/* * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2004 by Blender Foundation * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): none yet. * * ***** END GPL LICENSE BLOCK ***** */ /** \file blender/editors/mesh/meshtools.c * \ingroup edmesh */ /* meshtools.c: no editmode (violated already :), tools operating on meshes */ #include #include #include #include #include "MEM_guardedalloc.h" #include "DNA_key_types.h" #include "DNA_material_types.h" #include "DNA_meshdata_types.h" #include "DNA_object_types.h" #include "DNA_scene_types.h" #include "BLI_math.h" #include "BLI_blenlib.h" #include "BLI_utildefines.h" #include "BLI_editVert.h" #include "BLI_ghash.h" #include "BLI_rand.h" /* for randome face sorting */ #include "BLI_threads.h" #include "BKE_context.h" #include "BKE_depsgraph.h" #include "BKE_deform.h" #include "BKE_DerivedMesh.h" #include "BKE_key.h" #include "BKE_library.h" #include "BKE_main.h" #include "BKE_mesh.h" #include "BKE_material.h" #include "BKE_report.h" #include "BKE_multires.h" #include "BLO_sys_types.h" // for intptr_t support #include "ED_mesh.h" #include "ED_object.h" #include "ED_view3d.h" #include "WM_api.h" #include "WM_types.h" /* own include */ #include "mesh_intern.h" /* * ********************** no editmode!!! *********** */ /*********************** JOIN ***************************/ /* join selected meshes into the active mesh, context sensitive return 0 if no join is made (error) and 1 of the join is done */ int join_mesh_exec(bContext *C, wmOperator *op) { Main *bmain= CTX_data_main(C); Scene *scene= CTX_data_scene(C); Object *ob= CTX_data_active_object(C); Material **matar, *ma; Mesh *me; MVert *mvert, *mv; MEdge *medge = NULL; MFace *mface = NULL; Key *key, *nkey=NULL; KeyBlock *kb, *okb, *kbn; float imat[4][4], cmat[4][4], *fp1, *fp2, curpos; int a, b, totcol, totmat=0, totedge=0, totvert=0, totface=0, ok=0; int vertofs, *matmap=NULL; int i, j, index, haskey=0, edgeofs, faceofs; bDeformGroup *dg, *odg; MDeformVert *dvert; CustomData vdata, edata, fdata; if(scene->obedit) { BKE_report(op->reports, RPT_WARNING, "Cant join while in editmode"); return OPERATOR_CANCELLED; } /* ob is the object we are adding geometry to */ if(!ob || ob->type!=OB_MESH) { BKE_report(op->reports, RPT_WARNING, "Active object is not a mesh"); return OPERATOR_CANCELLED; } /* count & check */ CTX_DATA_BEGIN(C, Base*, base, selected_editable_bases) { if(base->object->type==OB_MESH) { me= base->object->data; totvert+= me->totvert; totedge+= me->totedge; totface+= me->totface; totmat+= base->object->totcol; if(base->object == ob) ok= 1; /* check for shapekeys */ if(me->key) haskey++; } } CTX_DATA_END; /* that way the active object is always selected */ if(ok==0) { BKE_report(op->reports, RPT_WARNING, "Active object is not a selected mesh"); return OPERATOR_CANCELLED; } /* only join meshes if there are verts to join, there aren't too many, and we only had one mesh selected */ me= (Mesh *)ob->data; key= me->key; if(totvert==0 || totvert==me->totvert) { BKE_report(op->reports, RPT_WARNING, "No mesh data to join"); return OPERATOR_CANCELLED; } if(totvert > MESH_MAX_VERTS) { BKE_reportf(op->reports, RPT_WARNING, "Joining results in %d vertices, limit is " STRINGIFY(MESH_MAX_VERTS), totvert); return OPERATOR_CANCELLED; } /* new material indices and material array */ matar= MEM_callocN(sizeof(void*)*totmat, "join_mesh matar"); if (totmat) matmap= MEM_callocN(sizeof(int)*totmat, "join_mesh matmap"); totcol= ob->totcol; /* obact materials in new main array, is nicer start! */ for(a=0; atotcol; a++) { matar[a]= give_current_material(ob, a+1); id_us_plus((ID *)matar[a]); /* increase id->us : will be