/* * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2004 by Blender Foundation. * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): Joseph Eagar * * ***** END GPL LICENSE BLOCK ***** */ /** \file blender/editors/mesh/editmesh_tools.c * \ingroup edmesh */ #include #include "MEM_guardedalloc.h" #include "DNA_key_types.h" #include "DNA_material_types.h" #include "DNA_mesh_types.h" #include "DNA_meshdata_types.h" #include "DNA_modifier_types.h" #include "DNA_object_types.h" #include "DNA_scene_types.h" #include "BLI_listbase.h" #include "BLI_noise.h" #include "BLI_math.h" #include "BLI_rand.h" #include "BLI_sort_utils.h" #include "BKE_material.h" #include "BKE_context.h" #include "BKE_depsgraph.h" #include "BKE_report.h" #include "BKE_texture.h" #include "BKE_main.h" #include "BKE_editmesh.h" #include "BLF_translation.h" #include "RNA_define.h" #include "RNA_access.h" #include "RNA_enum_types.h" #include "WM_api.h" #include "WM_types.h" #include "ED_mesh.h" #include "ED_object.h" #include "ED_screen.h" #include "ED_transform.h" #include "ED_uvedit.h" #include "ED_view3d.h" #include "RE_render_ext.h" #include "UI_interface.h" #include "UI_resources.h" #include "mesh_intern.h" /* own include */ #define USE_FACE_CREATE_SEL_EXTEND static int edbm_subdivide_exec(bContext *C, wmOperator *op) { Object *obedit = CTX_data_edit_object(C); BMEditMesh *em = BKE_editmesh_from_object(obedit); const int cuts = RNA_int_get(op->ptr, "number_cuts"); float smooth = 0.292f * RNA_float_get(op->ptr, "smoothness"); const float fractal = RNA_float_get(op->ptr, "fractal") / 2.5f; const float along_normal = RNA_float_get(op->ptr, "fractal_along_normal"); if (RNA_boolean_get(op->ptr, "quadtri") && RNA_enum_get(op->ptr, "quadcorner") == SUBD_STRAIGHT_CUT) { RNA_enum_set(op->ptr, "quadcorner", SUBD_INNERVERT); } BM_mesh_esubdivide(em->bm, BM_ELEM_SELECT, smooth, SUBD_FALLOFF_ROOT, false, fractal, along_normal, cuts, SUBDIV_SELECT_ORIG, RNA_enum_get(op->ptr, "quadcorner"), RNA_boolean_get(op->ptr, "quadtri"), true, false, RNA_int_get(op->ptr, "seed")); EDBM_update_generic(em, true, true); return OPERATOR_FINISHED; } /* Note, these values must match delete_mesh() event values */ static EnumPropertyItem prop_mesh_cornervert_types[] = { {SUBD_INNERVERT, "INNERVERT", 0, "Inner Vert", ""}, {SUBD_PATH, "PATH", 0, "Path", ""}, {SUBD_STRAIGHT_CUT, "STRAIGHT_CUT", 0, "Straight Cut", ""}, {SUBD_FAN, "FAN", 0, "Fan", ""}, {0, NULL, 0, NULL, NULL} }; void MESH_OT_subdivide(wmOperatorType *ot) { PropertyRNA *prop; /* identifiers */ ot->name = "Subdivide"; ot->description = "Subdivide selected edges"; ot->idname = "MESH_OT_subdivide"; /* api callbacks */ ot->exec = edbm_subdivide_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; /* properties */ prop = RNA_def_int(ot->srna, "number_cuts", 1, 1, INT_MAX, "Number of Cuts", "", 1, 10); /* avoid re-using last var because it can cause _very_ high poly meshes and annoy users (or worse crash) */ RNA_def_property_flag(prop, PROP_SKIP_SAVE); RNA_def_float(ot->srna, "smoothness", 0.0f, 0.0f, FLT_MAX, "Smoothness", "Smoothness factor", 0.0f, 1.0f); RNA_def_boolean(ot->srna, "quadtri", 0, "Quad/Tri Mode", "Tries to prevent ngons"); RNA_def_enum(ot->srna, "quadcorner", prop_mesh_cornervert_types, SUBD_STRAIGHT_CUT, "Quad Corner Type", "How to subdivide quad corners (anything other than Straight Cut will prevent ngons)"); RNA_def_float(ot->srna, "fractal", 0.0f, 0.0f, FLT_MAX, "Fractal", "Fractal randomness factor", 0.0f, 1000.0f); RNA_def_float(ot->srna, "fractal_along_normal", 0.0f, 0.0f, 1.0f, "Along Normal", "Apply fractal displacement along normal only", 0.0f, 1.0f); RNA_def_int(ot->srna, "seed", 0, 0, 10000, "Random Seed", "Seed for the random number generator", 0, 50); } /* -------------------------------------------------------------------- */ /* Edge Ring Subdiv * (bridge code shares props) */ struct EdgeRingOpSubdProps { int interp_mode; int cuts; float smooth; int profile_shape; float profile_shape_factor; }; static void mesh_operator_edgering_props(wmOperatorType *ot, const int cuts_default) { /* Note, these values must match delete_mesh() event values */ static EnumPropertyItem prop_subd_edgering_types[] = { {SUBD_RING_INTERP_LINEAR, "LINEAR", 0, "Linear", ""}, {SUBD_RING_INTERP_PATH, "PATH", 0, "Blend Path", ""}, {SUBD_RING_INTERP_SURF, "SURFACE", 0, "Blend Surface", ""}, {0, NULL, 0, NULL, NULL} }; PropertyRNA *prop; prop = RNA_def_int(ot->srna, "number_cuts", cuts_default, 0, INT_MAX, "Number of Cuts", "", 0, 64); RNA_def_property_flag(prop, PROP_SKIP_SAVE); RNA_def_enum(ot->srna, "interpolation", prop_subd_edgering_types, SUBD_RING_INTERP_PATH, "Interpolation", "Interpolation method"); RNA_def_float(ot->srna, "smoothness", 1.0f, 0.0f, FLT_MAX, "Smoothness", "Smoothness factor", 0.0f, 2.0f); /* profile-shape */ RNA_def_float(ot->srna, "profile_shape_factor", 0.0f, -FLT_MAX, FLT_MAX, "Profile Factor", "", -2.0f, 2.0f); prop = RNA_def_property(ot->srna, "profile_shape", PROP_ENUM, PROP_NONE); RNA_def_property_enum_items(prop, proportional_falloff_curve_only_items); RNA_def_property_enum_default(prop, PROP_SMOOTH); RNA_def_property_ui_text(prop, "Profile Shape", "Shape of the profile"); RNA_def_property_translation_context(prop, BLF_I18NCONTEXT_ID_CURVE); /* Abusing id_curve :/ */ } static void mesh_operator_edgering_props_get(wmOperator *op, struct EdgeRingOpSubdProps *op_props) { op_props->interp_mode = RNA_enum_get(op->ptr, "interpolation"); op_props->cuts = RNA_int_get(op->ptr, "number_cuts"); op_props->smooth = RNA_float_get(op->ptr, "smoothness"); op_props->profile_shape = RNA_enum_get(op->ptr, "profile_shape"); op_props->profile_shape_factor = RNA_float_get(op->ptr, "profile_shape_factor"); } static int edbm_subdivide_edge_ring_exec(bContext *C, wmOperator *op) { Object *obedit = CTX_data_edit_object(C); BMEditMesh *em = BKE_editmesh_from_object(obedit); struct EdgeRingOpSubdProps op_props; mesh_operator_edgering_props_get(op, &op_props); if (!EDBM_op_callf(em, op, "subdivide_edgering edges=%he interp_mode=%i cuts=%i smooth=%f " "profile_shape=%i profile_shape_factor=%f", BM_ELEM_SELECT, op_props.interp_mode, op_props.cuts, op_props.smooth, op_props.profile_shape, op_props.profile_shape_factor)) { return OPERATOR_CANCELLED; } EDBM_update_generic(em, true, true); return OPERATOR_FINISHED; } void MESH_OT_subdivide_edgering(wmOperatorType *ot) { /* identifiers */ ot->name = "Subdivide Edge-Ring"; ot->description = ""; ot->idname = "MESH_OT_subdivide_edgering"; /* api callbacks */ ot->exec = edbm_subdivide_edge_ring_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; /* properties */ mesh_operator_edgering_props(ot, 10); } static int edbm_unsubdivide_exec(bContext *C, wmOperator *op) { Object *obedit = CTX_data_edit_object(C); BMEditMesh *em = BKE_editmesh_from_object(obedit); BMOperator bmop; const int iterations = RNA_int_get(op->ptr, "iterations"); EDBM_op_init(em, &bmop, op, "unsubdivide verts=%hv iterations=%i", BM_ELEM_SELECT, iterations); BMO_op_exec(em->bm, &bmop); if (!EDBM_op_finish(em, &bmop, op, true)) { return 0; } if ((em->selectmode & SCE_SELECT_VERTEX) == 0) { EDBM_selectmode_flush_ex(em, SCE_SELECT_VERTEX); /* need to flush vert->face first */ } EDBM_selectmode_flush(em); EDBM_update_generic(em, true, true); return OPERATOR_FINISHED; } void MESH_OT_unsubdivide(wmOperatorType *ot) { /* identifiers */ ot->name = "Un-Subdivide"; ot->description = "UnSubdivide selected edges & faces"; ot->idname = "MESH_OT_unsubdivide"; /* api callbacks */ ot->exec = edbm_unsubdivide_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; /* props */ RNA_def_int(ot->srna, "iterations", 2, 1, INT_MAX, "Iterations", "Number of times to unsubdivide", 1, 100); } void EMBM_project_snap_verts(bContext *C, ARegion *ar, BMEditMesh *em) { Object *obedit = em->ob; BMIter iter; BMVert *eve; ED_view3d_init_mats_rv3d(obedit, ar->regiondata); BM_ITER_MESH (eve, &iter, em->bm, BM_VERTS_OF_MESH) { if (BM_elem_flag_test(eve, BM_ELEM_SELECT)) { float mval[2], co_proj[3], no_dummy[3]; float dist_px_dummy; if (ED_view3d_project_float_object(ar, eve->co, mval, V3D_PROJ_TEST_NOP) == V3D_PROJ_RET_OK) { if (snapObjectsContext(C, mval, &dist_px_dummy, co_proj, no_dummy, SNAP_NOT_OBEDIT)) { mul_v3_m4v3(eve->co, obedit->imat, co_proj); } } } } } /* Note, these values must match delete_mesh() event values */ static EnumPropertyItem prop_mesh_delete_types[] = { {0, "VERT", 0, "Vertices", ""}, {1, "EDGE", 0, "Edges", ""}, {2, "FACE", 0, "Faces", ""}, {3, "EDGE_FACE", 0, "Only Edges & Faces", ""}, {4, "ONLY_FACE", 0, "Only Faces", ""}, {0, NULL, 0, NULL, NULL} }; static int edbm_delete_exec(bContext *C, wmOperator *op) { Object *obedit = CTX_data_edit_object(C); BMEditMesh *em = BKE_editmesh_from_object(obedit); const int type = RNA_enum_get(op->ptr, "type"); if (type == 0) { if (!EDBM_op_callf(em, op, "delete geom=%hv context=%i", BM_ELEM_SELECT, DEL_VERTS)) /* Erase Vertices */ return OPERATOR_CANCELLED; } else if (type == 1) { if (!EDBM_op_callf(em, op, "delete geom=%he context=%i", BM_ELEM_SELECT, DEL_EDGES)) /* Erase Edges */ return OPERATOR_CANCELLED; } else if (type == 2) { if (!EDBM_op_callf(em, op, "delete geom=%hf context=%i", BM_ELEM_SELECT, DEL_FACES)) /* Erase Faces */ return OPERATOR_CANCELLED; } else if (type == 3) { if (!EDBM_op_callf(em, op, "delete geom=%hef context=%i", BM_ELEM_SELECT, DEL_EDGESFACES)) /* Edges and Faces */ return OPERATOR_CANCELLED; } else if (type == 4) { //"Erase Only Faces"; if (!EDBM_op_callf(em, op, "delete geom=%hf context=%i", BM_ELEM_SELECT, DEL_ONLYFACES)) { return OPERATOR_CANCELLED; } } EDBM_flag_disable_all(em, BM_ELEM_SELECT); EDBM_update_generic(em, true, true); return OPERATOR_FINISHED; } void MESH_OT_delete(wmOperatorType *ot) { /* identifiers */ ot->name = "Delete"; ot->description = "Delete selected vertices, edges or faces"; ot->idname = "MESH_OT_delete"; /* api callbacks */ ot->invoke = WM_menu_invoke; ot->exec = edbm_delete_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; /* props */ ot->prop = RNA_def_enum(ot->srna, "type", prop_mesh_delete_types, 0, "Type", "Method used for deleting mesh data"); } static int edbm_collapse_edge_exec(bContext *C, wmOperator *op) { Object *obedit = CTX_data_edit_object(C); BMEditMesh *em = BKE_editmesh_from_object(obedit); if (!EDBM_op_callf(em, op, "collapse edges=%he", BM_ELEM_SELECT)) return OPERATOR_CANCELLED; EDBM_update_generic(em, true, true); return OPERATOR_FINISHED; } void MESH_OT_edge_collapse(wmOperatorType *ot) { /* identifiers */ ot->name = "Edge Collapse"; ot->description = "Collapse selected edges"; ot->idname = "MESH_OT_edge_collapse"; /* api callbacks */ ot->exec = edbm_collapse_edge_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; } static int edbm_add_edge_face__smooth_get(BMesh *bm) { BMEdge *e; BMIter iter; unsigned int vote_on_smooth[2] = {0, 0}; BM_ITER_MESH (e, &iter, bm, BM_EDGES_OF_MESH) { if (BM_elem_flag_test(e, BM_ELEM_SELECT) && e->l) { vote_on_smooth[BM_elem_flag_test_bool(e->l->f, BM_ELEM_SMOOTH)]++; } } return (vote_on_smooth[0] < vote_on_smooth[1]); } #ifdef USE_FACE_CREATE_SEL_EXTEND /** * Function used to get a fixed number of edges linked to a vertex that passes a test function. * This is used so we can request all boundary edges connected to a vertex for eg. */ static int edbm_add_edge_face_exec__vert_edge_lookup( BMVert *v, BMEdge *e_used, BMEdge **e_arr, const int e_arr_len, bool (* func)(const BMEdge *)) { BMIter iter; BMEdge *e_iter; int i = 0; BM_ITER_ELEM (e_iter, &iter, v, BM_EDGES_OF_VERT) { if (BM_elem_flag_test(e_iter, BM_ELEM_HIDDEN) == false) { if ((e_used == NULL) || (e_used != e_iter)) { if (func(e_iter)) { e_arr[i++] = e_iter; if (i >= e_arr_len) { break; } } } } } return i; } static BMElem *edbm_add_edge_face_exec__tricky_extend_sel(BMesh *bm) { BMIter iter; bool found = false; if (bm->totvertsel == 1 && bm->totedgesel == 0 && bm->totfacesel == 0) { /* first look for 2 boundary edges */ BMVert *v; BM_ITER_MESH (v, &iter, bm, BM_VERTS_OF_MESH) { if (BM_elem_flag_test(v, BM_ELEM_SELECT)) { found = true; break; } } if (found) { BMEdge *ed_pair[3]; if ( ((edbm_add_edge_face_exec__vert_edge_lookup(v, NULL, ed_pair, 3, BM_edge_is_wire) == 2) && (BM_edge_share_face_check(ed_pair[0], ed_pair[1]) == false)) || ((edbm_add_edge_face_exec__vert_edge_lookup(v, NULL, ed_pair, 3, BM_edge_is_boundary) == 2) && (BM_edge_share_face_check(ed_pair[0], ed_pair[1]) == false)) ) { BMEdge *e_other = BM_edge_exists(BM_edge_other_vert(ed_pair[0], v), BM_edge_other_vert(ed_pair[1], v)); BM_edge_select_set(bm, ed_pair[0], true); BM_edge_select_set(bm, ed_pair[1], true); if (e_other) { BM_edge_select_set(bm, e_other, true); } return (BMElem *)v; } } } else if (bm->totvertsel == 2 && bm->totedgesel == 1 && bm->totfacesel == 0) { /* first look for 2 boundary edges */ BMEdge *e; BM_ITER_MESH (e, &iter, bm, BM_EDGES_OF_MESH) { if (BM_elem_flag_test(e, BM_ELEM_SELECT)) { found = true; break; } } if (found) { BMEdge *ed_pair_v1[2]; BMEdge *ed_pair_v2[2]; if ( ((edbm_add_edge_face_exec__vert_edge_lookup(e->v1, e, ed_pair_v1, 2, BM_edge_is_wire) == 1) && (edbm_add_edge_face_exec__vert_edge_lookup(e->v2, e, ed_pair_v2, 2, BM_edge_is_wire) == 1) && (BM_edge_share_face_check(e, ed_pair_v1[0]) == false) && (BM_edge_share_face_check(e, ed_pair_v2[0]) == false)) || ((edbm_add_edge_face_exec__vert_edge_lookup(e->v1, e, ed_pair_v1, 2, BM_edge_is_boundary) == 1) && (edbm_add_edge_face_exec__vert_edge_lookup(e->v2, e, ed_pair_v2, 2, BM_edge_is_boundary) == 1) && (BM_edge_share_face_check(e, ed_pair_v1[0]) == false) && (BM_edge_share_face_check(e, ed_pair_v2[0]) == false)) ) { BMVert *v1_other = BM_edge_other_vert(ed_pair_v1[0], e->v1); BMVert *v2_other = BM_edge_other_vert(ed_pair_v2[0], e->v2); BMEdge *e_other = (v1_other != v2_other) ? BM_edge_exists(v1_other, v2_other) : NULL; BM_edge_select_set(bm, ed_pair_v1[0], true); BM_edge_select_set(bm, ed_pair_v2[0], true); if (e_other) { BM_edge_select_set(bm, e_other, true); } return (BMElem *)e; } } } return NULL; } static void edbm_add_edge_face_exec__tricky_finalize_sel(BMesh *bm, BMElem *ele_desel, BMFace *f) { /* now we need to find the edge that isnt connected to this element */ BM_select_history_clear(bm); if (ele_desel->head.htype == BM_VERT) { BMLoop *l = BM_face_vert_share_loop(f, (BMVert *)ele_desel); BLI_assert(f->len == 3); BM_face_select_set(bm, f, false); BM_vert_select_set(bm, (BMVert *)ele_desel, false); BM_edge_select_set(bm, l->next->e, true); BM_select_history_store(bm, l->next->e); } else { BMLoop *l = BM_face_edge_share_loop(f, (BMEdge *)ele_desel); BLI_assert(f->len == 4 || f->len == 3); BM_face_select_set(bm, f, false); BM_edge_select_set(bm, (BMEdge *)ele_desel, false); if (f->len == 4) { BM_edge_select_set(bm, l->next->next->e, true); BM_select_history_store(bm, l->next->next->e); } else { BM_vert_select_set(bm, l->next->next->v, true); BM_select_history_store(bm, l->next->next->v); } } } #endif /* USE_FACE_CREATE_SEL_EXTEND */ static int edbm_add_edge_face_exec(bContext *C, wmOperator *op) { BMOperator bmop; Object *obedit = CTX_data_edit_object(C); BMEditMesh *em = BKE_editmesh_from_object(obedit); const short use_smooth = edbm_add_edge_face__smooth_get(em->bm); const int totedge_orig = em->bm->totedge; const int totface_orig = em->bm->totface; /* when this is used to dissolve we could avoid this, but checking isnt too slow */ #ifdef USE_FACE_CREATE_SEL_EXTEND BMElem *ele_desel; BMFace *ele_desel_face; /* be extra clever, figure out if a partial selection should be extended so we can create geometry * with single vert or single edge selection */ ele_desel = edbm_add_edge_face_exec__tricky_extend_sel(em->bm); #endif if (!EDBM_op_init(em, &bmop, op, "contextual_create geom=%hfev mat_nr=%i use_smooth=%b", BM_ELEM_SELECT, em->mat_nr, use_smooth)) { return OPERATOR_CANCELLED; } BMO_op_exec(em->bm, &bmop); /* cancel if nothing was done */ if ((totedge_orig == em->bm->totedge) && (totface_orig == em->bm->totface)) { EDBM_op_finish(em, &bmop, op, true); return