKE_lnor_space_custom_data_to_normal( bm->lnor_spacearr->lspacearr[lnor_ed->loop_index], lnor_ed->clnors_data, current_normal); /* Note: again, this is not true spherical interpolation that normals would need... * But it's probably good enough for now. */ mul_v3_fl(current_normal, 1.0f - factor); mul_v3_fl(smooth_normal[i], factor); add_v3_v3(current_normal, smooth_normal[i]); if (normalize_v3(current_normal) < CLNORS_VALID_VEC_LEN) { /* Skip in case the smoothed normal is invalid. */ continue; } BKE_lnor_space_custom_normal_to_data( bm->lnor_spacearr->lspacearr[lnor_ed->loop_index], current_normal, lnor_ed->clnors_data); } BM_loop_normal_editdata_array_free(lnors_ed_arr); MEM_freeN(smooth_normal); EDBM_update_generic(obedit->data, true, false); } MEM_freeN(objects); return OPERATOR_FINISHED; } void MESH_OT_smooth_normals(struct wmOperatorType *ot) { /* identifiers */ ot->name = "Smooth Normals Vectors"; ot->description = "Smooth custom normals based on adjacent vertex normals"; ot->idname = "MESH_OT_smooth_normals"; /* api callbacks */ ot->exec = edbm_smooth_normals_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; RNA_def_float(ot->srna, "factor", 0.5f, 0.0f, 1.0f, "Factor", "Specifies weight of smooth vs original normal", 0.0f, 1.0f); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Weighted Normal Modifier Face Strength * \{ */ static int edbm_mod_weighted_strength_exec(bContext *C, wmOperator *op) { ViewLayer *view_layer = CTX_data_view_layer(C); uint objects_len = 0; Object **objects = BKE_view_layer_array_from_objects_in_edit_mode_unique_data( view_layer, CTX_wm_view3d(C), &objects_len); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; BMEditMesh *em = BKE_editmesh_from_object(obedit); BMesh *bm = em->bm; BMFace *f; BMIter fiter; const int face_strength = RNA_enum_get(op->ptr, "face_strength"); const bool set = RNA_boolean_get(op->ptr, "set"); BM_select_history_clear(bm); const char *layer_id = MOD_WEIGHTEDNORMALS_FACEWEIGHT_CDLAYER_ID; int cd_prop_int_index = CustomData_get_named_layer_index(&bm->pdata, CD_PROP_INT32, layer_id); if (cd_prop_int_index == -1) { BM_data_layer_add_named(bm, &bm->pdata, CD_PROP_INT32, layer_id); cd_prop_int_index = CustomData_get_named_layer_index(&bm->pdata, CD_PROP_INT32, layer_id); } cd_prop_int_index -= CustomData_get_layer_index(&bm->pdata, CD_PROP_INT32); const int cd_prop_int_offset = CustomData_get_n_offset( &bm->pdata, CD_PROP_INT32, cd_prop_int_index); BM_mesh_elem_index_ensure(bm, BM_FACE); if (set) { BM_ITER_MESH (f, &fiter, bm, BM_FACES_OF_MESH) { if (BM_elem_flag_test(f, BM_ELEM_SELECT)) { int *strength = BM_ELEM_CD_GET_VOID_P(f, cd_prop_int_offset); *strength = face_strength; } } } else { BM_ITER_MESH (f, &fiter, bm, BM_FACES_OF_MESH) { int *strength = BM_ELEM_CD_GET_VOID_P(f, cd_prop_int_offset); if (*strength == face_strength) { BM_face_select_set(bm, f, true); BM_select_history_store(bm, f); } else { BM_face_select_set(bm, f, false); } } } EDBM_update_generic(obedit->data, false, false); } MEM_freeN(objects); return OPERATOR_FINISHED; } static const EnumPropertyItem prop_mesh_face_strength_types[] = { {FACE_STRENGTH_WEAK, "WEAK", 0, "Weak", ""}, {FACE_STRENGTH_MEDIUM, "MEDIUM", 0, "Medium", ""}, {FACE_STRENGTH_STRONG, "STRONG", 0, "Strong", ""}, {0, NULL, 0, NULL, NULL}, }; void MESH_OT_mod_weighted_strength(struct wmOperatorType *ot) { /* identifiers */ ot->name = "Face Normals Strength"; ot->description = "Set/Get strength of face (used in Weighted Normal modifier)"; ot->idname = "MESH_OT_mod_weighted_strength"; /* api callbacks */ ot->exec = edbm_mod_weighted_strength_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; ot->prop = RNA_def_boolean(ot->srna, "set", 0, "Set value", "Set Value of faces"); ot->prop = RNA_def_enum( ot->srna, "face_strength", prop_mesh_face_strength_types, FACE_STRENGTH_MEDIUM, "Face Strength", "Strength to use for assigning or selecting face influence for weighted normal modifier"); } /** \} */