lowered later */ } /* - if destination mesh had shapekeys, move them somewhere safe, and set up placeholders * with arrays that are large enough to hold shapekey data for all meshes * - if destination mesh didn't have shapekeys, but we encountered some in the meshes we're * joining, set up a new keyblock and assign to the mesh */ if(key) { /* make a duplicate copy that will only be used here... (must remember to free it!) */ nkey= copy_key(key); /* for all keys in old block, clear data-arrays */ for(kb= key->block.first; kb; kb= kb->next) { if(kb->data) MEM_freeN(kb->data); kb->data= MEM_callocN(sizeof(float)*3*totvert, "join_shapekey"); kb->totelem= totvert; kb->weights= NULL; } } else if(haskey) { /* add a new key-block and add to the mesh */ key= me->key= add_key((ID *)me); key->type = KEY_RELATIVE; } /* first pass over objects - copying materials and vertexgroups across */ CTX_DATA_BEGIN(C, Base*, base, selected_editable_bases) { /* only act if a mesh, and not the one we're joining to */ if((ob!=base->object) && (base->object->type==OB_MESH)) { me= base->object->data; /* Join this object's vertex groups to the base one's */ for(dg=base->object->defbase.first; dg; dg=dg->next) { /* See if this group exists in the object (if it doesn't, add it to the end) */ if(!defgroup_find_name(ob, dg->name)) { odg = MEM_callocN(sizeof(bDeformGroup), "join deformGroup"); memcpy(odg, dg, sizeof(bDeformGroup)); BLI_addtail(&ob->defbase, odg); } } if(ob->defbase.first && ob->actdef==0) ob->actdef=1; if(me->totvert) { /* Add this object's materials to the base one's if they don't exist already (but only if limits not exceeded yet) */ if(totcol < MAXMAT) { for(a=1; a<=base->object->totcol; a++) { ma= give_current_material(base->object, a); for(b=0; bid); } totcol++; } if(totcol >= MAXMAT) break; } } /* if this mesh has shapekeys, check if destination mesh already has matching entries too */ if(me->key && key) { for(kb= me->key->block.first; kb; kb= kb->next) { /* if key doesn't exist in destination mesh, add it */ if(key_get_named_keyblock(key, kb->name) == NULL) { /* copy this existing one over to the new shapekey block */ kbn= MEM_dupallocN(kb); kbn->prev= kbn->next= NULL; /* adjust adrcode and other settings to fit (allocate a new data-array) */ kbn->data= MEM_callocN(sizeof(float)*3*totvert, "joined_shapekey"); kbn->totelem= totvert; kbn->weights= NULL; okb= key->block.last; curpos= (okb) ? okb->pos : -0.1f; if(key->type == KEY_RELATIVE) kbn->pos= curpos + 0.1f; else kbn->pos= curpos; BLI_addtail(&key->block, kbn); kbn->adrcode= key->totkey; key->totkey++; if(key->totkey==1) key->refkey= kbn; // XXX 2.5 Animato #if 0 /* also, copy corresponding ipo-curve to ipo-block if applicable */ if(me->key->ipo && key->ipo) { // FIXME... this is a luxury item! puts("FIXME: ignoring IPO's when joining shapekeys on Meshes for now..."); } #endif } } } } } } CTX_DATA_END; /* setup new data for destination mesh */ memset(&vdata, 0, sizeof(vdata)); memset(&edata, 0, sizeof(edata)); memset(&fdata, 0, sizeof(fdata)); mvert= CustomData_add_layer(&vdata, CD_MVERT, CD_CALLOC, NULL, totvert); medge= CustomData_add_layer(&edata, CD_MEDGE, CD_CALLOC, NULL, totedge); mface= CustomData_add_layer(&fdata, CD_MFACE, CD_CALLOC, NULL, totface); vertofs= 0; edgeofs= 0; faceofs= 0; /* inverse transform for all selected meshes in this object */ invert_m4_m4(imat, ob->obmat); CTX_DATA_BEGIN(C, Base*, base, selected_editable_bases) { /* only join if this is a mesh */ if(base->object->type==OB_MESH) { me= base->object->data; if(me->totvert) { /* standard data */ CustomData_merge(&me->vdata, &vdata, CD_MASK_MESH, CD_DEFAULT, totvert); CustomData_copy_data(&me->vdata, &vdata, 