OPERATOR_CANCELLED; } #ifdef USE_FACE_CREATE_SEL_EXTEND /* normally we would want to leave the new geometry selected, * but being able to press F many times to add geometry is too useful! */ if (ele_desel && (BMO_slot_buffer_count(bmop.slots_out, "faces.out") == 1) && (ele_desel_face = BMO_slot_buffer_get_first(bmop.slots_out, "faces.out"))) { edbm_add_edge_face_exec__tricky_finalize_sel(em->bm, ele_desel, ele_desel_face); } else #endif { BMO_slot_buffer_hflag_enable(em->bm, bmop.slots_out, "faces.out", BM_FACE, BM_ELEM_SELECT, true); BMO_slot_buffer_hflag_enable(em->bm, bmop.slots_out, "edges.out", BM_EDGE, BM_ELEM_SELECT, true); } if (!EDBM_op_finish(em, &bmop, op, true)) { return OPERATOR_CANCELLED; } EDBM_update_generic(em, true, true); return OPERATOR_FINISHED; } void MESH_OT_edge_face_add(wmOperatorType *ot) { /* identifiers */ ot->name = "Make Edge/Face"; ot->description = "Add an edge or face to selected"; ot->idname = "MESH_OT_edge_face_add"; /* api callbacks */ ot->exec = edbm_add_edge_face_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; } /* ************************* SEAMS AND EDGES **************** */ static int edbm_mark_seam_exec(bContext *C, wmOperator *op) { Scene *scene = CTX_data_scene(C); Object *obedit = CTX_data_edit_object(C); Mesh *me = ((Mesh *)obedit->data); BMEditMesh *em = BKE_editmesh_from_object(obedit); BMesh *bm = em->bm; BMEdge *eed; BMIter iter; const bool clear = RNA_boolean_get(op->ptr, "clear"); /* auto-enable seams drawing */ if (clear == 0) { me->drawflag |= ME_DRAWSEAMS; } if (clear) { BM_ITER_MESH (eed, &iter, bm, BM_EDGES_OF_MESH) { if (!BM_elem_flag_test(eed, BM_ELEM_SELECT) || BM_elem_flag_test(eed, BM_ELEM_HIDDEN)) continue; BM_elem_flag_disable(eed, BM_ELEM_SEAM); } } else { BM_ITER_MESH (eed, &iter, bm, BM_EDGES_OF_MESH) { if (!BM_elem_flag_test(eed, BM_ELEM_SELECT) || BM_elem_flag_test(eed, BM_ELEM_HIDDEN)) continue; BM_elem_flag_enable(eed, BM_ELEM_SEAM); } } ED_uvedit_live_unwrap(scene, obedit); EDBM_update_generic(em, true, false); return OPERATOR_FINISHED; } void MESH_OT_mark_seam(wmOperatorType *ot) { /* identifiers */ ot->name = "Mark Seam"; ot->idname = "MESH_OT_mark_seam"; ot->description = "(Un)mark selected edges as a seam"; /* api callbacks */ ot->exec = edbm_mark_seam_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; RNA_def_boolean(ot->srna, "clear", 0, "Clear", ""); } static int edbm_mark_sharp_exec(bContext *C, wmOperator *op) { Object *obedit = CTX_data_edit_object(C); Mesh *me = ((Mesh *)obedit->data); BMEditMesh *em = BKE_editmesh_from_object(obedit); BMesh *bm = em->bm; BMEdge *eed; BMIter iter; const bool clear = RNA_boolean_get(op->ptr, "clear"); /* auto-enable sharp edge drawing */ if (clear == 0) { me->drawflag |= ME_DRAWSHARP; } if (!clear) { BM_ITER_MESH (eed, &iter, bm, BM_EDGES_OF_MESH) { if (!BM_elem_flag_test(eed, BM_ELEM_SELECT) || BM_elem_flag_test(eed, BM_ELEM_HIDDEN)) continue; BM_elem_flag_disable(eed, BM_ELEM_SMOOTH); } } else { BM_ITER_MESH (eed, &iter, bm, BM_EDGES_OF_MESH) { if (!BM_elem_flag_test(eed, BM_ELEM_SELECT) || BM_elem_flag_test(eed, BM_ELEM_HIDDEN)) continue; BM_elem_flag_enable(eed, BM_ELEM_SMOOTH); } } EDBM_update_generic(em, true, false); return OPERATOR_FINISHED; } void MESH_OT_mark_sharp(wmOperatorType *ot) { /* identifiers */ ot->name = "Mark Sharp"; ot->idname = "MESH_OT_mark_sharp"; ot->description = "(Un)mark selected edges as sharp"; /* api callbacks */ ot->exec = edbm_mark_sharp_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; RNA_def_boolean(ot->srna, "clear", 0, "Clear", ""); } static int edbm_vert_connect_exec(bContext *C, wmOperator *op) { Object *obedit = CTX_data_edit_object(C); BMEditMesh *em = BKE_editmesh_from_object(obedit); BMesh *bm = em->bm; BMOperator bmop; const bool is_pair = (bm->totvertsel == 2); int len; if (is_pair) { if (!EDBM_op_init(em, &bmop, op, "connect_vert_pair verts=%hv", BM_ELEM_SELECT)) { return OPERATOR_CANCELLED; } } else { if (!EDBM_op_init(em, &bmop, op, "connect_verts verts=%hv", BM_ELEM_SELECT)) { return OPERATOR_CANCELLED; } } BMO_op_exec(bm, &bmop); len = BMO_slot_get(bmop.slots_out, "edges.out")->len; if (len) { if (is_pair) { /* new verts have been added, we have to select the edges, not just flush */ BMO_slot_buffer_hflag_enable(em->bm, bmop.slots_out, "edges.out", BM_EDGE, BM_ELEM_SELECT, true); } } if (!EDBM_op_finish(em, &bmop, op, true)) { return OPERATOR_CANCELLED; } else { EDBM_selectmode_flush(em); /* so newly created edges get the selection state from the vertex */ EDBM_update_generic(em, true, true); return len ? OPERATOR_FINISHED : OPERATOR_CANCELLED; } } void MESH_OT_vert_connect(wmOperatorType *ot) { /* identifiers */ ot->name = "Vertex Connect"; ot->idname = "MESH_OT_vert_connect"; ot->description = "Connect 2 vertices of a face by an edge, splitting the face in two"; /* api callbacks */ ot->exec = edbm_vert_connect_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; } static int edbm_vert_connect_nonplaner_exec(bContext *C, wmOperator *op) { Object *obedit = CTX_data_edit_object(C); BMEditMesh *em = BKE_editmesh_from_object(obedit); const float angle_limit = RNA_float_get(op->ptr, "angle_limit"); if (!EDBM_op_call_and_selectf( em, op, "faces.out", true, "connect_verts_nonplanar faces=%hf angle_limit=%f", BM_ELEM_SELECT, angle_limit)) { return OPERATOR_CANCELLED; } EDBM_update_generic(em, true, true); return OPERATOR_FINISHED; } void MESH_OT_vert_connect_nonplanar(wmOperatorType *ot) { PropertyRNA *prop; /* identifiers */ ot->name = "Split Non-Planar Faces"; ot->idname = "MESH_OT_vert_connect_nonplanar"; ot->description = "Split non-planar faces that exceed the angle threshold"; /* api callbacks */ ot->exec = edbm_vert_connect_nonplaner_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; /* props */ prop = RNA_def_float_rotation(ot->srna, "angle_limit", 0, NULL, 0.0f, DEG2RADF(180.0f), "Max Angle", "Angle limit", 0.0f, DEG2RADF(180.0f)); RNA_def_property_float_default(prop, DEG2RADF(5.0f)); } static int edbm_edge_split_exec(bContext *C, wmOperator *op) { Object *obedit = CTX_data_edit_object(C); BMEditMesh *em = BKE_editmesh_from_object(obedit); if (!EDBM_op_call_and_selectf( em, op, "edges.out", false, "split_edges edges=%he", BM_ELEM_SELECT)) { return OPERATOR_CANCELLED; } if (em->selectmode == SCE_SELECT_FACE) { EDBM_select_flush(em); } EDBM_update_generic(em, true, true); return OPERATOR_FINISHED; } void MESH_OT_edge_split(wmOperatorType *ot) { /* identifiers */ ot->name = "Edge Split"; ot->idname = "MESH_OT_edge_split"; ot->description = "Split selected edges so that each neighbor face gets its own copy"; /* api callbacks */ ot->exec = edbm_edge_split_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; } /****************** add duplicate operator ***************/ static int edbm_duplicate_exec(bContext *C, wmOperator *op) { Object *ob = CTX_data_edit_object(C); BMEditMesh *em = BKE_editmesh_from_object(ob); BMesh *bm = em->bm; BMOperator bmop; ListBase bm_selected_store = {NULL, NULL}; /* de-select all would clear otherwise */ SWAP(ListBase, bm->selected, bm_selected_store); EDBM_op_init(em, &bmop, op, "duplicate geom=%hvef", BM_ELEM_SELECT); BMO_op_exec(bm, &bmop); EDBM_flag_disable_all(em, BM_ELEM_SELECT); BMO_slot_buffer_hflag_enable(bm, bmop.slots_out, "geom.out", BM_ALL_NOLOOP, BM_ELEM_SELECT, true); /* rebuild editselection */ bm->selected = bm_selected_store; if (bm->selected.first) { BMOpSlot *slot_vert_map_out = BMO_slot_get(bmop.slots_out, "vert_map.out"); BMOpSlot *slot_edge_map_out = BMO_slot_get(bmop.slots_out, "edge_map.out"); BMOpSlot *slot_face_map_out = BMO_slot_get(bmop.slots_out, "face_map.out"); BMO_mesh_selected_remap(bm, slot_vert_map_out, slot_edge_map_out, slot_face_map_out); } if (!EDBM_op_finish(em, &bmop, op, true)) { return OPERATOR_CANCELLED; } EDBM_update_generic(em, true, true); return OPERATOR_FINISHED; } static int edbm_duplicate_invoke(bContext *C, wmOperator *op, const wmEvent *UNUSED(event)) { WM_cursor_wait(1); edbm_duplicate_exec(C, op); WM_cursor_wait(0); return OPERATOR_FINISHED; } void MESH_OT_duplicate(wmOperatorType *ot) { /* identifiers */ ot->name = "Duplicate"; ot->description = "Duplicate selected vertices, edges or faces"; ot->idname = "MESH_OT_duplicate"; /* api callbacks */ ot->invoke = edbm_duplicate_invoke; ot->exec = edbm_duplicate_exec; ot->poll = ED_operator_editmesh; /* to give to transform */ RNA_def_int(ot->srna, "mode", TFM_TRANSLATION, 0, INT_MAX, "Mode", "", 0, INT_MAX); } static int edbm_flip_normals_exec(bContext *C, wmOperator *op) { Object *obedit = CTX_data_edit_object(C); BMEditMesh *em = BKE_editmesh_from_object(obedit); if (!EDBM_op_callf(em, op, "reverse_faces faces=%hf", BM_ELEM_SELECT)) return OPERATOR_CANCELLED; EDBM_update_generic(em, true, false); return OPERATOR_FINISHED; } void MESH_OT_flip_normals(wmOperatorType *ot) { /* identifiers */ ot->name = "Flip Normals"; ot->description = "Flip the direction of selected faces' normals (and of their vertices)"; ot->idname = "MESH_OT_flip_normals"; /* api callbacks */ ot->exec = edbm_flip_normals_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; } /* only accepts 1 selected edge, or 2 selected faces */ static int edbm_edge_rotate_selected_exec(bContext *C, wmOperator *op) { Object *obedit = CTX_data_edit_object(C); BMEditMesh *em = BKE_editmesh_from_object(obedit); BMOperator bmop; BMEdge *eed; BMIter iter; const bool use_ccw = RNA_boolean_get(op->ptr, "use_ccw"); int tot = 0; if (em->bm->totedgesel == 0) { BKE_report(op->reports, RPT_ERROR, "Select edges or face pairs for edge loops to rotate about"); return OPERATOR_CANCELLED; } /* first see if we have two adjacent faces */ BM_ITER_MESH (eed, &iter, em->bm, BM_EDGES_OF_MESH) { BM_elem_flag_disable(eed, BM_ELEM_TAG); if (BM_elem_flag_test(eed, BM_ELEM_SELECT)) { BMFace *fa, *fb; if (BM_edge_face_pair(eed, &fa, &fb)) { /* if both faces are selected we rotate between them, * otherwise - rotate between 2 unselected - but not mixed */ if (BM_elem_flag_test(fa, BM_ELEM_SELECT) == BM_elem_flag_test(fb, BM_ELEM_SELECT)) { BM_elem_flag_enable(eed, BM_ELEM_TAG); tot++; } } } } /* ok, we don't have two adjacent faces, but we do have two selected ones. * that's an error condition.*/ if (tot == 0) { BKE_report(op->reports, RPT_ERROR, "Could not find any selected edges that can be rotated"); return OPERATOR_CANCELLED; } EDBM_op_init(em, &bmop, op, "rotate_edges edges=%he use_ccw=%b", BM_ELEM_TAG, use_ccw); /* avoids leaving old verts selected which can be a problem running multiple times, * since this means the edges become selected around the face which then attempt to rotate */ BMO_slot_buffer_hflag_disable(em->bm, bmop.slots_in, "edges", BM_EDGE, BM_ELEM_SELECT, true); BMO_op_exec(em->bm, &bmop); /* edges may rotate into hidden vertices, if this does _not_ run we get an ilogical state */ BMO_slot_buffer_hflag_disable(em->bm, bmop.slots_out, "edges.out", BM_EDGE, BM_ELEM_HIDDEN, true); BMO_slot_buffer_hflag_enable(em->bm, bmop.slots_out, "edges.out", BM_EDGE, BM_ELEM_SELECT, true); EDBM_selectmode_flush(em); if (!EDBM_op_finish(em, &bmop, op, true)) { return OPERATOR_CANCELLED; } EDBM_update_generic(em, true, true); return OPERATOR_FINISHED; } void MESH_OT_edge_rotate(wmOperatorType *ot) { /* identifiers */ ot->name = "Rotate Selected Edge"; ot->description = "Rotate selected edge or adjoining faces"; ot->idname = "MESH_OT_edge_rotate"; /* api callbacks */ ot->exec = edbm_edge_rotate_selected_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; /* props */ RNA_def_boolean(ot->srna, "use_ccw", false, "Counter Clockwise", ""); } static int edbm_hide_exec(bContext *C, wmOperator *op) { Object *obedit = CTX_data_edit_object(C); BMEditMesh *em = BKE_editmesh_from_object(obedit); EDBM_mesh_hide(em, RNA_boolean_get(op->ptr, "unselected")); EDBM_update_generic(em, true, false); return OPERATOR_FINISHED; } void MESH_OT_hide(wmOperatorType *ot) { /* identifiers */ ot->name = "Hide Selection"; ot->idname = "MESH_OT_hide"; ot->description = "Hide (un)selected vertices, edges or faces"; /* api callbacks */ ot->exec = edbm_hide_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; /* props */ RNA_def_boolean(ot->srna, "unselected", 0, "Unselected", "Hide unselected rather than selected"); } static int edbm_reveal_exec(bContext *C, wmOperator *UNUSED(op)) { Object *obedit = CTX_data_edit_object(C); BMEditMesh *em = BKE_editmesh_from_object(obedit); EDBM_mesh_reveal(em); EDBM_update_generic(em, true, false); return OPERATOR_FINISHED; } void MESH_OT_reveal(wmOperatorType *ot) { /* identifiers */ ot->name = "Reveal Hidden"; ot->idname = "MESH_OT_reveal"; ot->description = "Reveal all hidden vertices, edges and faces"; /* api callbacks */ ot->exec = edbm_reveal_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; } static int edbm_normals_make_consistent_exec(bContext *C, wmOperator *op) { Object *obedit = CTX_data_edit_object(C); BMEditMesh *em = BKE_editmesh_from_object(obedit); /* doflip has to do with bmesh_rationalize_normals, it's an internal * thing */ if (!EDBM_op_callf(em, op, "recalc_face_normals faces=%hf", BM_ELEM_SELECT)) return OPERATOR_CANCELLED; if (RNA_boolean_get(op->ptr, "inside")) EDBM_op_callf(em, op, "reverse_faces faces=%hf", BM_ELEM_SELECT); EDBM_update_generic(em, true, false); return OPERATOR_FINISHED; } void MESH_OT_normals_make_consistent(wmOperatorType *ot) { /* identifiers */ ot->name = "Make Normals Consistent"; ot->description = "Make face and vertex normals point either outside or inside the mesh"; ot->idname = "MESH_OT_normals_make_consistent"; /* api callbacks */ ot->exec = edbm_normals_make_consistent_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; RNA_def_boolean(ot->srna, "inside", 0, "Inside", ""); } static int edbm_do_smooth_vertex_exec(bContext *C, wmOperator *op) { Object *obedit = CTX_data_edit_object(C); Mesh *me = obedit->data; BMEditMesh *em = BKE_editmesh_from_object(obedit); ModifierData *md; int mirrx = false, mirry = false, mirrz = false; int i, repeat; float clip_dist = 0.0f; bool use_topology = (me->editflag & ME_EDIT_MIRROR_TOPO) != 0; const bool xaxis = RNA_boolean_get(op->ptr, "xaxis"); const bool yaxis = RNA_boolean_get(op->ptr, "yaxis"); const bool zaxis = RNA_boolean_get(op->ptr, "zaxis"); /* mirror before smooth */ if (((Mesh *)obedit->data)->editflag & ME_EDIT_MIRROR_X) { EDBM_verts_mirror_cache_begin(em, 0, false, true, use_topology); } /* if there is a mirror modifier with clipping, flag the verts that * are within tolerance of the plane(s) of reflection */ for (md = obedit->modifiers.first; md; md = md->next) { if (md->type == eModifierType_Mirror && (md->mode & eModifierMode_Realtime)) { MirrorModifierData *mmd = (MirrorModifierData *)md; if (mmd->flag & MOD_MIR_CLIPPING) { if (mmd->flag & MOD_MIR_AXIS_X) mirrx = true; if (mmd->flag & MOD_MIR_AXIS_Y) mirry = true; if (mmd->flag & MOD_MIR_AXIS_Z) mirrz = true; clip_dist = mmd->tolerance; } } } repeat = RNA_int_get(op->ptr, "repeat"); if (!repeat) repeat = 1; for (i = 0; i < repeat; i++) { if (!EDBM_op_callf(em, op, "smooth_vert verts=%hv mirror_clip_x=%b mirror_clip_y=%b mirror_clip_z=%b clip_dist=%f " "use_axis_x=%b use_axis_y=%b use_axis_z=%b", BM_ELEM_SELECT, mirrx, mirry, mirrz, clip_dist, xaxis, yaxis, zaxis)) { return OPERATOR_CANCELLED; } } /* apply mirror */ if (((Mesh *)obedit->data)->editflag & ME_EDIT_MIRROR_X) { EDBM_verts_mirror_apply(em, BM_ELEM_SELECT, 0); EDBM_verts_mirror_cache_end(em); } EDBM_update_generic(em, true, false); return OPERATOR_FINISHED; } void MESH_OT_vertices_smooth(wmOperatorType *ot) { /* identifiers */ ot->name = "Smooth Vertex"; ot->description = "Flatten angles of selected vertices"; ot->idname = "MESH_OT_vertices_smooth"; /* api callbacks */ ot->exec = edbm_do_smooth_vertex_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; RNA_def_int(ot->srna, "repeat", 1, 1, 1000, "Number of times to smooth the mesh", "", 1, 100); RNA_def_boolean(ot->srna, "xaxis", 1, "X-Axis", "Smooth along the X axis"); RNA_def_boolean(ot->srna, "yaxis", 1, "Y-Axis", "Smooth along the Y axis"); RNA_def_boolean(ot->srna, "zaxis", 1, "Z-Axis", "Smooth along the Z axis"); } static int edbm_do_smooth_laplacian_vertex_exec(bContext *C, wmOperator *op) { Object *obedit = CTX_data_edit_object(C); BMEditMesh *em = BKE_editmesh_from_object(obedit); Mesh *me = obedit->data; bool use_topology = (me->editflag & ME_EDIT_MIRROR_TOPO) != 0; int usex = true, usey = true, usez = true, preserve_volume = true; int i, repeat; float lambda_factor; float lambda_border; BMIter fiter; BMFace *f; /* Check if select faces are triangles */ BM_ITER_MESH (f, &fiter, em->bm, BM_FACES_OF_MESH) { if (BM_elem_flag_test(f, BM_ELEM_SELECT)) { if (f->len > 4) { BKE_report(op->reports, RPT_WARNING, "Selected faces must be triangles or quads"); return OPERATOR_CANCELLED; } } } /* mirror before smooth */ if (((Mesh *)obedit->data)->editflag & ME_EDIT_MIRROR_X) { EDBM_verts_mirror_cache_begin(em, 0, false, true, use_topology); } repeat = RNA_int_get(op->ptr, "repeat"); lambda_factor = RNA_float_get(op->ptr, "lambda_factor"); lambda_border = RNA_float_get(op->ptr, "lambda_border"); usex = RNA_boolean_get(op->ptr, "use_x"); usey = RNA_boolean_get(op->ptr, "use_y"); usez = RNA_boolean_get(op->ptr, "use_z"); preserve_volume = RNA_boolean_get(op->ptr, "preserve_volume"); if (!repeat) repeat = 1; for (i = 0; i < repeat; i++) { if (!EDBM_op_callf(em, op, "smooth_laplacian_vert verts=%hv lambda_factor=%f lambda_border=%f use_x=%b use_y=%b use_z=%b preserve_volume=%b", BM_ELEM_SELECT, lambda_factor, lambda_border, usex, usey, usez, preserve_volume)) { return OPERATOR_CANCELLED; } } /* apply mirror */ if (((Mesh *)obedit->data)->editflag & ME_EDIT_MIRROR_X) { EDBM_verts_mirror_apply(em, BM_ELEM_SELECT, 0); EDBM_verts_mirror_cache_end(em); } EDBM_update_generic(em, true, false); return OPERATOR_FINISHED; } void MESH_OT_vertices_smooth_laplacian(wmOperatorType *ot) { /* identifiers */ ot->name = "Laplacian Smooth Vertex"; ot->description = "Laplacian smooth of selected vertices"; ot->idname = "MESH_OT_vertices_smooth_laplacian"; /* api callbacks */ ot->exec = edbm_do_smooth_laplacian_vertex_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; RNA_def_int(ot->srna, "repeat", 1, 1, 200, "Number of iterations to smooth the mesh", "", 1, 200); RNA_def_float(ot->srna, "lambda_factor", 0.00005f, 0.0000001f, 1000.0f, "Lambda factor", "", 0.0000001f, 1000.0f); RNA_def_float(ot->srna, "lambda_border", 0.00005f, 0.0000001f, 1000.0f, "Lambda factor in border", "", 0.0000001f, 1000.0f); RNA_def_boolean(ot->srna, "use_x", 1, "Smooth X Axis", "Smooth object along X axis"); RNA_def_boolean(ot->srna, "use_y", 1, "Smooth Y Axis", "Smooth object along Y axis"); RNA_def_boolean(ot->srna, "use_z", 1, "Smooth Z Axis", "Smooth object along Z axis"); RNA_def_boolean(ot->srna, "preserve_volume", 1, "Preserve Volume", "Apply volume preservation after smooth"); } /********************** Smooth/Solid Operators *************************/ static void mesh_set_smooth_faces(BMEditMesh *em, short smooth) { BMIter iter; BMFace *efa; if (em == NULL) return; BM_ITER_MESH (efa, &iter, em->bm, BM_FACES_OF_MESH) { if (BM_elem_flag_test(efa, BM_ELEM_SELECT)) { BM_elem_flag_set(efa, BM_ELEM_SMOOTH, smooth); } } } static int edbm_faces_shade_smooth_exec(bContext *C, wmOperator *UNUSED(op)) { Object *obedit = CTX_data_edit_object(C); BMEditMesh *em = BKE_editmesh_from_object(obedit); mesh_set_smooth_faces(em, 1); EDBM_update_generic(em, false, false); return OPERATOR_FINISHED; } void MESH_OT_faces_shade_smooth(wmOperatorType *ot) { /* identifiers */ ot->name = "Shade Smooth"; ot->description = "Display faces smooth (using vertex normals)"; ot->idname = "MESH_OT_faces_shade_smooth"; /* api callbacks */ ot->exec = edbm_faces_shade_smooth_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; } static int edbm_faces_shade_flat_exec(bContext *C, wmOperator *UNUSED(op)) { Object *obedit = CTX_data_edit_object(C); BMEditMesh *em = BKE_editmesh_from_object(obedit); mesh_set_smooth_faces(em, 0); EDBM_update_generic(em, false, false); return OPERATOR_FINISHED; } void MESH_OT_faces_shade_flat(wmOperatorType *ot) { /* identifiers */ ot->name = "Shade Flat"; ot->description = "Display faces flat"; ot->idname = "MESH_OT_faces_shade_flat"; /* api callbacks */ ot->exec = edbm_faces_shade_flat_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; } /********************** UV/Color Operators *************************/ static int edbm_rotate_uvs_exec(bContext *C, wmOperator *op) { Object *ob = CTX_data_edit_object(C); BMEditMesh *em = BKE_editmesh_from_object(ob); BMOperator bmop; /* get the direction from RNA */ const bool use_ccw = RNA_boolean_get(op->ptr, "use_ccw"); /* initialize the bmop using EDBM api, which does various ui error reporting and other stuff */ EDBM_op_init(em, &bmop, op, "rotate_uvs faces=%hf use_ccw=%b", BM_ELEM_SELECT, use_ccw); /* execute the operator */ BMO_op_exec(em->bm, &bmop); /* finish the operator */ if (!EDBM_op_finish(em, &bmop, op, true)) { return OPERATOR_CANCELLED; } EDBM_update_generic(em, false, false); return OPERATOR_FINISHED; } static int edbm_reverse_uvs_exec(bContext *C, wmOperator *op) { Object *ob = CTX_data_edit_object(C); BMEditMesh *em = BKE_editmesh_from_object(ob); BMOperator bmop; /* initialize the bmop using EDBM api, which does various ui error reporting and other stuff */ EDBM_op_init(em, &bmop, op, "reverse_uvs faces=%hf", BM_ELEM_SELECT); /* execute the operator */ BMO_op_exec(em->bm, &bmop); /* finish the operator */ if (!EDBM_op_finish(em, &bmop, op, true)) { return OPERATOR_CANCELLED; } EDBM_update_generic(em, false, false); return OPERATOR_FINISHED; } static int edbm_rotate_colors_exec(bContext *C, wmOperator *op) { Object *ob = CTX_data_edit_object(C); BMEditMesh *em = BKE_editmesh_from_object(ob); BMOperator bmop; /* get the direction from RNA */ const bool use_ccw = RNA_boolean_get(op->ptr, "use_ccw"); /* initialize the bmop using EDBM api, which does various ui error reporting and other stuff */ EDBM_op_init(em, &bmop, op, "rotate_colors faces=%hf use_ccw=%b", BM_ELEM_SELECT, use_ccw); /* execute the operator */ BMO_op_exec(em->bm, &bmop); /* finish the operator */ if (!EDBM_op_finish(em, &bmop, op, true)) { return OPERATOR_CANCELLED; } /* dependencies graph and notification stuff */ EDBM_update_generic(em, false, false); return OPERATOR_FINISHED; } static int edbm_reverse_colors_exec(bContext *C, wmOperator *op) { Object *ob = CTX_data_edit_object(C); BMEditMesh *em = BKE_editmesh_from_object(ob); BMOperator bmop; /* initialize the bmop using EDBM api, which does various ui error reporting and other stuff */ EDBM_op_init(em, &bmop, op, "reverse_colors faces=%hf", BM_ELEM_SELECT); /* execute the operator */ BMO_op_exec(em->bm, &bmop); /* finish the operator */ if (!EDBM_op_finish(em, &bmop, op, true)) { return OPERATOR_CANCELLED; } EDBM_update_generic(em, false, false); return OPERATOR_FINISHED; } void MESH_OT_uvs_rotate(wmOperatorType *ot) { /* identifiers */ ot->name = "Rotate UVs"; ot->idname = "MESH_OT_uvs_rotate"; ot->description = "Rotate UV coordinates inside faces"; /* api callbacks */ ot->exec = edbm_rotate_uvs_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; /* props */ RNA_def_boolean(ot->srna, "use_ccw", false, "Counter Clockwise", ""); } void MESH_OT_uvs_reverse(wmOperatorType *ot) { /* identifiers */ ot->name = "Reverse UVs"; ot->idname = "MESH_OT_uvs_reverse"; ot->description = "Flip direction of UV coordinates inside faces"; /* api callbacks */ ot->exec = edbm_reverse_uvs_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; /* props */ //RNA_def_enum(ot->srna, "axis", axis_items, DIRECTION_CW, "Axis", "Axis to mirror UVs around"); } void MESH_OT_colors_rotate(wmOperatorType *ot) { /* identifiers */ ot->name = "Rotate Colors"; ot->idname = "MESH_OT_colors_rotate"; ot->description = "Rotate vertex colors inside faces"; /* api callbacks */ ot->exec = edbm_rotate_colors_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; /* props */ RNA_def_boolean(ot->srna, "use_ccw", false, "Counter Clockwise", ""); } void MESH_OT_colors_reverse(wmOperatorType *ot) { /* identifiers */ ot->name = "Reverse Colors"; ot->idname = "MESH_OT_colors_reverse"; ot->description = "Flip direction of vertex colors inside faces"; /* api callbacks */ ot->exec = edbm_reverse_colors_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; /* props */ //RNA_def_enum(ot->srna, "axis", axis_items, DIRECTION_CW, "Axis", "Axis to mirror colors around"); } static bool merge_firstlast(BMEditMesh *em, const bool use_first, const bool use_uvmerge, wmOperator *wmop) { BMVert *mergevert; BMEditSelection *ese; /* operator could be called directly from shortcut or python, * so do extra check for data here */ /* do sanity check in mergemenu in edit.c ?*/ if (use_first == false) { if (!em->bm->selected.last || ((BMEditSelection *)em->bm->selected.last)->htype != BM_VERT) return false; ese = em->bm->selected.last; mergevert = (BMVert *)ese->ele; } else { if (!em->bm->selected.first || ((BMEditSelection *)em->bm->selected.first)->htype != BM_VERT) return false; ese = em->bm->selected.first; mergevert = (BMVert *)ese->ele; } if (!BM_elem_flag_test(mergevert, BM_ELEM_SELECT)) return false; if (use_uvmerge) { if (!EDBM_op_callf(em, wmop, "pointmerge_facedata verts=%hv vert_snap=%e", BM_ELEM_SELECT, mergevert)) return false; } if (!EDBM_op_callf(em, wmop, "pointmerge verts=%hv merge_co=%v", BM_ELEM_SELECT, mergevert->co)) return false; return true; } static bool merge_target(BMEditMesh *em, Scene *scene, View3D *v3d, Object *ob, const bool use_cursor, const bool use_uvmerge, wmOperator *wmop) { BMIter iter; BMVert *v; float co[3], cent[3] = {0.0f, 0.0f, 0.0f}; const float *vco = NULL; if (use_cursor) { vco = give_cursor(scene, v3d); copy_v3_v3(co, vco); mul_m4_v3(ob->imat, co); } else { float fac; int i = 0; BM_ITER_MESH (v, &iter, em->bm, BM_VERTS_OF_MESH) { if (!BM_elem_flag_test(v, BM_ELEM_SELECT)) continue; add_v3_v3(cent, v->co); i++; } if (!i) return false; fac = 1.0f / (float)i; mul_v3_fl(cent, fac); copy_v3_v3(co, cent); vco = co; } if (!vco) return false; if (use_uvmerge) { if (!EDBM_op_callf(em, wmop, "average_vert_facedata verts=%hv", BM_ELEM_SELECT)) return false; } if (!EDBM_op_callf(em, wmop, "pointmerge verts=%hv merge_co=%v", BM_ELEM_SELECT, co)) return false; return true; } static int edbm_merge_exec(bContext *C, wmOperator *op) { Scene *scene = CTX_data_scene(C); View3D *v3d = CTX_wm_view3d(C); Object *obedit = CTX_data_edit_object(C); BMEditMesh *em = BKE_editmesh_from_object(obedit); const int type = RNA_enum_get(op->ptr, "type"); const bool uvs = RNA_boolean_get(op->ptr, "uvs"); bool ok = false; switch (type) { case 3: ok = merge_target(em, scene, v3d, obedit, false, uvs, op); break; case 4: ok = merge_target(em, scene, v3d, obedit, true, uvs, op); break; case 1: ok = merge_firstlast(em, false, uvs, op); break; case 6: ok = merge_firstlast(em, true, uvs, op); break; case 5: ok = true; if (!EDBM_op_callf(em, op, "collapse edges=%he", BM_ELEM_SELECT)) ok = false; break; default: BLI_assert(0); break; } if (!ok) { return OPERATOR_CANCELLED; } EDBM_update_generic(em, true, true); return OPERATOR_FINISHED; } static EnumPropertyItem merge_type_items[] = { {6, "FIRST", 0, "At First", ""}, {1, "LAST", 0, "At Last", ""}, {3, "CENTER", 0, "At Center", ""}, {4, "CURSOR", 0, "At Cursor", ""}, {5, "COLLAPSE", 0, "Collapse", ""}, {0, NULL, 0, NULL, NULL} }; static EnumPropertyItem *merge_type_itemf(bContext *C, PointerRNA *UNUSED(ptr), PropertyRNA *UNUSED(prop), int *free) { Object *obedit; EnumPropertyItem *item = NULL; int totitem = 0; if (!C) /* needed for docs */ return merge_type_items; obedit = CTX_data_edit_object(C); if (obedit && obedit->type == OB_MESH) { BMEditMesh *em = BKE_editmesh_from_object(obedit); if (em->selectmode & SCE_SELECT_VERTEX) { if (em->bm->selected.first && em->bm->selected.last && ((BMEditSelection *)em->bm->selected.first)->htype == BM_VERT && ((BMEditSelection *)em->bm->selected.last)->htype == BM_VERT) { RNA_enum_items_add_value(&item, &totitem, merge_type_items, 6); RNA_enum_items_add_value(&item, &totitem, merge_type_items, 1); } else if (em->bm->selected.first && ((BMEditSelection *)em->bm->selected.first)->htype == BM_VERT) { RNA_enum_items_add_value(&item, &totitem, merge_type_items, 6); } else if (em->bm->selected.last && ((BMEditSelection *)em->bm->selected.last)->htype == BM_VERT) { RNA_enum_items_add_value(&item, &totitem, merge_type_items, 1); } } RNA_enum_items_add_value(&item, &totitem, merge_type_items, 3); RNA_enum_items_add_value(&item, &totitem, merge_type_items, 4); RNA_enum_items_add_value(&item, &totitem, merge_type_items, 5); RNA_enum_item_end(&item, &totitem); *free = 1; return item; } return NULL; } void MESH_OT_merge(wmOperatorType *ot) { /* identifiers */ ot->name = "Merge"; ot->description = "Merge selected vertices"; ot->idname = "MESH_OT_merge"; /* api callbacks */ ot->exec = edbm_merge_exec; ot->invoke = WM_menu_invoke; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; /* properties */ ot->prop = RNA_def_enum(ot->srna, "type", merge_type_items, 3, "Type", "Merge method to use"); RNA_def_enum_funcs(ot->prop, merge_type_itemf); RNA_def_boolean(ot->srna, "uvs", 0, "UVs", "Move UVs according to merge"); } static int edbm_remove_doubles_exec(bContext *C, wmOperator *op) { Object *obedit = CTX_data_edit_object(C); BMEditMesh *em = BKE_editmesh_from_object(obedit); BMOperator bmop; const float threshold = RNA_float_get(op->ptr, "threshold"); const bool use_unselected = RNA_boolean_get(op->ptr, "use_unselected"); const int totvert_orig = em->bm->totvert; int count; if (use_unselected) { EDBM_op_init(em, &bmop, op, "automerge verts=%hv dist=%f", BM_ELEM_SELECT, threshold); BMO_op_exec(em->bm, &bmop); if (!EDBM_op_finish(em, &bmop, op, true)) { return OPERATOR_CANCELLED; } } else { EDBM_op_init(em, &bmop, op, "find_doubles verts=%hv dist=%f", BM_ELEM_SELECT, threshold); BMO_op_exec(em->bm, &bmop); if (!EDBM_op_callf(em, op, "weld_verts targetmap=%S", &bmop, "targetmap.out")) { BMO_op_finish(em->bm, &bmop); return OPERATOR_CANCELLED; } if (!EDBM_op_finish(em, &bmop, op, true)) { return OPERATOR_CANCELLED; } } count = totvert_orig - em->bm->totvert; BKE_reportf(op->reports, RPT_INFO, "Removed %d vertices", count); EDBM_update_generic(em, true, true); return OPERATOR_FINISHED; } void MESH_OT_remove_doubles(wmOperatorType *ot) { /* identifiers */ ot->name = "Remove Doubles"; ot->description = "Remove duplicate vertices"; ot->idname = "MESH_OT_remove_doubles"; /* api callbacks */ ot->exec = edbm_remove_doubles_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; RNA_def_float(ot->srna, "threshold", 0.0001f, 0.000001f, 50.0f, "Merge Distance", "Minimum distance between elements to merge", 0.00001, 10.0); RNA_def_boolean(ot->srna, "use_unselected", 0, "Unselected", "Merge selected to other unselected vertices"); } /************************ Shape Operators *************************/ /* BMESH_TODO this should be properly encapsulated in a bmop. but later.*/ static void shape_propagate(BMEditMesh *em, wmOperator *op) { BMIter iter; BMVert *eve = NULL; float *co; int i, totshape = CustomData_number_of_layers(&em->bm->vdata, CD_SHAPEKEY); if (!CustomData_has_layer(&em->bm->vdata, CD_SHAPEKEY)) { BKE_report(op->reports, RPT_ERROR, "Mesh does not have shape keys"); return; } BM_ITER_MESH (eve, &iter, em->bm, BM_VERTS_OF_MESH) { if (!BM_elem_flag_test(eve, BM_ELEM_SELECT) || BM_elem_flag_test(eve, BM_ELEM_HIDDEN)) continue; for (i = 0; i < totshape; i++) { co = CustomData_bmesh_get_n(&em->bm->vdata, eve->head.data, CD_SHAPEKEY, i); copy_v3_v3(co, eve->co); } } #if 0 //TAG Mesh Objects that share this data for (base = scene->base.first; base; base = base->next) { if (base->object && base->object->data == me) { DAG_id_tag_update(&base->object->id, OB_RECALC_DATA); } } #endif } static int edbm_shape_propagate_to_all_exec(bContext *C, wmOperator *op) { Object *obedit = CTX_data_edit_object(C); Mesh *me = obedit->data; BMEditMesh *em = me->edit_btmesh; shape_propagate(em, op); EDBM_update_generic(em, false, false); return OPERATOR_FINISHED; } void MESH_OT_shape_propagate_to_all(wmOperatorType *ot) { /* identifiers */ ot->name = "Shape Propagate"; ot->description = "Apply selected vertex locations to all other shape keys"; ot->idname = "MESH_OT_shape_propagate_to_all"; /* api callbacks */ ot->exec = edbm_shape_propagate_to_all_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; } /* BMESH_TODO this should be properly encapsulated in a bmop. but later.