0, vertofs, me->totvert); /* vertex groups */ dvert= CustomData_get(&vdata, vertofs, CD_MDEFORMVERT); /* NB: vertex groups here are new version */ if(dvert) { for(i=0; itotvert; i++) { for(j=0; jobject->defbase, dvert[i].dw[j].def_nr); if(odg) { /* Search for a match in the new object, and set new index */ for(dg=ob->defbase.first, index=0; dg; dg=dg->next, index++) { if(!strcmp(dg->name, odg->name)) { dvert[i].dw[j].def_nr = index; break; } } } } } } /* if this is the object we're merging into, no need to do anything */ if(base->object != ob) { /* watch this: switch matmul order really goes wrong */ mul_m4_m4m4(cmat, base->object->obmat, imat); /* transform vertex coordinates into new space */ for(a=0, mv=mvert; a < me->totvert; a++, mv++) { mul_m4_v3(cmat, mv->co); } /* for each shapekey in destination mesh: * - if there's a matching one, copy it across (will need to transform vertices into new space...) * - otherwise, just copy own coordinates of mesh (no need to transform vertex coordinates into new space) */ if(key) { /* if this mesh has any shapekeys, check first, otherwise just copy coordinates */ for(kb= key->block.first; kb; kb= kb->next) { /* get pointer to where to write data for this mesh in shapekey's data array */ fp1= ((float *)kb->data) + (vertofs*3); /* check if this mesh has such a shapekey */ okb= key_get_named_keyblock(me->key, kb->name); if(okb) { /* copy this mesh's shapekey to the destination shapekey (need to transform first) */ fp2= ((float *)(okb->data)); for(a=0; a < me->totvert; a++, fp1+=3, fp2+=3) { VECCOPY(fp1, fp2); mul_m4_v3(cmat, fp1); } } else { /* copy this mesh's vertex coordinates to the destination shapekey */ mv= mvert; for(a=0; a < me->totvert; a++, fp1+=3, mv++) { VECCOPY(fp1, mv->co); } } } } } else { /* for each shapekey in destination mesh: * - if it was an 'original', copy the appropriate data from nkey * - otherwise, copy across plain coordinates (no need to transform coordinates) */ if(key) { for(kb= key->block.first; kb; kb= kb->next) { /* get pointer to where to write data for this mesh in shapekey's data array */ fp1= ((float *)kb->data) + (vertofs*3); /* check if this was one of the original shapekeys */ okb= key_get_named_keyblock(nkey, kb->name); if(okb) { /* copy this mesh's shapekey to the destination shapekey */ fp2= ((float *)(okb->data)); for(a=0; a < me->totvert; a++, fp1+=3, fp2+=3) { VECCOPY(fp1, fp2); } } else { /* copy base-coordinates to the destination shapekey */ mv= mvert; for(a=0; a < me->totvert; a++, fp1+=3, mv++) { VECCOPY(fp1, mv->co); } } } } } /* advance mvert pointer to end of base mesh's data */ mvert+= me->totvert; } if(me->totface) { /* make mapping for materials */ for(a=1; a<=base->object->totcol; a++) { ma= give_current_material(base->object, a); for(b=0; bobject!=ob) multiresModifier_prepare_join(scene, base->object, ob); CustomData_merge(&me->fdata, &fdata, CD_MASK_MESH, CD_DEFAULT, totface); CustomData_copy_data(&me->fdata, &fdata, 0, faceofs, me->totface); for(a=0; atotface; a++, mface++) { mface->v1+= vertofs; mface->v2+= vertofs; mface->v3+= vertofs; if(mface->v4) mface->v4+= vertofs; if (matmap) mface->mat_nr= matmap[(int)mface->mat_nr]; else mface->mat_nr= 0; } faceofs += me->totface; } if(me->totedge) { CustomData_merge(&me->edata, &edata, CD_MASK_MESH, CD_DEFAULT, totedge); CustomData_copy_data(&me->edata, &edata, 0, edgeofs, me->totedge); for(a=0; atotedge; a++, medge++) { medge->v1+= vertofs; medge->v2+= vertofs; } edgeofs += me->totedge; } /* vertofs is used to help newly added verts be reattached to their edge/face * (cannot be set earlier, or else reattaching goes wrong) */ vertofs += me->totvert; /* free base, now that data is merged */ if(base->object != ob) ED_base_object_free_and_unlink(bmain, scene, base); } } CTX_DATA_END; /* return to mesh we're merging to */ me= ob->data; CustomData_free(&me->vdata, me->totvert); CustomData_free(&me->edata, me->totedge); CustomData_free(&me->fdata, me->totface); me->totvert= totvert; me->totedge= totedge; me->totface= totface; me->vdata= vdata; me->edata= edata; me->fdata= fdata; mesh_update_customdata_pointers(me); /* old material array */ for(a=1; a<=ob->totcol; a++) { ma= ob->mat[a-1]; if(ma) ma->id.us--; } for(a=1; a<=me->totcol; a++) { ma= me->mat[a-1]; if(ma) ma->id.us--; } if(ob->mat) MEM_freeN(ob->mat); if(ob->matbits) MEM_freeN(ob->matbits); if(me->mat) MEM_freeN(me->mat); ob->mat= me->mat= NULL; ob->matbits= NULL; if(totcol) { me->mat= matar; ob->mat= MEM_callocN(sizeof(void *)*totcol, "join obmatar"); ob->matbits= MEM_callocN(sizeof(char)*totcol, "join obmatbits"); } else MEM_freeN(matar); ob->totcol= me->totcol= totcol; ob->colbits= 0; if (matmap) MEM_freeN(matmap); /* other mesh users */ test_object_materials((ID *)me); /* free temp copy of destination shapekeys (if applicable) */ if(nkey) { // XXX 2.5 Animato #if 0 /* free it's ipo too - both are not actually freed from memory yet as ID-blocks */ if(nkey->ipo) { free_ipo(nkey->ipo); BLI_remlink(&bmain->ipo, nkey->ipo); MEM_freeN(nkey->ipo); } #endif free_key(nkey); BLI_remlink(&bmain->key, nkey); MEM_freeN(nkey); } DAG_scene_sort(bmain, scene); // removed objects, need to rebuild dag before editmode call #if 0 ED_object_enter_editmode(C, EM_WAITCURSOR); ED_object_exit_editmode(C, EM_FREEDATA|EM_WAITCURSOR|EM_DO_UNDO); #else /* toggle editmode using lower level functions so this can be called from python */ make_editMesh(scene, ob); load_editMesh(scene, ob); free_editMesh(me->edit_mesh); MEM_freeN(me->edit_mesh); me->edit_mesh= NULL; DAG_id_tag_update(&ob->id, OB_RECALC_OB|OB_RECALC_DATA); #endif WM_event_add_notifier(C, NC_SCENE|ND_OB_ACTIVE, scene); return OPERATOR_FINISHED; } /*********************** JOIN AS SHAPES ***************************/ /* Append selected meshes vertex locations as shapes of the active mesh, return 0 if no join is made (error) and 1 of the join is done */ int join_mesh_shapes_exec(bContext *C, wmOperator *op) { Scene *scene= CTX_data_scene(C); Object *ob= CTX_data_active_object(C); Mesh *me= (Mesh *)ob->data; Mesh *selme=NULL; DerivedMesh *dm=NULL; Key *key=me->key; KeyBlock *kb; int ok=0, nonequal_verts=0; CTX_DATA_BEGIN(C, Base*, base, selected_editable_bases) { if (base->object == ob) continue; if (base->object->type==OB_MESH) { selme = (Mesh *)base->object->data; if (selme->totvert==me->totvert) ok++; else nonequal_verts=1; } } CTX_DATA_END; if (!ok) { if (nonequal_verts) BKE_report(op->reports, RPT_WARNING, "Selected meshes must have equal numbers of vertices"); else BKE_report(op->reports, RPT_WARNING, "No additional selected meshes with equal vertex count to join"); return OPERATOR_CANCELLED; } if(key == NULL) { key= me->key= add_key((ID *)me); key->type= KEY_RELATIVE; /* first key added, so it was the basis. initialise it with the existing mesh */ kb= add_keyblock(key, NULL); mesh_to_key(me, kb); } /* now ready to add new keys from selected meshes */ CTX_DATA_BEGIN(C, Base*, base, selected_editable_bases) { if (base->object == ob) continue; if(base->object->type==OB_MESH) { selme = (Mesh *)base->object->data; if (selme->totvert==me->totvert) { dm = mesh_get_derived_deform(scene, base->object, CD_MASK_BAREMESH); if (!dm) continue; kb= add_keyblock(key, base->object->id.name+2); DM_to_meshkey(dm, me, kb); dm->release(dm); } } } CTX_DATA_END; WM_event_add_notifier(C, NC_SCENE|ND_OB_ACTIVE, scene); return