*/ static int edbm_blend_from_shape_exec(bContext *C, wmOperator *op) { Object *obedit = CTX_data_edit_object(C); Mesh *me = obedit->data; Key *key = me->key; KeyBlock *kb = NULL; BMEditMesh *em = me->edit_btmesh; BMVert *eve; BMIter iter; float co[3], *sco; int totshape; const float blend = RNA_float_get(op->ptr, "blend"); const int shape = RNA_enum_get(op->ptr, "shape"); const bool use_add = RNA_boolean_get(op->ptr, "add"); /* sanity check */ totshape = CustomData_number_of_layers(&em->bm->vdata, CD_SHAPEKEY); if (totshape == 0 || shape < 0 || shape >= totshape) return OPERATOR_CANCELLED; /* get shape key - needed for finding reference shape (for add mode only) */ if (key) { kb = BLI_findlink(&key->block, shape); } /* perform blending on selected vertices*/ BM_ITER_MESH (eve, &iter, em->bm, BM_VERTS_OF_MESH) { if (!BM_elem_flag_test(eve, BM_ELEM_SELECT) || BM_elem_flag_test(eve, BM_ELEM_HIDDEN)) continue; /* get coordinates of shapekey we're blending from */ sco = CustomData_bmesh_get_n(&em->bm->vdata, eve->head.data, CD_SHAPEKEY, shape); copy_v3_v3(co, sco); if (use_add) { /* in add mode, we add relative shape key offset */ if (kb) { float *rco = CustomData_bmesh_get_n(&em->bm->vdata, eve->head.data, CD_SHAPEKEY, kb->relative); sub_v3_v3v3(co, co, rco); } madd_v3_v3fl(eve->co, co, blend); } else { /* in blend mode, we interpolate to the shape key */ interp_v3_v3v3(eve->co, eve->co, co, blend); } } EDBM_update_generic(em, true, false); return OPERATOR_FINISHED; } static EnumPropertyItem *shape_itemf(bContext *C, PointerRNA *UNUSED(ptr), PropertyRNA *UNUSED(prop), int *free) { Object *obedit = CTX_data_edit_object(C); BMEditMesh *em; EnumPropertyItem *item = NULL; int totitem = 0; if ((obedit && obedit->type == OB_MESH) && (em = BKE_editmesh_from_object(obedit)) && CustomData_has_layer(&em->bm->vdata, CD_SHAPEKEY)) { EnumPropertyItem tmp = {0, "", 0, "", ""}; int a; for (a = 0; a < em->bm->vdata.totlayer; a++) { if (em->bm->vdata.layers[a].type != CD_SHAPEKEY) continue; tmp.value = totitem; tmp.identifier = em->bm->vdata.layers[a].name; tmp.name = em->bm->vdata.layers[a].name; /* RNA_enum_item_add sets totitem itself! */ RNA_enum_item_add(&item, &totitem, &tmp); } } RNA_enum_item_end(&item, &totitem); *free = 1; return item; } static void edbm_blend_from_shape_ui(bContext *C, wmOperator *op) { uiLayout *layout = op->layout; PointerRNA ptr; Object *obedit = CTX_data_edit_object(C); Mesh *me = obedit->data; PointerRNA ptr_key; RNA_pointer_create(NULL, op->type->srna, op->properties, &ptr); RNA_id_pointer_create((ID *)me->key, &ptr_key); uiItemPointerR(layout, &ptr, "shape", &ptr_key, "key_blocks", "", ICON_SHAPEKEY_DATA); uiItemR(layout, &ptr, "blend", 0, NULL, ICON_NONE); uiItemR(layout, &ptr, "add", 0, NULL, ICON_NONE); } void MESH_OT_blend_from_shape(wmOperatorType *ot) { PropertyRNA *prop; /* identifiers */ ot->name = "Blend From Shape"; ot->description = "Blend in shape from a shape key"; ot->idname = "MESH_OT_blend_from_shape"; /* api callbacks */ ot->exec = edbm_blend_from_shape_exec; // ot->invoke = WM_operator_props_popup_call; /* disable because search popup closes too easily */ ot->ui = edbm_blend_from_shape_ui; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; /* properties */ prop = RNA_def_enum(ot->srna, "shape", DummyRNA_NULL_items, 0, "Shape", "Shape key to use for blending"); RNA_def_enum_funcs(prop, shape_itemf); RNA_def_float(ot->srna, "blend", 1.0f, -FLT_MAX, FLT_MAX, "Blend", "Blending factor", -2.0f, 2.0f); RNA_def_boolean(ot->srna, "add", 1, "Add", "Add rather than blend between shapes"); } static int edbm_solidify_exec(bContext *C, wmOperator *op) { Object *obedit = CTX_data_edit_object(C); Mesh *me = obedit->data; BMEditMesh *em = me->edit_btmesh; BMesh *bm = em->bm; BMOperator bmop; const float thickness = RNA_float_get(op->ptr, "thickness"); if (!EDBM_op_init(em, &bmop, op, "solidify geom=%hf thickness=%f", BM_ELEM_SELECT, thickness)) { return OPERATOR_CANCELLED; } /* deselect only the faces in the region to be solidified (leave wire * edges and loose verts selected, as there will be no corresponding * geometry selected below) */ BMO_slot_buffer_hflag_disable(bm, bmop.slots_in, "geom", BM_FACE, BM_ELEM_SELECT, true); /* run the solidify operator */ BMO_op_exec(bm, &bmop); /* select the newly generated faces */ BMO_slot_buffer_hflag_enable(bm, bmop.slots_out, "geom.out", BM_FACE, BM_ELEM_SELECT, true); if (!EDBM_op_finish(em, &bmop, op, true)) { return OPERATOR_CANCELLED; } EDBM_update_generic(em, true, true); return OPERATOR_FINISHED; } void MESH_OT_solidify(wmOperatorType *ot) { PropertyRNA *prop; /* identifiers */ ot->name = "Solidify"; ot->description = "Create a solid skin by extruding, compensating for sharp angles"; ot->idname = "MESH_OT_solidify"; /* api callbacks */ ot->exec = edbm_solidify_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; prop = RNA_def_float(ot->srna, "thickness", 0.01f, -FLT_MAX, FLT_MAX, "thickness", "", -10.0f, 10.0f); RNA_def_property_ui_range(prop, -10, 10, 0.1, 4); } /* ******************************************************************** */ /* Knife Subdivide Tool. Subdivides edges intersected by a mouse trail * drawn by user. * * Currently mapped to KKey when in MeshEdit mode. * Usage: * - Hit Shift K, Select Centers or Exact * - Hold LMB down to draw path, hit RETKEY. * - ESC cancels as expected. * * Contributed by Robert Wenzlaff (Det. Thorn). * * 2.5 Revamp: * - non modal (no menu before cutting) * - exit on mouse release * - polygon/segment drawing can become handled by WM cb later * * bmesh port version */ #define KNIFE_EXACT 1 #define KNIFE_MIDPOINT 2 #define KNIFE_MULTICUT 3 static EnumPropertyItem knife_items[] = { {KNIFE_EXACT, "EXACT", 0, "Exact", ""}, {KNIFE_MIDPOINT, "MIDPOINTS", 0, "Midpoints", ""}, {KNIFE_MULTICUT, "MULTICUT", 0, "Multicut", ""}, {0, NULL, 0, NULL, NULL} }; /* bm_edge_seg_isect() Determines if and where a mouse trail intersects an BMEdge */ static float bm_edge_seg_isect(const float sco_a[2], const float sco_b[2], float (*mouse_path)[2], int len, char mode, int *isected) { #define MAXSLOPE 100000 float x11, y11, x12 = 0, y12 = 0, x2max, x2min, y2max; float y2min, dist, lastdist = 0, xdiff2, xdiff1; float m1, b1, m2, b2, x21, x22, y21, y22, xi; float yi, x1min, x1max, y1max, y1min, perc = 0; float threshold = 0.0; int i; //threshold = 0.000001; /* tolerance for vertex intersection */ // XXX threshold = scene->toolsettings->select_thresh / 100; /* Get screen coords of verts */ x21 = sco_a[0]; y21 = sco_a[1]; x22 = sco_b[0]; y22 = sco_b[1]; xdiff2 = (x22 - x21); if (xdiff2) { m2 = (y22 - y21) / xdiff2; b2 = ((x22 * y21) - (x21 * y22)) / xdiff2; } else { m2 = MAXSLOPE; /* Verticle slope */ b2 = x22; } *isected = 0; /* check for _exact_ vertex intersection first */ if (mode != KNIFE_MULTICUT) { for (i = 0; i < len; i++) { if (i > 0) { x11 = x12; y11 = y12; } else { x11 = mouse_path[i][0]; y11 = mouse_path[i][1]; } x12 = mouse_path[i][0]; y12 = mouse_path[i][1]; /* test e->v1 */ if ((x11 == x21 && y11 == y21) || (x12 == x21 && y12 == y21)) { perc = 0; *isected = 1; return perc; } /* test e->v2 */ else if ((x11 == x22 && y11 == y22) || (x12 == x22 && y12 == y22)) { perc = 0; *isected = 2; return perc; } } } /* now check for edge intersect (may produce vertex intersection as well) */ for (i = 0; i < len; i++) { if (i > 0) { x11 = x12; y11 = y12; } else { x11 = mouse_path[i][0]; y11 = mouse_path[i][1]; } x12 = mouse_path[i][0]; y12 = mouse_path[i][1]; /* Perp. Distance from point to line */ if (m2 != MAXSLOPE) dist = (y12 - m2 * x12 - b2); /* /sqrt(m2 * m2 + 1); Only looking for */ /* change in sign. Skip extra math */ else dist = x22 - x12; if (i == 0) lastdist = dist; /* if dist changes sign, and intersect point in edge's Bound Box */ if ((lastdist * dist) <= 0) { xdiff1 = (x12 - x11); /* Equation of line between last 2 points */ if (xdiff1) { m1 = (y12 - y11) / xdiff1; b1 = ((x12 * y11) - (x11 * y12)) / xdiff1; } else { m1 = MAXSLOPE; b1 = x12; } x2max = max_ff(x21, x22) + 0.001f; /* prevent missed edges */ x2min = min_ff(x21, x22) - 0.001f; /* due to round off error */ y2max = max_ff(y21, y22) + 0.001f; y2min = min_ff(y21, y22) - 0.001f; /* Found an intersect, calc intersect point */ if (m1 == m2) { /* co-incident lines */ /* cut at 50% of overlap area */ x1max = max_ff(x11, x12); x1min = min_ff(x11, x12); xi = (min_ff(x2max, x1max) + max_ff(x2min, x1min)) / 2.0f; y1max = max_ff(y11, y12); y1min = min_ff(y11, y12); yi = (min_ff(y2max, y1max) + max_ff(y2min, y1min)) / 2.0f; } else if (m2 == MAXSLOPE) { xi = x22; yi = m1 * x22 + b1; } else if (m1 == MAXSLOPE) { xi = x12; yi = m2 * x12 + b2; } else { xi = (b1 - b2) / (m2 - m1); yi = (b1 * m2 - m1 * b2) / (m2 - m1); } /* Intersect inside bounding box of edge?*/ if ((xi >= x2min) && (xi <= x2max) && (yi <= y2max) && (yi >= y2min)) { /* test for vertex intersect that may be 'close enough'*/ if (mode != KNIFE_MULTICUT) { if (xi <= (x21 + threshold) && xi >= (x21 - threshold)) { if (yi <= (y21 + threshold) && yi >= (y21 - threshold)) { *isected = 1; perc = 0; break; } } if (xi <= (x22 + threshold) && xi >= (x22 - threshold)) { if (yi <= (y22 + threshold) && yi >= (y22 - threshold)) { *isected = 2; perc = 0; break; } } } if ((m2 <= 1.0f) && (m2 >= -1.0f)) perc = (xi - x21) / (x22 - x21); else perc = (yi - y21) / (y22 - y21); /* lower slope more accurate */ //isect = 32768.0 * (perc + 0.0000153); /* Percentage in 1 / 32768ths */ break; } } lastdist = dist; } return perc; } #define ELE_EDGE_CUT 1 static int edbm_knife_cut_exec(bContext *C, wmOperator *op) { Object *obedit = CTX_data_edit_object(C); BMEditMesh *em = BKE_editmesh_from_object(obedit); BMesh *bm = em->bm; ARegion *ar = CTX_wm_region(C); BMVert *bv; BMIter iter; BMEdge *be; BMOperator bmop; float isect = 0.0f; int len = 0, isected, i; short numcuts = 1; const short mode = RNA_int_get(op->ptr, "type"); BMOpSlot *slot_edge_percents; /* allocd vars */ float (*screen_vert_coords)[2], (*sco)[2], (*mouse_path)[2]; /* edit-object needed for matrix, and ar->regiondata for projections to work */ if (ELEM3(NULL, obedit, ar, ar->regiondata)) return OPERATOR_CANCELLED; if (bm->totvertsel < 2) { BKE_report(op->reports, RPT_ERROR, "No edges are selected to operate on"); return OPERATOR_CANCELLED; } len = RNA_collection_length(op->ptr, "path"); if (len < 2) { BKE_report(op->reports, RPT_ERROR, "Mouse path too short"); return OPERATOR_CANCELLED; } mouse_path = MEM_mallocN(len * sizeof(*mouse_path), __func__); /* get the cut curve */ RNA_BEGIN (op->ptr, itemptr, "path") { RNA_float_get_array(&itemptr, "loc", (float *)&mouse_path[len]); } RNA_END; /* for ED_view3d_project_float_object */ ED_view3d_init_mats_rv3d(obedit, ar->regiondata); /* TODO, investigate using index lookup for screen_vert_coords() rather then a hash table */ /* the floating point coordinates of verts in screen space will be stored in a hash table according to the vertices pointer */ screen_vert_coords = sco = MEM_mallocN(bm->totvert * sizeof(float) * 2, __func__); BM_ITER_MESH_INDEX (bv, &iter, bm, BM_VERTS_OF_MESH, i) { if (ED_view3d_project_float_object(ar, bv->co, *sco, V3D_PROJ_TEST_CLIP_NEAR) != V3D_PROJ_RET_OK) { copy_v2_fl(*sco, FLT_MAX); /* set error value */ } BM_elem_index_set(bv, i); /* set_ok */ sco++; } bm->elem_index_dirty &= ~BM_VERT; /* clear dirty flag */ if (!EDBM_op_init(em, &bmop, op, "subdivide_edges")) { MEM_freeN(mouse_path); MEM_freeN(screen_vert_coords); return OPERATOR_CANCELLED; } /* store percentage of edge cut for KNIFE_EXACT here.*/ slot_edge_percents = BMO_slot_get(bmop.slots_in, "edge_percents"); BM_ITER_MESH (be, &iter, bm, BM_EDGES_OF_MESH) { bool is_cut = false; if (BM_elem_flag_test(be, BM_ELEM_SELECT)) { const float *sco_a = screen_vert_coords[BM_elem_index_get(be->v1)]; const float *sco_b = screen_vert_coords[BM_elem_index_get(be->v2)]; /* check for error value (vert cant be projected) */ if ((sco_a[0] != FLT_MAX) && (sco_b[0] != FLT_MAX)) { isect = bm_edge_seg_isect(sco_a, sco_b, mouse_path, len, mode, &isected); if (isect != 0.0f) { if (mode != KNIFE_MULTICUT && mode != KNIFE_MIDPOINT) { BMO_slot_map_float_insert(&bmop, slot_edge_percents, be, isect); } } } } BMO_elem_flag_set(bm, be, ELE_EDGE_CUT, is_cut); } /* free all allocs */ MEM_freeN(screen_vert_coords); MEM_freeN(mouse_path); BMO_slot_buffer_from_enabled_flag(bm, &bmop, bmop.slots_in, "edges", BM_EDGE, ELE_EDGE_CUT); if (mode == KNIFE_MIDPOINT) numcuts = 1; BMO_slot_int_set(bmop.slots_in, "cuts", numcuts); BMO_slot_int_set(bmop.slots_in, "quad_corner_type", SUBD_STRAIGHT_CUT); BMO_slot_bool_set(bmop.slots_in, "use_single_edge", false); BMO_slot_bool_set(bmop.slots_in, "use_grid_fill", false); BMO_slot_float_set(bmop.slots_in, "radius", 0); BMO_op_exec(bm, &bmop); if (!EDBM_op_finish(em, &bmop, op, true)) { return OPERATOR_CANCELLED; } EDBM_update_generic(em, true, true); return OPERATOR_FINISHED; } #undef ELE_EDGE_CUT void MESH_OT_knife_cut(wmOperatorType *ot) { PropertyRNA *prop; ot->name = "Knife Cut"; ot->description = "Cut selected edges and faces into parts"; ot->idname = "MESH_OT_knife_cut"; ot->invoke = WM_gesture_lines_invoke; ot->modal = WM_gesture_lines_modal; ot->exec = edbm_knife_cut_exec; ot->poll = EDBM_view3d_poll; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; RNA_def_enum(ot->srna, "type", knife_items, KNIFE_EXACT, "Type", ""); prop = RNA_def_property(ot->srna, "path", PROP_COLLECTION, PROP_NONE); RNA_def_property_struct_runtime(prop, &RNA_OperatorMousePath); /* internal */ RNA_def_int(ot->srna, "cursor", BC_KNIFECURSOR, 0, INT_MAX, "Cursor", "", 0, INT_MAX); } static Base *mesh_separate_tagged(Main *bmain, Scene *scene, Base *base_old, BMesh *bm_old) { Base *base_new; Object *obedit = base_old->object; BMesh *bm_new; bm_new = BM_mesh_create(&bm_mesh_allocsize_default); BM_mesh_elem_toolflags_ensure(bm_new); /* needed for 'duplicate' bmo */ CustomData_copy(&bm_old->vdata, &bm_new->vdata, CD_MASK_BMESH, CD_CALLOC, 0); CustomData_copy(&bm_old->edata, &bm_new->edata, CD_MASK_BMESH, CD_CALLOC, 0); CustomData_copy(&bm_old->ldata, &bm_new->ldata, CD_MASK_BMESH, CD_CALLOC, 0); CustomData_copy(&bm_old->pdata, &bm_new->pdata, CD_MASK_BMESH, CD_CALLOC, 0); CustomData_bmesh_init_pool(&bm_new->vdata, bm_mesh_allocsize_default.totvert, BM_VERT); CustomData_bmesh_init_pool(&bm_new->edata, bm_mesh_allocsize_default.totedge, BM_EDGE); CustomData_bmesh_init_pool(&bm_new->ldata, bm_mesh_allocsize_default.totloop, BM_LOOP); CustomData_bmesh_init_pool(&bm_new->pdata, bm_mesh_allocsize_default.totface, BM_FACE); base_new = ED_object_add_duplicate(bmain, scene, base_old, USER_DUP_MESH); /* DAG_relations_tag_update(bmain); */ /* normally would call directly after but in this case delay recalc */ assign_matarar(base_new->object, give_matarar(obedit), *give_totcolp(obedit)); /* new in 2.5 */ ED_base_object_select(base_new, BA_SELECT); BMO_op_callf(bm_old, (BMO_FLAG_DEFAULTS & ~BMO_FLAG_RESPECT_HIDE), "duplicate geom=%hvef dest=%p", BM_ELEM_TAG, bm_new); BMO_op_callf(bm_old, (BMO_FLAG_DEFAULTS & ~BMO_FLAG_RESPECT_HIDE), "delete geom=%hvef context=%i", BM_ELEM_TAG, DEL_FACES); /* deselect loose data - this used to get deleted, * we could de-select edges and verts only, but this turns out to be less complicated * since de-selecting all skips selection flushing logic */ BM_mesh_elem_hflag_disable_all(bm_old, BM_VERT | BM_EDGE | BM_FACE, BM_ELEM_SELECT, false); BM_mesh_normals_update(bm_new); BM_mesh_bm_to_me(bm_new, base_new->object->data, false); BM_mesh_free(bm_new); ((Mesh *)base_new->object->data)->edit_btmesh = NULL; return base_new; } static bool mesh_separate_selected(Main *bmain, Scene *scene, Base *base_old, BMesh *bm_old) { /* we may have tags from previous operators */ BM_mesh_elem_hflag_disable_all(bm_old, BM_FACE | BM_EDGE | BM_VERT, BM_ELEM_TAG, false); /* sel -> tag */ BM_mesh_elem_hflag_enable_test(bm_old, BM_FACE | BM_EDGE | BM_VERT, BM_ELEM_TAG, true, BM_ELEM_SELECT); return (mesh_separate_tagged(bmain, scene, base_old, bm_old) != NULL); } /* flush a hflag to from verts to edges/faces */ static void bm_mesh_hflag_flush_vert(BMesh *bm, const char hflag) { BMEdge *e; BMLoop *l_iter; BMLoop *l_first; BMFace *f; BMIter eiter; BMIter fiter; bool ok; BM_ITER_MESH (e, &eiter, bm, BM_EDGES_OF_MESH) { if (BM_elem_flag_test(e->v1, hflag) && BM_elem_flag_test(e->v2, hflag)) { BM_elem_flag_enable(e, hflag); } else { BM_elem_flag_disable(e, hflag); } } BM_ITER_MESH (f, &fiter, bm, BM_FACES_OF_MESH) { ok = true; l_iter = l_first = BM_FACE_FIRST_LOOP(f); do { if (!BM_elem_flag_test(l_iter->v, hflag)) { ok = false; break; } } while ((l_iter = l_iter->next) != l_first); BM_elem_flag_set(f, hflag, ok); } } /** * Sets an object to a single material. from one of its slots. * * \note This could be used for split-by-material for non mesh types. * \note This could take material data from another object or args. */ static void mesh_separate_material_assign_mat_nr(Object *ob, const short mat_nr) { ID *obdata = ob->data; Material ***matarar; short *totcolp; totcolp = give_totcolp_id(obdata); matarar = give_matarar_id(obdata); if ((totcolp && matarar) == 0) { BLI_assert(0); return; } if (*totcolp) { Material *ma_ob; Material *ma_obdata; char matbit; if (mat_nr < ob->totcol) { ma_ob = ob->mat[mat_nr]; matbit = ob->matbits[mat_nr]; } else { ma_ob = NULL; matbit = 0; } if (mat_nr < *totcolp) { ma_obdata = (*matarar)[mat_nr]; } else { ma_obdata = NULL; } BKE_material_clear_id(obdata, true); BKE_material_resize_object(ob, 1, true); BKE_material_resize_id(obdata, 1, true); ob->mat[0] = ma_ob; ob->matbits[0] = matbit; (*matarar)[0] = ma_obdata; } else { BKE_material_clear_id(obdata, true); BKE_material_resize_object(ob, 0, true); BKE_material_resize_id(obdata, 0, true); } } static bool mesh_separate_material(Main *bmain, Scene *scene, Base *base_old, BMesh *bm_old) { BMFace *f_cmp, *f; BMIter iter; bool result = false; while ((f_cmp = BM_iter_at_index(bm_old, BM_FACES_OF_MESH, NULL, 0))) { Base *base_new; const short mat_nr = f_cmp->mat_nr; int tot = 0; BM_mesh_elem_hflag_disable_all(bm_old, BM_VERT | BM_EDGE | BM_FACE, BM_ELEM_TAG, false); BM_ITER_MESH (f, &iter, bm_old, BM_FACES_OF_MESH) { if (f->mat_nr == mat_nr) { BMLoop *l_iter; BMLoop *l_first; BM_elem_flag_enable(f, BM_ELEM_TAG); l_iter = l_first = BM_FACE_FIRST_LOOP(f); do { BM_elem_flag_enable(l_iter->v, BM_ELEM_TAG); BM_elem_flag_enable(l_iter->e, BM_ELEM_TAG); } while ((l_iter = l_iter->next) != l_first); tot++; } } /* leave the current object with some materials */ if (tot == bm_old->totface) { mesh_separate_material_assign_mat_nr(base_old->object, mat_nr); /* since we're in editmode, must set faces here */ BM_ITER_MESH (f, &iter, bm_old, BM_FACES_OF_MESH) { f->mat_nr = 0; } break; } /* Move selection into a separate object */ base_new = mesh_separate_tagged(bmain, scene, base_old, bm_old); if (base_new) { mesh_separate_material_assign_mat_nr(base_new->object, mat_nr); } result |= (base_new != NULL); } return result; } static bool mesh_separate_loose(Main *bmain, Scene *scene, Base *base_old, BMesh *bm_old) { int i; BMEdge *e; BMVert *v_seed; BMWalker walker; bool result = false; int max_iter = bm_old->totvert; /* Clear all selected vertices */ BM_mesh_elem_hflag_disable_all(bm_old, BM_VERT | BM_EDGE | BM_FACE, BM_ELEM_TAG, false); /* A "while (true)" loop should work here as each iteration should * select and remove at least one vertex and when all vertices * are selected the loop will break out. But guard against bad * behavior by limiting iterations to the number of vertices in the * original mesh.*/ for (i = 0; i < max_iter; i++) { int tot = 0; /* Get a seed vertex to start the walk */ v_seed = BM_iter_at_index(bm_old, BM_VERTS_OF_MESH, NULL, 0); /* No vertices available, can't do anything */ if (v_seed == NULL) { break; } /* Select the seed explicitly, in case it has no edges */ if (!BM_elem_flag_test(v_seed, BM_ELEM_TAG)) { BM_elem_flag_enable(v_seed, BM_ELEM_TAG); tot++; } /* Walk from the single vertex, selecting everything connected * to it */ BMW_init(&walker, bm_old, BMW_SHELL, BMW_MASK_NOP, BMW_MASK_NOP, BMW_MASK_NOP, BMW_FLAG_NOP, BMW_NIL_LAY); for (e = BMW_begin(&walker, v_seed); e; e = BMW_step(&walker)) { if (!BM_elem_flag_test(e->v1, BM_ELEM_TAG)) { BM_elem_flag_enable(e->v1, BM_ELEM_TAG); tot++; } if (!BM_elem_flag_test(e->v2, BM_ELEM_TAG)) { BM_elem_flag_enable(e->v2, BM_ELEM_TAG); tot++; } } BMW_end(&walker); if (bm_old->totvert == tot) { /* Every vertex selected, nothing to separate, work is done */ break; } /* Flush the selection to get edge/face selections matching * the vertex selection */ bm_mesh_hflag_flush_vert(bm_old, BM_ELEM_TAG); /* Move selection into a separate object */ result |= (mesh_separate_tagged(bmain, scene, base_old, bm_old) != NULL); } return result; } static int edbm_separate_exec(bContext *C, wmOperator *op) { Main *bmain = CTX_data_main(C); Scene *scene = CTX_data_scene(C); const int type = RNA_enum_get(op->ptr, "type"); int retval = 0; if (ED_operator_editmesh(C)) { Base *base = CTX_data_active_base(C); BMEditMesh *em = BKE_editmesh_from_object(base->object); if (type == 0) { if ((em->bm->totvertsel == 0) && (em->bm->totedgesel == 0) && (em->bm->totfacesel == 0)) { BKE_report(op->reports, RPT_ERROR, "Nothing selected"); return OPERATOR_CANCELLED; } } /* editmode separate */ if (type == 0) retval = mesh_separate_selected(bmain, scene, base, em->bm); else if (type == 1) retval = mesh_separate_material(bmain, scene, base, em->bm); else if (type == 2) retval = mesh_separate_loose(bmain, scene, base, em->bm); else BLI_assert(0); if (retval) { EDBM_update_generic(em, true, true); } } else { if (type == 0) { BKE_report(op->reports, RPT_ERROR, "Selection not supported in object mode"); return OPERATOR_CANCELLED; } /* object mode separate */ CTX_DATA_BEGIN(C, Base *, base_iter, selected_editable_bases) { Object *ob = base_iter->object; if (ob->type == OB_MESH) { Mesh *me = ob->data; if (me->id.lib == NULL) { BMesh *bm_old = NULL; int retval_iter = 0; bm_old = BM_mesh_create(&bm_mesh_allocsize_default); BM_mesh_bm_from_me(bm_old, me, false, false, 0); if (type == 1) retval_iter = mesh_separate_material(bmain, scene, base_iter, bm_old); else if (type == 2) retval_iter = mesh_separate_loose(bmain, scene, base_iter, bm_old); else BLI_assert(0); if (retval_iter) { BM_mesh_bm_to_me(bm_old, me, false); DAG_id_tag_update(&me->id, OB_RECALC_DATA); WM_event_add_notifier(C, NC_GEOM | ND_DATA, me); } BM_mesh_free(bm_old); retval |= retval_iter; } } } CTX_DATA_END; } if (retval) { /* delay depsgraph recalc until all objects are duplicated */ DAG_relations_tag_update(bmain); WM_event_add_notifier(C, NC_OBJECT | ND_DRAW, NULL); return OPERATOR_FINISHED; } return OPERATOR_CANCELLED; } /* *************** Operator: separate parts *************/ static EnumPropertyItem prop_separate_types[] = { {0, "SELECTED", 0, "Selection", ""}, {1, "MATERIAL", 0, "By Material", ""}, {2, "LOOSE", 0, "By loose parts", ""}, {0, NULL, 0, NULL, NULL} }; void MESH_OT_separate(wmOperatorType *ot) { /* identifiers */ ot->name = "Separate"; ot->description = "Separate selected geometry into a new mesh"; ot->idname = "MESH_OT_separate"; /* api callbacks */ ot->invoke = WM_menu_invoke; ot->exec = edbm_separate_exec; ot->poll = ED_operator_scene_editable; /* object and editmode */ /* flags */ ot->flag = OPTYPE_UNDO; ot->prop = RNA_def_enum(ot->srna, "type", prop_separate_types, 0, "Type", ""); } static int edbm_fill_exec(bContext *C, wmOperator *op) { Object *obedit = CTX_data_edit_object(C); BMEditMesh *em = BKE_editmesh_from_object(obedit); const bool use_beauty = RNA_boolean_get(op->ptr, "use_beauty"); BMOperator bmop; if (!EDBM_op_init(em, &bmop, op, "triangle_fill edges=%he use_beauty=%b", BM_ELEM_SELECT, use_beauty)) { return OPERATOR_CANCELLED; } BMO_op_exec(em->bm, &bmop); /* select new geometry */ BMO_slot_buffer_hflag_enable(em->bm, bmop.slots_out, "geom.out", BM_FACE | BM_EDGE, BM_ELEM_SELECT, true); if (!EDBM_op_finish(em, &bmop, op, true)) { return OPERATOR_CANCELLED; } EDBM_update_generic(em, true, true); return OPERATOR_FINISHED; } void MESH_OT_fill(wmOperatorType *ot) { /* identifiers */ ot->name = "Fill"; ot->idname = "MESH_OT_fill"; ot->description = "Fill a selected edge loop with faces"; /* api callbacks */ ot->exec = edbm_fill_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; RNA_def_boolean(ot->srna, "use_beauty", true, "Beauty", "Use best triangulation division"); } /* -------------------------------------------------------------------- */ /* Grid Fill (and helper functions) */ static bool bm_edge_test_fill_grid_cb(BMEdge *e, void *UNUSED(bm_v)) { return BM_elem_flag_test_bool(e, BM_ELEM_TAG); } static float edbm_fill_grid_vert_tag_angle(BMVert *v) { BMIter iter; BMEdge *e_iter; BMVert *v_pair[2]; int i = 0; BM_ITER_ELEM (e_iter, &iter, v, BM_EDGES_OF_VERT) { if (BM_elem_flag_test(e_iter, BM_ELEM_TAG)) { v_pair[i++] = BM_edge_other_vert(e_iter, v); } } BLI_assert(i == 2); return fabsf((float)M_PI - angle_v3v3v3(v_pair[0]->co, v->co, v_pair[1]->co)); } /** * non-essential utility function to select 2 open edge loops from a closed loop. */ static void edbm_fill_grid_prepare(BMesh *bm, int offset, int *r_span, bool span_calc) { BMEdge *e; BMIter iter; int count; int span = *r_span; ListBase eloops = {NULL}; struct BMEdgeLoopStore *el_store; // LinkData *el_store; /* select -> tag */ BM_ITER_MESH (e, &iter, bm, BM_EDGES_OF_MESH) { BM_elem_flag_set(e, BM_ELEM_TAG, BM_elem_flag_test(e, BM_ELEM_SELECT)); } count = BM_mesh_edgeloops_find(bm, &eloops, bm_edge_test_fill_grid_cb, bm); el_store = eloops.first; if (count == 1 && BM_edgeloop_is_closed(el_store) && (BM_edgeloop_length_get(el_store) & 1) == 0) { /* be clever! detect 2 edge loops from one closed edge loop */ const int verts_len = BM_edgeloop_length_get(el_store); ListBase *verts = BM_edgeloop_verts_get(el_store); BMVert *v_act = BM_mesh_active_vert_get(bm); LinkData *v_act_link; BMEdge **edges = MEM_mallocN(sizeof(*edges) * verts_len, __func__); int i; if (v_act && (v_act_link = BLI_findptr(verts, v_act, offsetof(LinkData, data)))) { /* pass */ } else { /* find the vertex with the best angle (a corner vertex) */ LinkData *v_link, *v_link_best = NULL; float angle_best = -1.0f; for (v_link = verts->first; v_link; v_link = v_link->next) { const float angle = edbm_fill_grid_vert_tag_angle(v_link->data); if ((angle > angle_best) || (v_link_best == NULL)) { angle_best = angle; v_link_best = v_link; } } v_act_link = v_link_best; v_act = v_act_link->data; } if (offset != 0) { v_act_link = BLI_findlink(verts, offset); v_act = v_act_link->data; } /* set this vertex first */ BLI_rotatelist_first(verts, v_act_link); BM_edgeloop_edges_get(el_store, edges); if (span_calc) { /* calculate the span by finding the next corner in 'verts' * we dont know what defines a corner exactly so find the 4 verts * in the loop with the greatest angle. * Tag them and use the first tagged vertex to calculate the span. * * note: we may have already checked 'edbm_fill_grid_vert_tag_angle()' on each * vert, but advantage of de-duplicating is minimal. */ struct SortPointerByFloat *ele_sort = MEM_mallocN(sizeof(*ele_sort) * verts_len, __func__); LinkData *v_link; for (v_link = verts->first, i = 0; v_link; v_link = v_link->next, i++) { BMVert *v = v_link->data; const float angle = edbm_fill_grid_vert_tag_angle(v); ele_sort[i].sort_value = angle; ele_sort[i].data = v; BM_elem_flag_disable(v, BM_ELEM_TAG); } qsort(ele_sort, verts_len, sizeof(*ele_sort), BLI_sortutil_cmp_float_reverse); for (i = 0; i < 4; i++) { BMVert *v = ele_sort[i].data; BM_elem_flag_enable(v, BM_ELEM_TAG); } /* now find the first... */ for (v_link = verts->first, i = 0; i < verts_len / 2; v_link = v_link->next, i++) { BMVert *v = v_link->data; if (BM_elem_flag_test(v, BM_ELEM_TAG)) { if (v != v_act) { span = i; break; } } } MEM_freeN(ele_sort); } /* end span calc */ /* un-flag 'rails' */ for (i = 0; i < span; i++) { BM_elem_flag_disable(edges[i], BM_ELEM_TAG); BM_elem_flag_disable(edges[(verts_len / 2) + i], BM_ELEM_TAG); } MEM_freeN(edges); } /* else let the bmesh-operator handle it */ BM_mesh_edgeloops_free(&eloops); *r_span = span; } static int edbm_fill_grid_exec(bContext *C, wmOperator *op) { BMOperator bmop; Object *obedit = CTX_data_edit_object(C); BMEditMesh *em = BKE_editmesh_from_object(obedit); const short use_smooth = edbm_add_edge_face__smooth_get(em->bm); const int totedge_orig = em->bm->totedge; const int totface_orig = em->bm->totface; const bool use_interp_simple = RNA_boolean_get(op->ptr, "use_interp_simple"); const bool use_prepare = true; if (use_prepare) { /* use when we have a single loop selected */ PropertyRNA *prop_span = RNA_struct_find_property(op->ptr, "span"); PropertyRNA *prop_offset = RNA_struct_find_property(op->ptr, "offset"); bool calc_span; const int clamp = em->bm->totvertsel; int span; int offset; if (RNA_property_is_set(op->ptr, prop_span)) { span = RNA_property_int_get(op->ptr, prop_span); span = min_ii(span, (clamp / 2) - 1); calc_span = false; } else { span = clamp / 4; calc_span = true; } offset = RNA_property_int_get(op->ptr, prop_offset); offset = clamp ? mod_i(offset, clamp) : 0; /* in simple cases, move selection for tags, but also support more advanced cases */ edbm_fill_grid_prepare(em->bm, offset, &span, calc_span); RNA_property_int_set(op->ptr, prop_span, span); } /* end tricky prepare code */ if (!EDBM_op_init(em, &bmop, op, "grid_fill edges=%he mat_nr=%i use_smooth=%b use_interp_simple=%b", use_prepare ? BM_ELEM_TAG : BM_ELEM_SELECT, em->mat_nr, use_smooth, use_interp_simple)) { return OPERATOR_CANCELLED; } BMO_op_exec(em->bm, &bmop); /* cancel if nothing was done */ if ((totedge_orig == em->bm->totedge) && (totface_orig == em->bm->totface)) { EDBM_op_finish(em, &bmop, op, true); return OPERATOR_CANCELLED; } BMO_slot_buffer_hflag_enable(em->bm, bmop.slots_out, "faces.out", BM_FACE, BM_ELEM_SELECT, true); if (!EDBM_op_finish(em, &bmop, op, true)) { return OPERATOR_CANCELLED; } EDBM_update_generic(em, true, true); return OPERATOR_FINISHED; } void MESH_OT_fill_grid(wmOperatorType *ot) { PropertyRNA *prop; /* identifiers */ ot->name = "Grid Fill"; ot->description = "Fill grid from two loops"; ot->idname = "MESH_OT_fill_grid"; /* api callbacks */ ot->exec = edbm_fill_grid_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; /* properties */ prop = RNA_def_int(ot->srna, "span", 1, 1, INT_MAX, "Span", "Number of sides (zero disables)", 1, 100); RNA_def_property_flag(prop, PROP_SKIP_SAVE); prop = RNA_def_int(ot->srna, "offset", 0, INT_MIN, INT_MAX, "Offset", "Number of sides (zero disables)", -100, 100); RNA_def_property_flag(prop, PROP_SKIP_SAVE); RNA_def_boolean(ot->srna, "use_interp_simple", 0, "Simple Blending", ""); } static int edbm_fill_holes_exec(bContext *C, wmOperator *op) { Object *obedit = CTX_data_edit_object(C); BMEditMesh *em = BKE_editmesh_from_object(obedit); const int sides = RNA_int_get(op->ptr, "sides"); if (!EDBM_op_call_and_selectf( em, op, "faces.out", true, "holes_fill edges=%he sides=%i", BM_ELEM_SELECT, sides)) { return OPERATOR_CANCELLED; } EDBM_update_generic(em, true, true); return OPERATOR_FINISHED; } void MESH_OT_fill_holes(wmOperatorType *ot) { /* identifiers */ ot->name = "Fill Holes"; ot->idname = "MESH_OT_fill_holes"; ot->description = "Fill in holes (boundary edge loops)"; /* api callbacks */ ot->exec = edbm_fill_holes_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; RNA_def_int(ot->srna, "sides", 4, 0, INT_MAX, "Sides", "Number of sides (zero disables)", 0, 100); } static int edbm_beautify_fill_exec(bContext *C, wmOperator *op) { Object *obedit = CTX_data_edit_object(C); BMEditMesh *em = BKE_editmesh_from_object(obedit); if (!EDBM_op_call_and_selectf( em, op, "geom.out", true, "beautify_fill faces=%hf edges=ae", BM_ELEM_SELECT)) { return OPERATOR_CANCELLED; } EDBM_update_generic(em, true, true); return OPERATOR_FINISHED; } void MESH_OT_beautify_fill(wmOperatorType *ot) { /* identifiers */ ot->name = "Beautify Fill"; ot->idname = "MESH_OT_beautify_fill"; ot->description = "Rearrange some faces to try to get less degenerated geometry"; /* api callbacks */ ot->exec = edbm_beautify_fill_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; } /********************** Poke Face **********************/ static int edbm_poke_face_exec(bContext *C, wmOperator *op) { Object *obedit = CTX_data_edit_object(C); BMEditMesh *em = BKE_editmesh_from_object(obedit); BMOperator bmop; const float offset = RNA_float_get(op->ptr, "offset"); const bool use_relative_offset = RNA_boolean_get(op->ptr, "use_relative_offset"); const int center_mode = RNA_enum_get(op->ptr, "center_mode"); EDBM_op_init(em, &bmop, op, "poke faces=%hf offset=%f use_relative_offset=%b center_mode=%i", BM_ELEM_SELECT, offset, use_relative_offset, center_mode); BMO_op_exec(em->bm, &bmop); EDBM_flag_disable_all(em, BM_ELEM_SELECT); BMO_slot_buffer_hflag_enable(em->bm, bmop.slots_out, "verts.out", BM_VERT, BM_ELEM_SELECT, true); BMO_slot_buffer_hflag_enable(em->bm, bmop.slots_out, "faces.out", BM_FACE, BM_ELEM_SELECT, true); if (!EDBM_op_finish(em, &bmop, op, true)) { return OPERATOR_CANCELLED; } EDBM_mesh_normals_update(em); EDBM_update_generic(em, true, true); return OPERATOR_FINISHED; } void MESH_OT_poke(wmOperatorType *ot) { static EnumPropertyItem poke_center_modes[] = { {BMOP_POKE_MEAN_WEIGHTED, "MEAN_WEIGHTED", 0, "Weighted Mean", "Weighted Mean Face Center"}, {BMOP_POKE_MEAN, "MEAN", 0, "Mean", "Mean Face Center"}, {BMOP_POKE_BOUNDS, "BOUNDS", 0, "Bounds", "Face Bounds Center"}, {0, NULL, 0, NULL, NULL}}; /* identifiers */ ot->name = "Poke Faces"; ot->idname = "MESH_OT_poke"; ot->description = "Split a face into a fan"; /* api callbacks */ ot->exec = edbm_poke_face_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; RNA_def_float(ot->srna, "offset", 0.0f, -FLT_MAX, FLT_MAX, "Poke Offset", "Poke Offset", -1.0f, 1.0f); RNA_def_boolean(ot->srna, "use_relative_offset", false, "Offset Relative", "Scale the offset by surrounding geometry"); RNA_def_enum(ot->srna, "center_mode", poke_center_modes, BMOP_POKE_MEAN_WEIGHTED, "Poke Center", "Poke Face Center Calculation"); } /********************** Quad/Tri Operators *************************/ static int edbm_quads_convert_to_tris_exec(bContext *C, wmOperator *op) { Object *obedit = CTX_data_edit_object(C); BMEditMesh *em = BKE_editmesh_from_object(obedit); BMOperator bmop; const bool use_beauty = RNA_boolean_get(op->ptr, "use_beauty"); EDBM_op_init(em, &bmop, op, "triangulate faces=%hf use_beauty=%b", BM_ELEM_SELECT, use_beauty); BMO_op_exec(em->bm, &bmop); BMO_slot_buffer_hflag_enable(em->bm, bmop.slots_out, "faces.out", BM_FACE, BM_ELEM_SELECT, true); /* now call beauty fill */ if (use_beauty) { EDBM_op_call_and_selectf( em, op, "geom.out", true, "beautify_fill faces=%S edges=%S", &bmop, "faces.out", &bmop, "edges.out"); } if (!EDBM_op_finish(em, &bmop, op, true)) { return OPERATOR_CANCELLED; } EDBM_update_generic(em, true, true); return OPERATOR_FINISHED; } void MESH_OT_quads_convert_to_tris(wmOperatorType *ot) { /* identifiers */ ot->name = "Triangulate Faces"; ot->idname = "MESH_OT_quads_convert_to_tris"; ot->description = "Triangulate selected faces"; /* api callbacks */ ot->exec = edbm_quads_convert_to_tris_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; RNA_def_boolean(ot->srna, "use_beauty", 1, "Beauty", "Use best triangulation division"); } static int edbm_tris_convert_to_quads_exec(bContext *C, wmOperator *op) { Object *obedit = CTX_data_edit_object(C); BMEditMesh *em = BKE_editmesh_from_object(obedit); int dosharp, douvs, dovcols, domaterials; const float limit = RNA_float_get(op->ptr, "limit"); dosharp = RNA_boolean_get(op->ptr, "sharp"); douvs = RNA_boolean_get(op->ptr, "uvs"); dovcols = RNA_boolean_get(op->ptr, "vcols"); domaterials = RNA_boolean_get(op->ptr, "materials"); if (!EDBM_op_call_and_selectf( em, op, "faces.out", true, "join_triangles faces=%hf limit=%f cmp_sharp=%b cmp_uvs=%b cmp_vcols=%b cmp_materials=%b", BM_ELEM_SELECT, limit, dosharp, douvs, dovcols, domaterials)) { return OPERATOR_CANCELLED; } EDBM_update_generic(em, true, true); return OPERATOR_FINISHED; } static void join_triangle_props(wmOperatorType *ot) { PropertyRNA *prop; prop = RNA_def_float_rotation(ot->srna, "limit", 0, NULL, 0.0f, DEG2RADF(180.0f), "Max Angle", "Angle Limit", 0.0f, DEG2RADF(180.0f)); RNA_def_property_float_default(prop, DEG2RADF(40.0f)); RNA_def_boolean(ot->srna, "uvs", 0, "Compare UVs", ""); RNA_def_boolean(ot->srna, "vcols", 0, "Compare VCols", ""); RNA_def_boolean(ot->srna, "sharp", 0, "Compare Sharp", ""); RNA_def_boolean(ot->srna, "materials", 0, "Compare Materials", ""); } void MESH_OT_tris_convert_to_quads(wmOperatorType *ot) { /* identifiers */ ot->name = "Tris to Quads"; ot->idname = "MESH_OT_tris_convert_to_quads"; ot->description = "Join triangles into quads"; /* api callbacks */ ot->exec = edbm_tris_convert_to_quads_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; join_triangle_props(ot); } /* -------------------------------------------------------------------- */ /* Dissolve */ static void edbm_dissolve_prop__use_verts(wmOperatorType *ot) { RNA_def_boolean(ot->srna, "use_verts", 0, "Dissolve Verts", "Dissolve remaining vertices"); } static void edbm_dissolve_prop__use_face_split(wmOperatorType *ot) { RNA_def_boolean(ot->srna, "use_face_split", 0, "Face Split", "Split off face corners to maintain surrounding geometry"); } static int edbm_dissolve_verts_exec(bContext *C, wmOperator *op) { Object *obedit = CTX_data_edit_object(C); BMEditMesh *em = BKE_editmesh_from_object(obedit); const bool use_face_split = RNA_boolean_get(op->ptr, "use_face_split"); if (!EDBM_op_callf(em, op, "dissolve_verts verts=%hv use_face_split=%b", BM_ELEM_SELECT, use_face_split)) return OPERATOR_CANCELLED; EDBM_update_generic(em, true, true); return OPERATOR_FINISHED; } void MESH_OT_dissolve_verts(wmOperatorType *ot) { /* identifiers */ ot->name = "Dissolve Vertices"; ot->description = "Dissolve verts, merge edges and faces"; ot->idname = "MESH_OT_dissolve_verts"; /* api callbacks */ ot->exec = edbm_dissolve_verts_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; edbm_dissolve_prop__use_face_split(ot); } static int edbm_dissolve_edges_exec(bContext *C, wmOperator *op) { Object *obedit = CTX_data_edit_object(C); BMEditMesh *em = BKE_editmesh_from_object(obedit); const bool use_verts = RNA_boolean_get(op->ptr, "use_verts"); const bool use_face_split = RNA_boolean_get(op->ptr, "use_face_split"); if (!EDBM_op_callf(em, op, "dissolve_edges edges=%he use_verts=%b use_face_split=%b", BM_ELEM_SELECT, use_verts, use_face_split)) { return OPERATOR_CANCELLED; } EDBM_update_generic(em, true, true); return OPERATOR_FINISHED; } void MESH_OT_dissolve_edges(wmOperatorType *ot) { /* identifiers */ ot->name = "Dissolve Edges"; ot->description = "Dissolve edges, merging faces"; ot->idname = "MESH_OT_dissolve_edges"; /* api callbacks */ ot->exec = edbm_dissolve_edges_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; edbm_dissolve_prop__use_verts(ot); edbm_dissolve_prop__use_face_split(ot); } static int edbm_dissolve_faces_exec(bContext *C, wmOperator *op) { Object *obedit = CTX_data_edit_object(C); BMEditMesh *em = BKE_editmesh_from_object(obedit); const bool use_verts = RNA_boolean_get(op->ptr, "use_verts"); if (!EDBM_op_call_and_selectf( em, op, "region.out", true, "dissolve_faces faces=%hf use_verts=%b", BM_ELEM_SELECT, use_verts)) { return OPERATOR_CANCELLED; } EDBM_update_generic(em, true, true); return OPERATOR_FINISHED; } void MESH_OT_dissolve_faces(wmOperatorType *ot) { /* identifiers */ ot->name = "Dissolve Faces"; ot->description = "Dissolve faces"; ot->idname = "MESH_OT_dissolve_faces"; /* api callbacks */ ot->exec = edbm_dissolve_faces_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; edbm_dissolve_prop__use_verts(ot); } static int edbm_dissolve_mode_exec(bContext *C, wmOperator *op) { Object *obedit = CTX_data_edit_object(C); BMEditMesh *em = BKE_editmesh_from_object(obedit); if (em->selectmode & SCE_SELECT_VERTEX) { return edbm_dissolve_verts_exec(C, op); } else if (em->selectmode & SCE_SELECT_EDGE) { return edbm_dissolve_edges_exec(C, op); } else { return edbm_dissolve_faces_exec(C, op); } } void MESH_OT_dissolve_mode(wmOperatorType *ot) { /* identifiers */ ot->name = "Dissolve Selection"; ot->description = "Dissolve geometry based on the selection mode"; ot->idname = "MESH_OT_dissolve_mode"; /* api callbacks */ ot->exec = edbm_dissolve_mode_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; edbm_dissolve_prop__use_verts(ot); edbm_dissolve_prop__use_face_split(ot); } static int edbm_dissolve_limited_exec(bContext *C, wmOperator *op) { Object *obedit = CTX_data_edit_object(C); BMEditMesh *em = BKE_editmesh_from_object(obedit); BMesh *bm = em->bm; const float angle_limit = RNA_float_get(op->ptr, "angle_limit"); const bool use_dissolve_boundaries = RNA_boolean_get(op->ptr, "use_dissolve_boundaries"); const int delimit = RNA_enum_get(op->ptr, "delimit"); char dissolve_flag; if (em->selectmode == SCE_SELECT_FACE) { /* flush selection to tags and untag edges/verts with partially selected faces */ BMIter iter; BMIter liter; BMElem *ele; BMFace *f; BMLoop *l; BM_ITER_MESH (ele, &iter, bm, BM_VERTS_OF_MESH) { BM_elem_flag_set(ele, BM_ELEM_TAG, BM_elem_flag_test(ele, BM_ELEM_SELECT)); } BM_ITER_MESH (ele, &iter, bm, BM_EDGES_OF_MESH) { BM_elem_flag_set(ele, BM_ELEM_TAG, BM_elem_flag_test(ele, BM_ELEM_SELECT)); } BM_ITER_MESH (f, &iter, bm, BM_FACES_OF_MESH) { if (!BM_elem_flag_test(f, BM_ELEM_SELECT)) { BM_ITER_ELEM (l, &liter, f, BM_LOOPS_OF_FACE) { BM_elem_flag_disable(l->v, BM_ELEM_TAG); BM_elem_flag_disable(l->e, BM_ELEM_TAG); } } } dissolve_flag = BM_ELEM_TAG; } else { dissolve_flag = BM_ELEM_SELECT; } EDBM_op_call_and_selectf( em, op, "region.out", true, "dissolve_limit edges=%he verts=%hv angle_limit=%f use_dissolve_boundaries=%b delimit=%i", dissolve_flag, dissolve_flag, angle_limit, use_dissolve_boundaries, delimit); EDBM_update_generic(em, true, true); return OPERATOR_FINISHED; } void MESH_OT_dissolve_limited(wmOperatorType *ot) { PropertyRNA *prop; /* identifiers */ ot->name = "Limited Dissolve"; ot->idname = "MESH_OT_dissolve_limited"; ot->description = "Dissolve selected edges and verts, limited by the angle of surrounding geometry"; /* api callbacks */ ot->exec = edbm_dissolve_limited_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; prop = RNA_def_float_rotation(ot->srna, "angle_limit", 0, NULL, 0.0f, DEG2RADF(180.0f), "Max Angle", "Angle limit", 0.0f, DEG2RADF(180.0f)); RNA_def_property_float_default(prop, DEG2RADF(5.0f)); RNA_def_boolean(ot->srna, "use_dissolve_boundaries", 0, "All Boundaries", "Dissolve all vertices inbetween face boundaries"); RNA_def_enum_flag(ot->srna, "delimit", mesh_delimit_mode_items, 0, "Delimit", "Delimit dissolve operation"); } /* internally uses dissolve */ static int edbm_delete_edgeloop_exec(bContext *C, wmOperator *op) { Object *obedit = CTX_data_edit_object(C); BMEditMesh *em = BKE_editmesh_from_object(obedit); const bool use_face_split = RNA_boolean_get(op->ptr, "use_face_split"); /* deal with selection */ { BMEdge *e; BMIter iter; BM_mesh_elem_hflag_disable_all(em->bm, BM_FACE, BM_ELEM_TAG, false); BM_ITER_MESH (e, &iter, em->bm, BM_EDGES_OF_MESH) { if (BM_elem_flag_test(e, BM_ELEM_SELECT) && e->l) { BMLoop *l_iter = e->l; do { BM_elem_flag_enable(l_iter->f, BM_ELEM_TAG); } while ((l_iter = l_iter->radial_next) != e->l); } } } if (!EDBM_op_callf(em, op, "dissolve_edges edges=%he use_verts=%b use_face_split=%b", BM_ELEM_SELECT, true, use_face_split)) { return OPERATOR_CANCELLED; } BM_mesh_elem_hflag_enable_test(em->bm, BM_FACE, BM_ELEM_SELECT, true, BM_ELEM_TAG); EDBM_update_generic(em, true, true); return OPERATOR_FINISHED; } void MESH_OT_delete_edgeloop(wmOperatorType *ot) { /* identifiers */ ot->name = "Delete Edge Loop"; ot->description = "Delete an edge loop by merging the faces on each side"; ot->idname = "MESH_OT_delete_edgeloop"; /* api callbacks */ ot->exec = edbm_delete_edgeloop_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; RNA_def_boolean(ot->srna, "use_face_split", true, "Face Split", "Split off face corners to maintain surrounding geometry"); } static int edbm_split_exec(bContext *C, wmOperator *op) { Object *ob = CTX_data_edit_object(C); BMEditMesh *em = BKE_editmesh_from_object(ob); BMOperator bmop; EDBM_op_init(em, &bmop, op, "split geom=%hvef use_only_faces=%b", BM_ELEM_SELECT, false); BMO_op_exec(em->bm, &bmop); BM_mesh_elem_hflag_disable_all(em->bm, BM_VERT | BM_EDGE | BM_FACE, BM_ELEM_SELECT, false); BMO_slot_buffer_hflag_enable(em->bm, bmop.slots_out, "geom.out", BM_ALL_NOLOOP, BM_ELEM_SELECT, true); if (!EDBM_op_finish(em, &bmop, op, true)) { return OPERATOR_CANCELLED; } /* Geometry has changed, need to recalc normals and looptris */ EDBM_mesh_normals_update(em); EDBM_update_generic(em, true, true); return OPERATOR_FINISHED; } void MESH_OT_split(wmOperatorType *ot) { /* identifiers */ ot->name = "Split"; ot->idname = "MESH_OT_split"; ot->description = "Split off selected geometry from connected unselected geometry"; /* api callbacks */ ot->exec = edbm_split_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; } /****************************************************************************** * qsort routines. * Now unified, for vertices/edges/faces. */ enum { SRT_VIEW_ZAXIS = 1, /* Use view Z (deep) axis. */ SRT_VIEW_XAXIS, /* Use view X (left to right) axis. */ SRT_CURSOR_DISTANCE, /* Use distance from element to 3D cursor. */ SRT_MATERIAL, /* Face only: use mat number. */ SRT_SELECTED, /* Move selected elements in first, without modifying * relative order of selected and unselected elements. */ SRT_RANDOMIZE, /* Randomize selected elements. */ SRT_REVERSE, /* Reverse current order of selected elements. */ }; typedef struct BMElemSort { float srt; /* Sort factor */ int org_idx; /* Original index of this element _in its mempool_ */ } BMElemSort; static int bmelemsort_comp(const void *v1, const void *v2) { const BMElemSort *x1 = v1, *x2 = v2; return (x1->srt > x2->srt) - (x1->srt < x2->srt); } /* Reorders vertices/edges/faces using a given methods. Loops are not supported. */ static void sort_bmelem_flag(Scene *scene, Object *ob, View3D *v3d, RegionView3D *rv3d, const int types, const int flag, const int action, const int reverse, const unsigned int seed) { BMEditMesh *em = BKE_editmesh_from_object(ob); BMVert *ve; BMEdge *ed; BMFace *fa; BMIter iter; /* In all five elements below, 0 = vertices, 1 = edges, 2 = faces. */ /* Just to mark protected elements. */ char *pblock[3] = {NULL, NULL, NULL}, *pb; BMElemSort *sblock[3] = {NULL, NULL, NULL}, *sb; int *map[3] = {NULL, NULL, NULL}, *mp; int totelem[3] = {0, 0, 0}; int affected[3] = {0, 0, 0}; int i, j; if (!(types && flag && action)) return; if (types & BM_VERT) totelem[0] = em->bm->totvert; if (types & BM_EDGE) totelem[1] = em->bm->totedge; if (types & BM_FACE) totelem[2] = em->bm->totface; if (ELEM(action, SRT_VIEW_ZAXIS, SRT_VIEW_XAXIS)) { float mat[4][4]; float fact = reverse ? -1.0 : 1.0; int coidx = (action == SRT_VIEW_ZAXIS) ? 