OPERATOR_FINISHED; } /* ********************* MESH VERTEX OCTREE LOOKUP ************* */ /* important note; this is unfinished, needs better API for editmode, and custom threshold */ #define MOC_RES 8 #define MOC_NODE_RES 8 #define MOC_THRESH 0.00002f typedef struct MocNode { struct MocNode *next; intptr_t index[MOC_NODE_RES]; } MocNode; static int mesh_octree_get_base_offs(float *co, float *offs, float *div) { int vx, vy, vz; vx= floor( (co[0]-offs[0])/div[0] ); vy= floor( (co[1]-offs[1])/div[1] ); vz= floor( (co[2]-offs[2])/div[2] ); CLAMP(vx, 0, MOC_RES-1); CLAMP(vy, 0, MOC_RES-1); CLAMP(vz, 0, MOC_RES-1); return (vx*MOC_RES*MOC_RES) + vy*MOC_RES + vz; } static void mesh_octree_add_node(MocNode **bt, intptr_t index) { if(*bt==NULL) { *bt= MEM_callocN(sizeof(MocNode), "MocNode"); (*bt)->index[0]= index; } else { int a; for(a=0; aindex[a]==index) return; else if((*bt)->index[a]==0) { (*bt)->index[a]= index; return; } } mesh_octree_add_node(&(*bt)->next, index); } } static void mesh_octree_free_node(MocNode **bt) { if( (*bt)->next ) { mesh_octree_free_node(&(*bt)->next); } MEM_freeN(*bt); } /* temporal define, just to make nicer code below */ #define MOC_ADDNODE(vx, vy, vz) mesh_octree_add_node(basetable + ((vx)*MOC_RES*MOC_RES) + (vy)*MOC_RES + (vz), index) static void mesh_octree_add_nodes(MocNode **basetable, float *co, float *offs, float *div, intptr_t index) { float fx, fy, fz; int vx, vy, vz; if (!finite(co[0]) || !finite(co[1]) || !finite(co[2]) ) { return; } fx= (co[0]-offs[0])/div[0]; fy= (co[1]-offs[1])/div[1]; fz= (co[2]-offs[2])/div[2]; CLAMP(fx, 0.0f, MOC_RES-MOC_THRESH); CLAMP(fy, 0.0f, MOC_RES-MOC_THRESH); CLAMP(fz, 0.0f, MOC_RES-MOC_THRESH); vx= floor(fx); vy= floor(fy); vz= floor(fz); MOC_ADDNODE(vx, vy, vz); if( vx>0 ) if( fx-((float)vx)-MOC_THRESH < 0.0f) MOC_ADDNODE(vx-1, vy, vz); if( vx 1.0f) MOC_ADDNODE(vx+1, vy, vz); if( vy>0 ) if( fy-((float)vy)-MOC_THRESH < 0.0f) MOC_ADDNODE(vx, vy-1, vz); if( vy 1.0f) MOC_ADDNODE(vx, vy+1, vz); if( vz>0 ) if( fz-((float)vz)-MOC_THRESH < 0.0f) MOC_ADDNODE(vx, vy, vz-1); if( vz 1.0f) MOC_ADDNODE(vx, vy, vz+1); } static intptr_t mesh_octree_find_index(MocNode **bt, MVert *mvert, float *co) { float *vec; int a; if(*bt==NULL) return -1; for(a=0; aindex[a]) { /* does mesh verts and editmode, code looks potential dangerous, octree should really be filled OK! */ if(mvert) { vec= (mvert+(*bt)->index[a]-1)->co; if(compare_v3v3(vec, co, MOC_THRESH)) return (*bt)->index[a]-1; } else { EditVert *eve= (EditVert *)((*bt)->index[a]); if(compare_v3v3(eve->co, co, MOC_THRESH)) return (*bt)->index[a]; } } else return -1; } if( (*bt)->next) return mesh_octree_find_index(&(*bt)->next, mvert, co); return -1; } static struct { MocNode **table; float offs[3], div[3]; } MeshOctree = {NULL, {0, 0, 0}, {0, 0, 0}}; /* mode is 's' start, or 'e' end, or 'u' use */ /* if end, ob can be NULL */ intptr_t mesh_octree_table(Object *ob, EditMesh *em, float *co, char mode) { MocNode **bt; if(mode=='u') { /* use table */ if(MeshOctree.table==NULL) mesh_octree_table(ob, em, NULL, 's'); if(MeshOctree.table) { Mesh *me= ob->data; bt= MeshOctree.table + mesh_octree_get_base_offs(co, MeshOctree.offs, MeshOctree.div); if(em) return mesh_octree_find_index(bt, NULL, co); else return mesh_octree_find_index(bt, me->mvert, co); } return -1; } else if(mode=='s') { /* start table */ Mesh *me= ob->data; float min[3], max[3]; /* we compute own bounding box and don't reuse ob->bb because * we are using the undeformed coordinates*/ INIT_MINMAX(min, max); if(em && me->edit_mesh==em) { EditVert *eve; for(eve= em->verts.first; eve; eve= eve->next) DO_MINMAX(eve->co, min, max) } else { MVert *mvert; int a; for(a=0, mvert= me->mvert; atotvert; a++, mvert++) DO_MINMAX(mvert->co, min, max); } /* for quick unit coordinate calculus */ VECCOPY(MeshOctree.offs, min); MeshOctree.offs[0]-= MOC_THRESH; /* we offset it 1 threshold unit extra */ MeshOctree.offs[1]-= MOC_THRESH; MeshOctree.offs[2]-= MOC_THRESH; sub_v3_v3v3(MeshOctree.div, max, min); MeshOctree.div[0]+= 2*MOC_THRESH; /* and divide with 2 threshold unit more extra (try 8x8 unit grid on paint) */ MeshOctree.div[1]+= 2*MOC_THRESH; MeshOctree.div[2]+= 2*MOC_THRESH; mul_v3_fl(MeshOctree.div, 1.0f/MOC_RES); if(MeshOctree.div[0]==0.0f) MeshOctree.div[0]= 1.0f; if(MeshOctree.div[1]==0.0f) MeshOctree.div[1]= 1.0f; if(MeshOctree.div[2]==0.0f) MeshOctree.div[2]= 1.0f; if(MeshOctree.table) /* happens when entering this call without ending it */ mesh_octree_table(ob, em, co, 'e'); MeshOctree.table= MEM_callocN(MOC_RES*MOC_RES*MOC_RES*sizeof(void *), "sym table"); if(em && me->edit_mesh==em) { EditVert *eve; for(eve= em->verts.first; eve; eve= eve->next) { mesh_octree_add_nodes(MeshOctree.table, eve->co, MeshOctree.offs, MeshOctree.div, (intptr_t)(eve)); } } else { MVert *mvert; int a; for(a=0, mvert= me->mvert; atotvert; a++, mvert++) mesh_octree_add_nodes(MeshOctree.table, mvert->co, MeshOctree.offs, MeshOctree.div, a+1); } } else if(mode=='e') { /* end table */ if(MeshOctree.table) { int a; for(a=0, bt=MeshOctree.table; a (MIRRHASH_TYPE)(intptr_t)l2 ) return 1; else if( (MIRRHASH_TYPE)(intptr_t)l1 < (MIRRHASH_TYPE)(intptr_t)l2 ) return -1; return 0; } static int MirrTopo_item_sort(const void *v1, const void *v2) { if( ((MirrTopoPair *)v1)->hash > ((MirrTopoPair *)v2)->hash ) return 1; else if( ((MirrTopoPair *)v1)->hash < ((MirrTopoPair *)v2)->hash ) return -1; return 0; } static long *mesh_topo_lookup = NULL; static int mesh_topo_lookup_tot = -1; static int mesh_topo_lookup_mode = -1; /* mode is 's' start, or 'e' end, or 'u' use */ /* if end, ob can be NULL */ long mesh_mirrtopo_table(Object *ob, char mode) { if(mode=='u') { /* use table */ Mesh *me= ob->data; if( (mesh_topo_lookup==NULL) || (mesh_topo_lookup_mode != ob->mode) || (me->edit_mesh && me->edit_mesh->totvert != mesh_topo_lookup_tot) || (me->edit_mesh==NULL && me->totvert != mesh_topo_lookup_tot) ) { mesh_mirrtopo_table(ob, 's'); } } else if(mode=='s') { /* start table */ Mesh *me= ob->data; MEdge *medge; EditMesh *em= me->edit_mesh; void **eve_tmp_back= NULL; /* some of the callers are using eve->tmp so restore after */ /* editmode*/ EditEdge *eed; int a, last, totvert; int totUnique= -1, totUniqueOld= -1; MIRRHASH_TYPE *MirrTopoHash = NULL; MIRRHASH_TYPE *MirrTopoHash_Prev = NULL; MirrTopoPair *MirrTopoPairs; mesh_topo_lookup_mode= ob->mode; /* reallocate if needed */ if (mesh_topo_lookup) { MEM_freeN(mesh_topo_lookup); mesh_topo_lookup = NULL; } if(em) { EditVert *eve; totvert= 0; eve_tmp_back= MEM_callocN( em->totvert * sizeof(void *), "TopoMirr" ); for(eve= em->verts.first; eve; eve= eve->next) { eve_tmp_back[totvert]= eve->tmp.p; eve->tmp.l = totvert++; } } else { totvert = me->totvert; } MirrTopoHash = MEM_callocN( totvert * sizeof(MIRRHASH_TYPE), "TopoMirr" ); /* Initialize the vert-edge-user counts used to detect unique topology */ if(em) { for(eed=em->edges.first; eed; eed= eed->next) { MirrTopoHash[eed->v1->tmp.l]++; MirrTopoHash[eed->v2->tmp.l]++; } } else { for(a=0, medge=me->medge; atotedge; a++, medge++) { MirrTopoHash[medge->v1]++; MirrTopoHash[medge->v2]++; } } MirrTopoHash_Prev = MEM_dupallocN( MirrTopoHash ); totUniqueOld = -1; while(1) { /* use the number of edges per vert to give verts unique topology IDs */ if(em) { for(eed=em->edges.first; eed; eed= eed->next) { MirrTopoHash[eed->v1->tmp.l] += MirrTopoHash_Prev[eed->v2->tmp.l]; MirrTopoHash[eed->v2->tmp.l] += MirrTopoHash_Prev[eed->v1->tmp.l]; } } else { for(a=0, medge=me->medge; atotedge; a++, medge++) { /* This can make really big numbers, wrapping around here is fine */ MirrTopoHash[medge->v1] += MirrTopoHash_Prev[medge->v2]; MirrTopoHash[medge->v2] += MirrTopoHash_Prev[medge->v1]; } } memcpy(MirrTopoHash_Prev, MirrTopoHash, sizeof(MIRRHASH_TYPE) * totvert); /* sort so we can count unique values */ qsort(MirrTopoHash_Prev, totvert, sizeof(MIRRHASH_TYPE), MirrTopo_long_sort); totUnique = 1; /* account for skiping the first value */ for(a=1; atmp.* */ if(eve_tmp_back) { EditVert *eve; totvert= 0; for(eve= em->verts.first; eve; eve= eve->next) { eve->tmp.p= eve_tmp_back[totvert++]; } MEM_freeN(eve_tmp_back); eve_tmp_back= NULL; } /* Hash/Index pairs are needed for sorting to find index pairs */ MirrTopoPairs= MEM_callocN( sizeof(MirrTopoPair) * totvert, "MirrTopoPairs"); /* since we are looping through verts, initialize these values here too */ mesh_topo_lookup = MEM_mallocN( totvert * sizeof(long), "mesh_topo_lookup" ); if(em) { EM_init_index_arrays(em,1,0,0); } for(a=0; a= 2) && (MirrTopoPairs[0].hash == MirrTopoPairs[1].hash)) ? 0 : 1; /* Get the pairs out of the sorted hashes, note, totvert+1 means we can use the previous 2, * but you cant ever access the last 'a' index of MirrTopoPairs */ for(a=2; a < totvert+1; a++) { /* printf("I %d %ld %d\n", (a-last), MirrTopoPairs[a ].hash, MirrTopoPairs[a ].vIndex ); */ if ((a==totvert) || (MirrTopoPairs[a-1].hash != MirrTopoPairs[a].hash)) { if (a-last==2) { if(em) { mesh_topo_lookup[MirrTopoPairs[a-1].vIndex] = (long)EM_get_vert_for_index(MirrTopoPairs[a-2].vIndex); mesh_topo_lookup[MirrTopoPairs[a-2].vIndex] = (long)EM_get_vert_for_index(MirrTopoPairs[a-1].vIndex); } else { mesh_topo_lookup[MirrTopoPairs[a-1].vIndex] = MirrTopoPairs[a-2].vIndex; mesh_topo_lookup[MirrTopoPairs[a-2].vIndex] = MirrTopoPairs[a-1].vIndex; } } last= a; } } if(em) { EM_free_index_arrays(); } MEM_freeN( MirrTopoPairs ); MirrTopoPairs = NULL; MEM_freeN( MirrTopoHash ); MEM_freeN( MirrTopoHash_Prev ); mesh_topo_lookup_tot = totvert; } else if(mode=='e') { /* end table */ if (mesh_topo_lookup) { MEM_freeN(mesh_topo_lookup); } mesh_topo_lookup = NULL; mesh_topo_lookup_tot= -1; } return 0; } static int mesh_get_x_mirror_vert_spacial(Object *ob, int index) { Mesh *me= ob->data; MVert *mvert; float vec[3]; mvert= me->mvert+index; vec[0]= -mvert->co[0]; vec[1]= mvert->co[1]; vec[2]= mvert->co[2]; return mesh_octree_table(ob, NULL, vec, 'u'); } static int mesh_get_x_mirror_vert_topo(Object *ob, int index) { if (mesh_mirrtopo_table(ob, 'u')==-1) return -1; return mesh_topo_lookup[index]; } int mesh_get_x_mirror_vert(Object *ob, int index) { if (((Mesh *)ob->data)->editflag & ME_EDIT_MIRROR_TOPO) { return mesh_get_x_mirror_vert_topo(ob, index); } else { return mesh_get_x_mirror_vert_spacial(ob, index); } } static EditVert *editmesh_get_x_mirror_vert_spacial(Object *ob, EditMesh *em, float *co) { float vec[3]; intptr_t poinval; /* ignore nan verts */ if (!finite(co[0]) || !finite(co[1]) || !finite(co[2]) ) return NULL; vec[0]= -co[0]; vec[1]= co[1]; vec[2]= co[2]; poinval= mesh_octree_table(ob, em, vec, 'u'); if(poinval != -1) return (EditVert *)(poinval); return NULL; } static EditVert *editmesh_get_x_mirror_vert_topo(Object *ob, struct EditMesh *em, EditVert *eve, int index) { long poinval; if (mesh_mirrtopo_table(ob, 'u')==-1) return NULL; if (index == -1) { index = BLI_findindex(&em->verts, eve); if (index == -1) { return NULL; } } poinval= mesh_topo_lookup[ index ]; if(poinval != -1) return (EditVert *)(poinval); return NULL; } EditVert *editmesh_get_x_mirror_vert(Object *ob, struct EditMesh *em, EditVert *eve, float *co, int index) { if (((Mesh *)ob->data)->editflag & ME_EDIT_MIRROR_TOPO) { return editmesh_get_x_mirror_vert_topo(ob, em, eve, index); } else { return editmesh_get_x_mirror_vert_spacial(ob, em, co); } } #if 0 float *editmesh_get_mirror_uv(int axis, float *uv, float *mirrCent, float *face_cent) { float vec[2]; float cent_vec[2]; float cent[2]; /* ignore nan verts */ if (isnan(uv[0]) || !finite(uv[0]) || isnan(uv[1]) || !finite(uv[1]) ) return NULL; if (axis) { vec[0]= uv[0]; vec[1]= -((uv[1])-mirrCent[1]) + mirrCent[1]; cent_vec[0] = face_cent[0]; cent_vec[1]= -((face_cent[1])-mirrCent[1]) + mirrCent[1]; } else { vec[0]= -((uv[0])-mirrCent[0]) + mirrCent[0]; vec[1]= uv[1]; cent_vec[0]= -((face_cent[0])-mirrCent[0]) + mirrCent[0]; cent_vec[1] = face_cent[1]; } /* TODO - Optimize */ { EditFace *efa; int i, len; for(efa=em->faces.first; efa; efa=efa->next) { MTFace *tf= (MTFace *)CustomData_em_get(&em->fdata, efa->data, CD_MTFACE); uv_center(tf->uv, cent, (void *)efa->v4); if ( (fabs(cent[0] - cent_vec[0]) < 0.001) && (fabs(cent[1] - cent_vec[1]) < 0.001) ) { len = efa->v4 ? 4 : 3; for (i=0; iuv[i][0] - vec[0]) < 0.001) && (fabs(tf->uv[i][1] - vec[1]) < 0.001) ) { return tf->uv[i]; } } } } } return NULL; } #endif static unsigned int mirror_facehash(const void *ptr) { const MFace *mf= ptr; int v0, v1; if(mf->v4) { v0= MIN4(mf->v1, mf->v2, mf->v3, mf->v4); v1= MAX4(mf->v1, mf->v2, mf->v3, mf->v4); } else { v0= MIN3(mf->v1, mf->v2, mf->v3); v1= MAX3(mf->v1, mf->v2, mf->v3); } return ((v0*39)^(v1*31)); } static int mirror_facerotation(MFace *a, MFace *b) { if(b->v4) { if(a->v1==b->v1 && a->v2==b->v2 && a->v3==b->v3 && a->v4==b->v4) return 0; else if(a->v4==b->v1 && a->v1==b->v2 && a->v2==b->v3 && a->v3==b->v4) return 1; else if(a->v3==b->v1 && a->v4==b->v2 && a->v1==b->v3 && a->v2==b->v4) return 2; else if(a->v2==b->v1 && a->v3==b->v2 && a->v4==b->v3 && a->v1==b->v4) return 3; } else { if(a->v1==b->v1 && a->v2==b->v2 && a->v3==b->v3) return 0; else if(a->v3==b->v1 && a->v1==b->v2 && a->v2==b->v3) return 1; else if(a->v2==b->v1 && a->v3==b->v2 && a->v1==b->v3) return 2; } return -1; } static int mirror_facecmp(const void *a, const void *b) { return (mirror_facerotation((MFace*)a, (MFace*)b) == -1); } int *mesh_get_x_mirror_faces(Object *ob, EditMesh *em) { Mesh *me= ob->data; MVert *mv, *mvert= me->mvert; MFace mirrormf, *mf, *hashmf, *mface= me->mface; GHash *fhash; int *mirrorverts, *mirrorfaces; int a; mirrorverts= MEM_callocN(sizeof(int)*me->totvert, "MirrorVerts"); mirrorfaces= MEM_callocN(sizeof(int)*2*me->totface, "MirrorFaces"); mesh_octree_table(ob, em, NULL, 's'); for(a=0, mv=mvert; atotvert; a++, mv++) mirrorverts[a]= mesh_get_x_mirror_vert(ob, a); mesh_octree_table(ob, em, NULL, 'e'); fhash= BLI_ghash_new(mirror_facehash, mirror_facecmp, "mirror_facehash gh"); for(a=0, mf=mface; atotface; a++, mf++) BLI_ghash_insert(fhash, mf, mf); for(a=0, mf=mface; atotface; a++, mf++) { mirrormf.v1= mirrorverts[mf->v3]; mirrormf.v2= mirrorverts[mf->v2]; mirrormf.v3= mirrorverts[mf->v1]; mirrormf.v4= (mf->v4)? mirrorverts[mf->v4]: 0; /* make sure v4 is not 0 if a quad */ if(mf->v4 && mirrormf.v4==0) { SWAP(int, mirrormf.v1, mirrormf.v3); SWAP(int, mirrormf.v2, mirrormf.v4); } hashmf= BLI_ghash_lookup(fhash, &mirrormf); if(hashmf) { mirrorfaces[a*2]= hashmf - mface; mirrorfaces[a*2+1]= mirror_facerotation(&mirrormf, hashmf); } else mirrorfaces[a*2]= -1; } BLI_ghash_free(fhash, NULL, NULL); MEM_freeN(mirrorverts); return mirrorfaces; }