2 : 0; mul_m4_m4m4(mat, rv3d->viewmat, ob->obmat); /* Apply the view matrix to the object matrix. */ if (totelem[0]) { pb = pblock[0] = MEM_callocN(sizeof(char) * totelem[0], "sort_bmelem vert pblock"); sb = sblock[0] = MEM_callocN(sizeof(BMElemSort) * totelem[0], "sort_bmelem vert sblock"); BM_ITER_MESH_INDEX (ve, &iter, em->bm, BM_VERTS_OF_MESH, i) { if (BM_elem_flag_test(ve, flag)) { float co[3]; mul_v3_m4v3(co, mat, ve->co); pb[i] = false; sb[affected[0]].org_idx = i; sb[affected[0]++].srt = co[coidx] * fact; } else { pb[i] = true; } } } if (totelem[1]) { pb = pblock[1] = MEM_callocN(sizeof(char) * totelem[1], "sort_bmelem edge pblock"); sb = sblock[1] = MEM_callocN(sizeof(BMElemSort) * totelem[1], "sort_bmelem edge sblock"); BM_ITER_MESH_INDEX (ed, &iter, em->bm, BM_EDGES_OF_MESH, i) { if (BM_elem_flag_test(ed, flag)) { float co[3]; mid_v3_v3v3(co, ed->v1->co, ed->v2->co); mul_m4_v3(mat, co); pb[i] = false; sb[affected[1]].org_idx = i; sb[affected[1]++].srt = co[coidx] * fact; } else { pb[i] = true; } } } if (totelem[2]) { pb = pblock[2] = MEM_callocN(sizeof(char) * totelem[2], "sort_bmelem face pblock"); sb = sblock[2] = MEM_callocN(sizeof(BMElemSort) * totelem[2], "sort_bmelem face sblock"); BM_ITER_MESH_INDEX (fa, &iter, em->bm, BM_FACES_OF_MESH, i) { if (BM_elem_flag_test(fa, flag)) { float co[3]; BM_face_calc_center_mean(fa, co); mul_m4_v3(mat, co); pb[i] = false; sb[affected[2]].org_idx = i; sb[affected[2]++].srt = co[coidx] * fact; } else { pb[i] = true; } } } } else if (action == SRT_CURSOR_DISTANCE) { float cur[3]; float mat[4][4]; float fact = reverse ? -1.0 : 1.0; if (v3d && v3d->localvd) copy_v3_v3(cur, v3d->cursor); else copy_v3_v3(cur, scene->cursor); invert_m4_m4(mat, ob->obmat); mul_m4_v3(mat, cur); if (totelem[0]) { pb = pblock[0] = MEM_callocN(sizeof(char) * totelem[0], "sort_bmelem vert pblock"); sb = sblock[0] = MEM_callocN(sizeof(BMElemSort) * totelem[0], "sort_bmelem vert sblock"); BM_ITER_MESH_INDEX (ve, &iter, em->bm, BM_VERTS_OF_MESH, i) { if (BM_elem_flag_test(ve, flag)) { pb[i] = false; sb[affected[0]].org_idx = i; sb[affected[0]++].srt = len_squared_v3v3(cur, ve->co) * fact; } else { pb[i] = true; } } } if (totelem[1]) { pb = pblock[1] = MEM_callocN(sizeof(char) * totelem[1], "sort_bmelem edge pblock"); sb = sblock[1] = MEM_callocN(sizeof(BMElemSort) * totelem[1], "sort_bmelem edge sblock"); BM_ITER_MESH_INDEX (ed, &iter, em->bm, BM_EDGES_OF_MESH, i) { if (BM_elem_flag_test(ed, flag)) { float co[3]; mid_v3_v3v3(co, ed->v1->co, ed->v2->co); pb[i] = false; sb[affected[1]].org_idx = i; sb[affected[1]++].srt = len_squared_v3v3(cur, co) * fact; } else { pb[i] = true; } } } if (totelem[2]) { pb = pblock[2] = MEM_callocN(sizeof(char) * totelem[2], "sort_bmelem face pblock"); sb = sblock[2] = MEM_callocN(sizeof(BMElemSort) * totelem[2], "sort_bmelem face sblock"); BM_ITER_MESH_INDEX (fa, &iter, em->bm, BM_FACES_OF_MESH, i) { if (BM_elem_flag_test(fa, flag)) { float co[3]; BM_face_calc_center_mean(fa, co); pb[i] = false; sb[affected[2]].org_idx = i; sb[affected[2]++].srt = len_squared_v3v3(cur, co) * fact; } else { pb[i] = true; } } } } /* Faces only! */ else if (action == SRT_MATERIAL && totelem[2]) { pb = pblock[2] = MEM_callocN(sizeof(char) * totelem[2], "sort_bmelem face pblock"); sb = sblock[2] = MEM_callocN(sizeof(BMElemSort) * totelem[2], "sort_bmelem face sblock"); BM_ITER_MESH_INDEX (fa, &iter, em->bm, BM_FACES_OF_MESH, i) { if (BM_elem_flag_test(fa, flag)) { /* Reverse materials' order, not order of faces inside each mat! */ /* Note: cannot use totcol, as mat_nr may sometimes be greater... */ float srt = reverse ? (float)(MAXMAT - fa->mat_nr) : (float)fa->mat_nr; pb[i] = false; sb[affected[2]].org_idx = i; /* Multiplying with totface and adding i ensures us we keep current order for all faces of same mat. */ sb[affected[2]++].srt = srt * ((float)totelem[2]) + ((float)i); /* printf("e: %d; srt: %f; final: %f\n", i, srt, srt * ((float)totface) + ((float)i));*/ } else { pb[i] = true; } } } else if (action == SRT_SELECTED) { int *tbuf[3] = {NULL, NULL, NULL}, *tb; if (totelem[0]) { tb = tbuf[0] = MEM_callocN(sizeof(int) * totelem[0], "sort_bmelem vert tbuf"); mp = map[0] = MEM_callocN(sizeof(int) * totelem[0], "sort_bmelem vert map"); BM_ITER_MESH_INDEX (ve, &iter, em->bm, BM_VERTS_OF_MESH, i) { if (BM_elem_flag_test(ve, flag)) { mp[affected[0]++] = i; } else { *tb = i; tb++; } } } if (totelem[1]) { tb = tbuf[1] = MEM_callocN(sizeof(int) * totelem[1], "sort_bmelem edge tbuf"); mp = map[1] = MEM_callocN(sizeof(int) * totelem[1], "sort_bmelem edge map"); BM_ITER_MESH_INDEX (ed, &iter, em->bm, BM_EDGES_OF_MESH, i) { if (BM_elem_flag_test(ed, flag)) { mp[affected[1]++] = i; } else { *tb = i; tb++; } } } if (totelem[2]) { tb = tbuf[2] = MEM_callocN(sizeof(int) * totelem[2], "sort_bmelem face tbuf"); mp = map[2] = MEM_callocN(sizeof(int) * totelem[2], "sort_bmelem face map"); BM_ITER_MESH_INDEX (fa, &iter, em->bm, BM_FACES_OF_MESH, i) { if (BM_elem_flag_test(fa, flag)) { mp[affected[2]++] = i; } else { *tb = i; tb++; } } } for (j = 3; j--; ) { int tot = totelem[j]; int aff = affected[j]; tb = tbuf[j]; mp = map[j]; if (!(tb && mp)) continue; if (ELEM(aff, 0, tot)) { MEM_freeN(tb); MEM_freeN(mp); map[j] = NULL; continue; } if (reverse) { memcpy(tb + (tot - aff), mp, aff * sizeof(int)); } else { memcpy(mp + aff, tb, (tot - aff) * sizeof(int)); tb = mp; mp = map[j] = tbuf[j]; tbuf[j] = tb; } /* Reverse mapping, we want an org2new one! */ for (i = tot, tb = tbuf[j] + tot - 1; i--; tb--) { mp[*tb] = i; } MEM_freeN(tbuf[j]); } } else if (action == SRT_RANDOMIZE) { if (totelem[0]) { /* Re-init random generator for each element type, to get consistent random when * enabling/disabling an element type. */ RNG *rng = BLI_rng_new_srandom(seed); pb = pblock[0] = MEM_callocN(sizeof(char) * totelem[0], "sort_bmelem vert pblock"); sb = sblock[0] = MEM_callocN(sizeof(BMElemSort) * totelem[0], "sort_bmelem vert sblock"); BM_ITER_MESH_INDEX (ve, &iter, em->bm, BM_VERTS_OF_MESH, i) { if (BM_elem_flag_test(ve, flag)) { pb[i] = false; sb[affected[0]].org_idx = i; sb[affected[0]++].srt = BLI_rng_get_float(rng); } else { pb[i] = true; } } BLI_rng_free(rng); } if (totelem[1]) { RNG *rng = BLI_rng_new_srandom(seed); pb = pblock[1] = MEM_callocN(sizeof(char) * totelem[1], "sort_bmelem edge pblock"); sb = sblock[1] = MEM_callocN(sizeof(BMElemSort) * totelem[1], "sort_bmelem edge sblock"); BM_ITER_MESH_INDEX (ed, &iter, em->bm, BM_EDGES_OF_MESH, i) { if (BM_elem_flag_test(ed, flag)) { pb[i] = false; sb[affected[1]].org_idx = i; sb[affected[1]++].srt = BLI_rng_get_float(rng); } else { pb[i] = true; } } BLI_rng_free(rng); } if (totelem[2]) { RNG *rng = BLI_rng_new_srandom(seed); pb = pblock[2] = MEM_callocN(sizeof(char) * totelem[2], "sort_bmelem face pblock"); sb = sblock[2] = MEM_callocN(sizeof(BMElemSort) * totelem[2], "sort_bmelem face sblock"); BM_ITER_MESH_INDEX (fa, &iter, em->bm, BM_FACES_OF_MESH, i) { if (BM_elem_flag_test(fa, flag)) { pb[i] = false; sb[affected[2]].org_idx = i; sb[affected[2]++].srt = BLI_rng_get_float(rng); } else { pb[i] = true; } } BLI_rng_free(rng); } } else if (action == SRT_REVERSE) { if (totelem[0]) { pb = pblock[0] = MEM_callocN(sizeof(char) * totelem[0], "sort_bmelem vert pblock"); sb = sblock[0] = MEM_callocN(sizeof(BMElemSort) * totelem[0], "sort_bmelem vert sblock"); BM_ITER_MESH_INDEX (ve, &iter, em->bm, BM_VERTS_OF_MESH, i) { if (BM_elem_flag_test(ve, flag)) { pb[i] = false; sb[affected[0]].org_idx = i; sb[affected[0]++].srt = (float)-i; } else { pb[i] = true; } } } if (totelem[1]) { pb = pblock[1] = MEM_callocN(sizeof(char) * totelem[1], "sort_bmelem edge pblock"); sb = sblock[1] = MEM_callocN(sizeof(BMElemSort) * totelem[1], "sort_bmelem edge sblock"); BM_ITER_MESH_INDEX (ed, &iter, em->bm, BM_EDGES_OF_MESH, i) { if (BM_elem_flag_test(ed, flag)) { pb[i] = false; sb[affected[1]].org_idx = i; sb[affected[1]++].srt = (float)-i; } else { pb[i] = true; } } } if (totelem[2]) { pb = pblock[2] = MEM_callocN(sizeof(char) * totelem[2], "sort_bmelem face pblock"); sb = sblock[2] = MEM_callocN(sizeof(BMElemSort) * totelem[2], "sort_bmelem face sblock"); BM_ITER_MESH_INDEX (fa, &iter, em->bm, BM_FACES_OF_MESH, i) { if (BM_elem_flag_test(fa, flag)) { pb[i] = false; sb[affected[2]].org_idx = i; sb[affected[2]++].srt = (float)-i; } else { pb[i] = true; } } } } /* printf("%d vertices: %d to be affected...\n", totelem[0], affected[0]);*/ /* printf("%d edges: %d to be affected...\n", totelem[1], affected[1]);*/ /* printf("%d faces: %d to be affected...\n", totelem[2], affected[2]);*/ if (affected[0] == 0 && affected[1] == 0 && affected[2] == 0) { for (j = 3; j--; ) { if (pblock[j]) MEM_freeN(pblock[j]); if (sblock[j]) MEM_freeN(sblock[j]); if (map[j]) MEM_freeN(map[j]); } return; } /* Sort affected elements, and populate mapping arrays, if needed. */ for (j = 3; j--; ) { pb = pblock[j]; sb = sblock[j]; if (pb && sb && !map[j]) { char *p_blk; BMElemSort *s_blk; int tot = totelem[j]; int aff = affected[j]; qsort(sb, aff, sizeof(BMElemSort), bmelemsort_comp); mp = map[j] = MEM_mallocN(sizeof(int) * tot, "sort_bmelem map"); p_blk = pb + tot - 1; s_blk = sb + aff - 1; for (i = tot; i--; p_blk--) { if (*p_blk) { /* Protected! */ mp[i] = i; } else { mp[s_blk->org_idx] = i; s_blk--; } } } if (pb) MEM_freeN(pb); if (sb) MEM_freeN(sb); } BM_mesh_remap(em->bm, map[0], map[1], map[2]); /* DAG_id_tag_update(ob->data, 0);*/ for (j = 3; j--; ) { if (map[j]) MEM_freeN(map[j]); } } static int edbm_sort_elements_exec(bContext *C, wmOperator *op) { Scene *scene = CTX_data_scene(C); Object *ob = CTX_data_edit_object(C); /* may be NULL */ View3D *v3d = CTX_wm_view3d(C); RegionView3D *rv3d = ED_view3d_context_rv3d(C); const int action = RNA_enum_get(op->ptr, "type"); PropertyRNA *prop_elem_types = RNA_struct_find_property(op->ptr, "elements"); const bool use_reverse = RNA_boolean_get(op->ptr, "reverse"); unsigned int seed = RNA_int_get(op->ptr, "seed"); int elem_types = 0; if (ELEM(action, SRT_VIEW_ZAXIS, SRT_VIEW_XAXIS)) { if (rv3d == NULL) { BKE_report(op->reports, RPT_ERROR, "View not found, cannot sort by view axis"); return OPERATOR_CANCELLED; } } /* If no elem_types set, use current selection mode to set it! */ if (RNA_property_is_set(op->ptr, prop_elem_types)) { elem_types = RNA_property_enum_get(op->ptr, prop_elem_types); } else { BMEditMesh *em = BKE_editmesh_from_object(ob); if (em->selectmode & SCE_SELECT_VERTEX) elem_types |= BM_VERT; if (em->selectmode & SCE_SELECT_EDGE) elem_types |= BM_EDGE; if (em->selectmode & SCE_SELECT_FACE) elem_types |= BM_FACE; RNA_enum_set(op->ptr, "elements", elem_types); } sort_bmelem_flag(scene, ob, v3d, rv3d, elem_types, BM_ELEM_SELECT, action, use_reverse, seed); return OPERATOR_FINISHED; } static bool edbm_sort_elements_draw_check_prop(PointerRNA *ptr, PropertyRNA *prop) { const char *prop_id = RNA_property_identifier(prop); const int action = RNA_enum_get(ptr, "type"); /* Only show seed for randomize action! */ if (STREQ(prop_id, "seed")) { if (action == SRT_RANDOMIZE) return true; else return false; } /* Hide seed for reverse and randomize actions! */ if (STREQ(prop_id, "reverse")) { if (ELEM(action, SRT_RANDOMIZE, SRT_REVERSE)) return false; else return true; } return true; } static void edbm_sort_elements_ui(bContext *C, wmOperator *op) { uiLayout *layout = op->layout; wmWindowManager *wm = CTX_wm_manager(C); PointerRNA ptr; RNA_pointer_create(&wm->id, op->type->srna, op->properties, &ptr); /* Main auto-draw call. */ uiDefAutoButsRNA(layout, &ptr, edbm_sort_elements_draw_check_prop, '\0'); } void MESH_OT_sort_elements(wmOperatorType *ot) { static EnumPropertyItem type_items[] = { {SRT_VIEW_ZAXIS, "VIEW_ZAXIS", 0, "View Z Axis", "Sort selected elements from farthest to nearest one in current view"}, {SRT_VIEW_XAXIS, "VIEW_XAXIS", 0, "View X Axis", "Sort selected elements from left to right one in current view"}, {SRT_CURSOR_DISTANCE, "CURSOR_DISTANCE", 0, "Cursor Distance", "Sort selected elements from nearest to farthest from 3D cursor"}, {SRT_MATERIAL, "MATERIAL", 0, "Material", "Sort selected elements from smallest to greatest material index (faces only!)"}, {SRT_SELECTED, "SELECTED", 0, "Selected", "Move all selected elements in first places, preserving their relative order " "(WARNING: this will affect unselected elements' indices as well!)"}, {SRT_RANDOMIZE, "RANDOMIZE", 0, "Randomize", "Randomize order of selected elements"}, {SRT_REVERSE, "REVERSE", 0, "Reverse", "Reverse current order of selected elements"}, {0, NULL, 0, NULL, NULL}, }; static EnumPropertyItem elem_items[] = { {BM_VERT, "VERT", 0, "Vertices", ""}, {BM_EDGE, "EDGE", 0, "Edges", ""}, {BM_FACE, "FACE", 0, "Faces", ""}, {0, NULL, 0, NULL, NULL}, }; /* identifiers */ ot->name = "Sort Mesh Elements"; ot->description = "The order of selected vertices/edges/faces is modified, based on a given method"; ot->idname = "MESH_OT_sort_elements"; /* api callbacks */ ot->invoke = WM_menu_invoke; ot->exec = edbm_sort_elements_exec; ot->poll = ED_operator_editmesh; ot->ui = edbm_sort_elements_ui; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; /* properties */ ot->prop = RNA_def_enum(ot->srna, "type", type_items, 0, "Type", "Type of re-ordering operation to apply"); RNA_def_enum_flag(ot->srna, "elements", elem_items, 0, "Elements", "Which elements to affect (vertices, edges and/or faces)"); RNA_def_boolean(ot->srna, "reverse", false, "Reverse", "Reverse the sorting effect"); RNA_def_int(ot->srna, "seed", 0, 0, INT_MAX, "Seed", "Seed for random-based operations", 0, 255); } /****** end of qsort stuff ****/ static int edbm_noise_exec(bContext *C, wmOperator *op) { Object *obedit = CTX_data_edit_object(C); BMEditMesh *em = BKE_editmesh_from_object(obedit); Material *ma; Tex *tex; BMVert *eve; BMIter iter; const float fac = RNA_float_get(op->ptr, "factor"); if (em == NULL) { return OPERATOR_FINISHED; } if ((ma = give_current_material(obedit, obedit->actcol)) == NULL || (tex = give_current_material_texture(ma)) == NULL) { BKE_report(op->reports, RPT_WARNING, "Mesh has no material or texture assigned"); return OPERATOR_FINISHED; } if (tex->type == TEX_STUCCI) { float b2, vec[3]; float ofs = tex->turbul / 200.0f; BM_ITER_MESH (eve, &iter, em->bm, BM_VERTS_OF_MESH) { if (BM_elem_flag_test(eve, BM_ELEM_SELECT)) { b2 = BLI_hnoise(tex->noisesize, eve->co[0], eve->co[1], eve->co[2]); if (tex->stype) ofs *= (b2 * b2); vec[0] = fac * (b2 - BLI_hnoise(tex->noisesize, eve->co[0] + ofs, eve->co[1], eve->co[2])); vec[1] = fac * (b2 - BLI_hnoise(tex->noisesize, eve->co[0], eve->co[1] + ofs, eve->co[2])); vec[2] = fac * (b2 - BLI_hnoise(tex->noisesize, eve->co[0], eve->co[1], eve->co[2] + ofs)); add_v3_v3(eve->co, vec); } } } else { BM_ITER_MESH (eve, &iter, em->bm, BM_VERTS_OF_MESH) { if (BM_elem_flag_test(eve, BM_ELEM_SELECT)) { float tin, dum; externtex(ma->mtex[0], eve->co, &tin, &dum, &dum, &dum, &dum, 0, NULL); eve->co[2] += fac * tin; } } } EDBM_mesh_normals_update(em); EDBM_update_generic(em, true, false); return OPERATOR_FINISHED; } void MESH_OT_noise(wmOperatorType *ot) { /* identifiers */ ot->name = "Noise"; ot->description = "Use vertex coordinate as texture coordinate"; ot->idname = "MESH_OT_noise"; /* api callbacks */ ot->exec = edbm_noise_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; RNA_def_float(ot->srna, "factor", 0.1f, -FLT_MAX, FLT_MAX, "Factor", "", 0.0f, 1.0f); } static int edbm_bridge_tag_boundary_edges(BMesh *bm) { /* tags boundary edges from a face selection */ BMIter iter; BMFace *f; BMEdge *e; int totface_del = 0; BM_mesh_elem_hflag_disable_all(bm, BM_EDGE | BM_FACE, BM_ELEM_TAG, false); BM_ITER_MESH (e, &iter, bm, BM_EDGES_OF_MESH) { if (BM_elem_flag_test(e, BM_ELEM_SELECT)) { if (BM_edge_is_wire(e) || BM_edge_is_boundary(e)) { BM_elem_flag_enable(e, BM_ELEM_TAG); } else { BMIter fiter; bool is_all_sel = true; /* check if its only used by selected faces */ BM_ITER_ELEM (f, &fiter, e, BM_FACES_OF_EDGE) { if (BM_elem_flag_test(f, BM_ELEM_SELECT)) { /* tag face for removal*/ if (!BM_elem_flag_test(f, BM_ELEM_TAG)) { BM_elem_flag_enable(f, BM_ELEM_TAG); totface_del++; } } else { is_all_sel = false; } } if (is_all_sel == false) { BM_elem_flag_enable(e, BM_ELEM_TAG); } } } } return totface_del; } static int edbm_bridge_edge_loops_exec(bContext *C, wmOperator *op) { BMOperator bmop; Object *obedit = CTX_data_edit_object(C); BMEditMesh *em = BKE_editmesh_from_object(obedit); const int type = RNA_enum_get(op->ptr, "type"); const bool use_pairs = (type == 2); const bool use_cyclic = (type == 1); const bool use_merge = RNA_boolean_get(op->ptr, "use_merge"); const float merge_factor = RNA_float_get(op->ptr, "merge_factor"); const int twist_offset = RNA_int_get(op->ptr, "twist_offset"); const bool use_faces = (em->bm->totfacesel != 0); char edge_hflag; int totface_del = 0; BMFace **totface_del_arr = NULL; if (use_faces) { BMIter iter; BMFace *f; int i; totface_del = edbm_bridge_tag_boundary_edges(em->bm); totface_del_arr = MEM_mallocN(sizeof(*totface_del_arr) * totface_del, __func__); i = 0; BM_ITER_MESH (f, &iter, em->bm, BM_FACES_OF_MESH) { if (BM_elem_flag_test(f, BM_ELEM_TAG)) { totface_del_arr[i++] = f; } } edge_hflag = BM_ELEM_TAG; } else { edge_hflag = BM_ELEM_SELECT; } EDBM_op_init(em, &bmop, op, "bridge_loops edges=%he use_pairs=%b use_cyclic=%b use_merge=%b merge_factor=%f twist_offset=%i", edge_hflag, use_pairs, use_cyclic, use_merge, merge_factor, twist_offset); BMO_op_exec(em->bm, &bmop); if (!BMO_error_occurred(em->bm)) { /* when merge is used the edges are joined and remain selected */ if (use_merge == false) { EDBM_flag_disable_all(em, BM_ELEM_SELECT); BMO_slot_buffer_hflag_enable(em->bm, bmop.slots_out, "faces.out", BM_FACE, BM_ELEM_SELECT, true); } if (use_faces && totface_del) { int i; BM_mesh_elem_hflag_disable_all(em->bm, BM_FACE, BM_ELEM_TAG, false); for (i = 0; i < totface_del; i++) { BM_elem_flag_enable(totface_del_arr[i], BM_ELEM_TAG); } BMO_op_callf(em->bm, BMO_FLAG_DEFAULTS, "delete geom=%hf context=%i", BM_ELEM_TAG, DEL_FACES); } if (use_merge == false) { struct EdgeRingOpSubdProps op_props; mesh_operator_edgering_props_get(op, &op_props); if (op_props.cuts) { BMOperator bmop_subd; /* we only need face normals updated */ EDBM_mesh_normals_update(em); BMO_op_initf( em->bm, &bmop_subd, op->flag, "subdivide_edgering edges=%S interp_mode=%i cuts=%i smooth=%f " "profile_shape=%i profile_shape_factor=%f", &bmop, "edges.out", op_props.interp_mode, op_props.cuts, op_props.smooth, op_props.profile_shape, op_props.profile_shape_factor ); BMO_op_exec(em->bm, &bmop_subd); BMO_slot_buffer_hflag_enable(em->bm, bmop_subd.slots_out, "faces.out", BM_FACE, BM_ELEM_SELECT, true); BMO_op_finish(em->bm, &bmop_subd); } } } if (totface_del_arr) { MEM_freeN(totface_del_arr); } if (!EDBM_op_finish(em, &bmop, op, true)) { /* grr, need to return finished so the user can select different options */ //return OPERATOR_CANCELLED; return OPERATOR_FINISHED; } else { EDBM_update_generic(em, true, true); return OPERATOR_FINISHED; } } void MESH_OT_bridge_edge_loops(wmOperatorType *ot) { static EnumPropertyItem type_items[] = { {0, "SINGLE", 0, "Open Loop", ""}, {1, "CLOSED", 0, "Closed Loop", ""}, {2, "PAIRS", 0, "Loop Pairs", ""}, {0, NULL, 0, NULL, NULL} }; /* identifiers */ ot->name = "Bridge Edge Loops"; ot->description = "Make faces between two or more edge loops"; ot->idname = "MESH_OT_bridge_edge_loops"; /* api callbacks */ ot->exec = edbm_bridge_edge_loops_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; ot->prop = RNA_def_enum(ot->srna, "type", type_items, 0, "Connect Loops", "Method of bridging multiple loops"); RNA_def_boolean(ot->srna, "use_merge", false, "Merge", "Merge rather than creating faces"); RNA_def_float(ot->srna, "merge_factor", 0.5f, 0.0f, 1.0f, "Merge Factor", "", 0.0f, 1.0f); RNA_def_int(ot->srna, "twist_offset", 0, -1000, 1000, "Twist", "Twist offset for closed loops", -1000, 1000); mesh_operator_edgering_props(ot, 0); } static int edbm_wireframe_exec(bContext *C, wmOperator *op) { Object *obedit = CTX_data_edit_object(C); BMEditMesh *em = BKE_editmesh_from_object(obedit); BMOperator bmop; const bool use_boundary = RNA_boolean_get(op->ptr, "use_boundary"); const bool use_even_offset = RNA_boolean_get(op->ptr, "use_even_offset"); const bool use_replace = RNA_boolean_get(op->ptr, "use_replace"); const bool use_relative_offset = RNA_boolean_get(op->ptr, "use_relative_offset"); const bool use_crease = RNA_boolean_get(op->ptr, "use_crease"); const float thickness = RNA_float_get(op->ptr, "thickness"); EDBM_op_init(em, &bmop, op, "wireframe faces=%hf use_boundary=%b use_even_offset=%b use_relative_offset=%b use_crease=%b " "thickness=%f", BM_ELEM_SELECT, use_boundary, use_even_offset, use_relative_offset, use_crease, thickness); BMO_op_exec(em->bm, &bmop); if (use_replace) { BM_mesh_elem_hflag_disable_all(em->bm, BM_FACE, BM_ELEM_TAG, false); BMO_slot_buffer_hflag_enable(em->bm, bmop.slots_in, "faces", BM_FACE, BM_ELEM_TAG, false); BMO_op_callf(em->bm, BMO_FLAG_DEFAULTS, "delete geom=%hvef context=%i", BM_ELEM_TAG, DEL_FACES); } BM_mesh_elem_hflag_disable_all(em->bm, BM_VERT | BM_EDGE | BM_FACE, BM_ELEM_SELECT, false); BMO_slot_buffer_hflag_enable(em->bm, bmop.slots_out, "faces.out", BM_FACE, BM_ELEM_SELECT, true); if (!EDBM_op_finish(em, &bmop, op, true)) { return OPERATOR_CANCELLED; } else { EDBM_update_generic(em, true, true); return OPERATOR_FINISHED; } } void MESH_OT_wireframe(wmOperatorType *ot) { PropertyRNA *prop; /* identifiers */ ot->name = "Wire Frame"; ot->idname = "MESH_OT_wireframe"; ot->description = "Create a solid wire-frame from faces"; /* api callbacks */ ot->exec = edbm_wireframe_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; /* properties */ RNA_def_boolean(ot->srna, "use_boundary", true, "Boundary", "Inset face boundaries"); RNA_def_boolean(ot->srna, "use_even_offset", true, "Offset Even", "Scale the offset to give more even thickness"); RNA_def_boolean(ot->srna, "use_relative_offset", false, "Offset Relative", "Scale the offset by surrounding geometry"); RNA_def_boolean(ot->srna, "use_crease", false, "Crease", "Crease hub edges for improved subsurf"); prop = RNA_def_float(ot->srna, "thickness", 0.01f, 0.0f, FLT_MAX, "Thickness", "", 0.0f, 10.0f); /* use 1 rather then 10 for max else dragging the button moves too far */ RNA_def_property_ui_range(prop, 0.0, 1.0, 0.01, 4); RNA_def_boolean(ot->srna, "use_replace", true, "Replace", "Remove original faces"); } #ifdef WITH_BULLET static int edbm_convex_hull_exec(bContext *C, wmOperator *op) { Object *obedit = CTX_data_edit_object(C); BMEditMesh *em = BKE_editmesh_from_object(obedit); BMOperator bmop; EDBM_op_init(em, &bmop, op, "convex_hull input=%hvef " "use_existing_faces=%b", BM_ELEM_SELECT, RNA_boolean_get(op->ptr, "use_existing_faces")); BMO_op_exec(em->bm, &bmop); /* Hull fails if input is coplanar */ if (BMO_error_occurred(em->bm)) { EDBM_op_finish(em, &bmop, op, true); return OPERATOR_CANCELLED; } BMO_slot_buffer_hflag_enable(em->bm, bmop.slots_out, "geom.out", BM_FACE, BM_ELEM_SELECT, true); /* Delete unused vertices, edges, and faces */ if (RNA_boolean_get(op->ptr, "delete_unused")) { if (!EDBM_op_callf(em, op, "delete geom=%S context=%i", &bmop, "geom_unused.out", DEL_ONLYTAGGED)) { EDBM_op_finish(em, &bmop, op, true); return OPERATOR_CANCELLED; } } /* Delete hole edges/faces */ if (RNA_boolean_get(op->ptr, "make_holes")) { if (!EDBM_op_callf(em, op, "delete geom=%S context=%i", &bmop, "geom_holes.out", DEL_ONLYTAGGED)) { EDBM_op_finish(em, &bmop, op, true); return OPERATOR_CANCELLED; } } /* Merge adjacent triangles */ if (RNA_boolean_get(op->ptr, "join_triangles")) { if (!EDBM_op_call_and_selectf(em, op, "faces.out", true, "join_triangles faces=%S limit=%f", &bmop, "geom.out", RNA_float_get(op->ptr, "limit"))) { EDBM_op_finish(em, &bmop, op, true); return OPERATOR_CANCELLED; } } if (!EDBM_op_finish(em, &bmop, op, true)) { return OPERATOR_CANCELLED; } else { EDBM_update_generic(em, true, true); EDBM_selectmode_flush(em); return OPERATOR_FINISHED; } } void MESH_OT_convex_hull(wmOperatorType *ot) { /* identifiers */ ot->name = "Convex Hull"; ot->description = "Enclose selected vertices in a convex polyhedron"; ot->idname = "MESH_OT_convex_hull"; /* api callbacks */ ot->exec = edbm_convex_hull_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; /* props */ RNA_def_boolean(ot->srna, "delete_unused", true, "Delete Unused", "Delete selected elements that are not used by the hull"); RNA_def_boolean(ot->srna, "use_existing_faces", true, "Use Existing Faces", "Skip hull triangles that are covered by a pre-existing face"); RNA_def_boolean(ot->srna, "make_holes", false, "Make Holes", "Delete selected faces that are used by the hull"); RNA_def_boolean(ot->srna, "join_triangles", true, "Join Triangles", "Merge adjacent triangles into quads"); join_triangle_props(ot); } #endif static int mesh_symmetrize_exec(bContext *C, wmOperator *op) { Object *obedit = CTX_data_edit_object(C); BMEditMesh *em = BKE_editmesh_from_object(obedit); BMOperator bmop; const float thresh = RNA_float_get(op->ptr, "threshold"); EDBM_op_init(em, &bmop, op, "symmetrize input=%hvef direction=%i dist=%f", BM_ELEM_SELECT, RNA_enum_get(op->ptr, "direction"), thresh); BMO_op_exec(em->bm, &bmop); EDBM_flag_disable_all(em, BM_ELEM_SELECT); BMO_slot_buffer_hflag_enable(em->bm, bmop.slots_out, "geom.out", BM_ALL_NOLOOP, BM_ELEM_SELECT, true); if (!EDBM_op_finish(em, &bmop, op, true)) { return OPERATOR_CANCELLED; } else { EDBM_update_generic(em, true, true); EDBM_selectmode_flush(em); return OPERATOR_FINISHED; } } void MESH_OT_symmetrize(struct wmOperatorType *ot) { /* identifiers */ ot->name = "Symmetrize"; ot->description = "Enforce symmetry (both form and topological) across an axis"; ot->idname = "MESH_OT_symmetrize"; /* api callbacks */ ot->exec = mesh_symmetrize_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; ot->prop = RNA_def_enum(ot->srna, "direction", symmetrize_direction_items, BMO_SYMMETRIZE_NEGATIVE_X, "Direction", "Which sides to copy from and to"); RNA_def_float(ot->srna, "threshold", 0.0001, 0.0, 10.0, "Threshold", "", 0.00001, 0.1); } static int mesh_symmetry_snap_exec(bContext *C, wmOperator *op) { const float eps = 0.00001f; const float eps_sq = eps * eps; Object *obedit = CTX_data_edit_object(C); BMEditMesh *em = BKE_editmesh_from_object(obedit); BMesh *bm = em->bm; int *index = MEM_mallocN(bm->totvert * sizeof(*index), __func__); const bool use_topology = false; const float thresh = RNA_float_get(op->ptr, "threshold"); const float fac = RNA_float_get(op->ptr, "factor"); const bool use_center = RNA_boolean_get(op->ptr, "use_center"); /* stats */ int totmirr = 0, totfail = 0, totfound = 0; /* axix */ const int axis_dir = RNA_enum_get(op->ptr, "direction"); int axis = axis_dir % 3; bool axis_sign = axis != axis_dir; /* vertex iter */ BMIter iter; BMVert *v; int i; EDBM_verts_mirror_cache_begin_ex(em, axis, true, true, use_topology, thresh, index); EDBM_index_arrays_ensure(em, BM_VERT); BM_mesh_elem_hflag_disable_all(bm, BM_VERT, BM_ELEM_TAG, false); BM_ITER_MESH_INDEX (v, &iter, bm, BM_VERTS_OF_MESH, i) { if ((BM_elem_flag_test(v, BM_ELEM_SELECT) != false) && (BM_elem_flag_test(v, BM_ELEM_TAG) == false)) { int i_mirr = index[i]; if (i_mirr != -1) { BMVert *v_mirr = EDBM_vert_at_index(em, index[i]); if (v != v_mirr) { float co[3], co_mirr[3]; if ((v->co[axis] > v->co[axis]) == axis_sign) { SWAP(BMVert *, v, v_mirr); } copy_v3_v3(co_mirr, v_mirr->co); co_mirr[axis] *= -1.0f; if (len_squared_v3v3(v->co, co_mirr) > eps_sq) { totmirr++; } interp_v3_v3v3(co, v->co, co_mirr, fac); copy_v3_v3(v->co, co); co[axis] *= -1.0f; copy_v3_v3(v_mirr->co, co); BM_elem_flag_enable(v, BM_ELEM_TAG); BM_elem_flag_enable(v_mirr, BM_ELEM_TAG); totfound++; } else { if (use_center) { if (fabsf(v->co[axis]) > eps) { totmirr++; } v->co[axis] = 0.0f; } BM_elem_flag_enable(v, BM_ELEM_TAG); totfound++; } } else { totfail++; } } } if (totfail) { BKE_reportf(op->reports, RPT_WARNING, "%d already symmetrical, %d pairs mirrored, %d failed", totfound - totmirr, totmirr, totfail); } else { BKE_reportf(op->reports, RPT_INFO, "%d already symmetrical, %d pairs mirrored", totfound - totmirr, totmirr); } /* no need to end cache, just free the array */ MEM_freeN(index); return OPERATOR_FINISHED; } void MESH_OT_symmetry_snap(struct wmOperatorType *ot) { /* identifiers */ ot->name = "Snap to Symmetry"; ot->description = "Snap vertex pairs to their mirrored locations"; ot->idname = "MESH_OT_symmetry_snap"; /* api callbacks */ ot->exec = mesh_symmetry_snap_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; ot->prop = RNA_def_enum(ot->srna, "direction", symmetrize_direction_items, BMO_SYMMETRIZE_NEGATIVE_X, "Direction", "Which sides to copy from and to"); RNA_def_float(ot->srna, "threshold", 0.05, 0.0, 10.0, "Threshold", "", 0.0001, 1.0); RNA_def_float(ot->srna, "factor", 0.5f, 0.0, 1.0, "Factor", "", 0.0, 1.0); RNA_def_boolean(ot->srna, "use_center", true, "Center", "Snap mid verts to the axis center"); } #ifdef WITH_FREESTYLE static int edbm_mark_freestyle_edge_exec(bContext *C, wmOperator *op) { Object *obedit = CTX_data_edit_object(C); Mesh *me = (Mesh *)obedit->data; BMEditMesh *em = BKE_editmesh_from_object(obedit); BMEdge *eed; BMIter iter; FreestyleEdge *fed; int clear = RNA_boolean_get(op->ptr, "clear"); if (em == NULL) return OPERATOR_FINISHED; /* auto-enable Freestyle edge mark drawing */ if (clear == 0) { me->drawflag |= ME_DRAW_FREESTYLE_EDGE; } if (!CustomData_has_layer(&em->bm->edata, CD_FREESTYLE_EDGE)) { BM_data_layer_add(em->bm, &em->bm->edata, CD_FREESTYLE_EDGE); } if (clear) { BM_ITER_MESH (eed, &iter, em->bm, BM_EDGES_OF_MESH) { if (BM_elem_flag_test(eed, BM_ELEM_SELECT) && !BM_elem_flag_test(eed, BM_ELEM_HIDDEN)) { fed = CustomData_bmesh_get(&em->bm->edata, eed->head.data, CD_FREESTYLE_EDGE); fed->flag &= ~FREESTYLE_EDGE_MARK; } } } else { BM_ITER_MESH (eed, &iter, em->bm, BM_EDGES_OF_MESH) { if (BM_elem_flag_test(eed, BM_ELEM_SELECT) && !BM_elem_flag_test(eed, BM_ELEM_HIDDEN)) { fed = CustomData_bmesh_get(&em->bm->edata, eed->head.data, CD_FREESTYLE_EDGE); fed->flag |= FREESTYLE_EDGE_MARK; } } } DAG_id_tag_update(obedit->data, OB_RECALC_DATA); WM_event_add_notifier(C, NC_GEOM | ND_DATA, obedit->data); return OPERATOR_FINISHED; } void MESH_OT_mark_freestyle_edge(wmOperatorType *ot) { /* identifiers */ ot->name = "Mark Freestyle Edge"; ot->description = "(Un)mark selected edges as Freestyle feature edges"; ot->idname = "MESH_OT_mark_freestyle_edge"; /* api callbacks */ ot->exec = edbm_mark_freestyle_edge_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; RNA_def_boolean(ot->srna, "clear", 0, "Clear", ""); } static int edbm_mark_freestyle_face_exec(bContext *C, wmOperator *op) { Object *obedit = CTX_data_edit_object(C); Mesh *me = (Mesh *)obedit->data; BMEditMesh *em = BKE_editmesh_from_object(obedit); BMFace *efa; BMIter iter; FreestyleFace *ffa; int clear = RNA_boolean_get(op->ptr, "clear"); if (em == NULL) return OPERATOR_FINISHED; /* auto-enable Freestyle face mark drawing */ if (!clear) { me->drawflag |= ME_DRAW_FREESTYLE_FACE; } if (!CustomData_has_layer(&em->bm->pdata, CD_FREESTYLE_FACE)) { BM_data_layer_add(em->bm, &em->bm->pdata, CD_FREESTYLE_FACE); } if (clear) { BM_ITER_MESH (efa, &iter, em->bm, BM_FACES_OF_MESH) { if (BM_elem_flag_test(efa, BM_ELEM_SELECT) && !BM_elem_flag_test(efa, BM_ELEM_HIDDEN)) { ffa = CustomData_bmesh_get(&em->bm->pdata, efa->head.data, CD_FREESTYLE_FACE); ffa->flag &= ~FREESTYLE_FACE_MARK; } } } else { BM_ITER_MESH (efa, &iter, em->bm, BM_FACES_OF_MESH) { if (BM_elem_flag_test(efa, BM_ELEM_SELECT) && !BM_elem_flag_test(efa, BM_ELEM_HIDDEN)) { ffa = CustomData_bmesh_get(&em->bm->pdata, efa->head.data, CD_FREESTYLE_FACE); ffa->flag |= FREESTYLE_FACE_MARK; } } } DAG_id_tag_update(obedit->data, OB_RECALC_DATA); WM_event_add_notifier(C, NC_GEOM | ND_DATA, obedit->data); return OPERATOR_FINISHED; } void MESH_OT_mark_freestyle_face(wmOperatorType *ot) { /* identifiers */ ot->name = "Mark Freestyle Face"; ot->description = "(Un)mark selected faces for exclusion from Freestyle feature edge detection"; ot->idname = "MESH_OT_mark_freestyle_face"; /* api callbacks */ ot->exec = edbm_mark_freestyle_face_exec; ot->poll = ED_operator_editmesh; /* flags */ ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; RNA_def_boolean(ot->srna, "clear", 0, "Clear", ""); } #endif