/* * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2019 by Blender Foundation * All rights reserved. */ /** \file * \ingroup edobj */ #include #include #include #include #include #include "MEM_guardedalloc.h" #include "BLI_blenlib.h" #include "BLI_math.h" #include "BLI_utildefines.h" #include "DNA_scene_types.h" #include "DNA_object_types.h" #include "DNA_meshdata_types.h" #include "DNA_mesh_types.h" #include "BKE_context.h" #include "BKE_global.h" #include "BKE_lib_id.h" #include "BKE_main.h" #include "BKE_mesh.h" #include "BKE_mesh_runtime.h" #include "BKE_mesh_mirror.h" #include "BKE_modifier.h" #include "BKE_object.h" #include "BKE_paint.h" #include "BKE_report.h" #include "BKE_scene.h" #include "BKE_shrinkwrap.h" #include "BKE_customdata.h" #include "BKE_mesh_remesh_voxel.h" #include "DEG_depsgraph.h" #include "DEG_depsgraph_build.h" #include "ED_mesh.h" #include "ED_object.h" #include "ED_screen.h" #include "ED_sculpt.h" #include "ED_undo.h" #include "RNA_access.h" #include "RNA_define.h" #include "RNA_enum_types.h" #include "WM_api.h" #include "WM_types.h" #include "WM_message.h" #include "WM_toolsystem.h" #include "object_intern.h" // own include static bool object_remesh_poll(bContext *C) { Object *ob = CTX_data_active_object(C); if (ob == NULL) { return false; } if (BKE_object_is_in_editmode(ob)) { CTX_wm_operator_poll_msg_set(C, "The remesher cannot run from edit mode."); return false; } if (ob->mode == OB_MODE_SCULPT && ob->sculpt->bm) { CTX_wm_operator_poll_msg_set(C, "The remesher cannot run with dyntopo activated."); return false; } if (modifiers_usesMultires(ob)) { CTX_wm_operator_poll_msg_set( C, "The remesher cannot run with a Multires modifier in the modifier stack."); return false; } return ED_operator_object_active_editable_mesh(C); } static int voxel_remesh_exec(bContext *C, wmOperator *op) { Object *ob = CTX_data_active_object(C); Mesh *mesh = ob->data; Mesh *new_mesh; if (mesh->remesh_voxel_size <= 0.0f) { BKE_report(op->reports, RPT_ERROR, "Voxel remesher cannot run with a voxel size of 0.0."); return OPERATOR_CANCELLED; } float isovalue = 0.0f; if (mesh->flag & ME_REMESH_REPROJECT_VOLUME) { isovalue = mesh->remesh_voxel_size * 0.3f; } new_mesh = BKE_mesh_remesh_voxel_to_mesh_nomain( mesh, mesh->remesh_voxel_size, mesh->remesh_voxel_adaptivity, isovalue); if (!new_mesh) { BKE_report(op->reports, RPT_ERROR, "Voxel remesher failed to create mesh."); return OPERATOR_CANCELLED; } if (ob->mode == OB_MODE_SCULPT) { ED_sculpt_undo_geometry_begin(ob, op->type->name); } if (mesh->flag & ME_REMESH_FIX_POLES && mesh->remesh_voxel_adaptivity <= 0.0f) { new_mesh = BKE_mesh_remesh_voxel_fix_poles(new_mesh); BKE_mesh_calc_normals(new_mesh); } if (mesh->flag & ME_REMESH_REPROJECT_VOLUME) { BKE_mesh_runtime_clear_geometry(mesh); BKE_shrinkwrap_remesh_target_project(new_mesh, mesh, ob); } if (mesh->flag & ME_REMESH_REPROJECT_PAINT_MASK) { BKE_mesh_runtime_clear_geometry(mesh); BKE_mesh_remesh_reproject_paint_mask(new_mesh, mesh); } BKE_mesh_nomain_to_mesh(new_mesh, mesh, ob, &CD_MASK_MESH, true); if (mesh->flag & ME_REMESH_SMOOTH_NORMALS) { BKE_mesh_smooth_flag_set(ob->data, true); } if (ob->mode == OB_MODE_SCULPT) { ED_sculpt_undo_geometry_end(ob); } BKE_mesh_batch_cache_dirty_tag(ob->data, BKE_MESH_BATCH_DIRTY_ALL); DEG_id_tag_update(&ob->id, ID_RECALC_GEOMETRY); WM_event_add_notifier(C, NC_GEOM | ND_DATA, ob->data); return OPERATOR_FINISHED; } void OBJECT_OT_voxel_remesh(wmOperatorType *ot) { /* identifiers */ ot->name = "Voxel Remesh"; ot->description = "Calculates a new manifold mesh based on the volume of the current mesh. All data layers " "will be lost"; ot->idname = "OBJECT_OT_voxel_remesh"; /* api callbacks */ ot->poll = object_remesh_poll; ot->exec = voxel_remesh_exec; ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; } enum { QUADRIFLOW_REMESH_RATIO = 1, QUADRIFLOW_REMESH_EDGE_LENGTH, QUADRIFLOW_REMESH_FACES, }; /****************** quadriflow remesh operator *********************/ #define QUADRIFLOW_MIRROR_BISECT_TOLERANCE 0.005f typedef enum eSymmetryAxes { SYMMETRY_AXES_X = (1 << 0), SYMMETRY_AXES_Y = (1 << 1), SYMMETRY_AXES_Z = (1 << 2), } eSymmetryAxes; typedef struct QuadriFlowJob { /* from wmJob */ struct Object *owner; struct Main *bmain; short *stop, *do_update; float *progress; int target_faces; int seed; bool use_paint_symmetry; eSymmetryAxes symmetry_axes; bool use_preserve_sharp; bool use_preserve_boundary; bool use_mesh_curvature; bool preserve_paint_mask; bool smooth_normals; int success; } QuadriFlowJob; static bool mesh_is_manifold_consistent(Mesh *mesh) { /* In this check we count boundary edges as manifold. Additionally, we also * check that the direction of the faces are consistent and doesn't suddenly * flip */ bool is_manifold_consistent = true; const MLoop *mloop = mesh->mloop; char *edge_faces = (char *)MEM_callocN(mesh->totedge * sizeof(char), "remesh_manifold_check"); int *edge_vert = (int *)MEM_malloc_arrayN( mesh->totedge, sizeof(unsigned int), "remesh_consistent_check"); for (unsigned int i = 0; i < mesh->totedge; i++) { edge_vert[i] = -1; } for (unsigned int loop_idx = 0; loop_idx < mesh->totloop; loop_idx++) { const MLoop *loop = &mloop[loop_idx]; edge_faces[loop->e] += 1; if (edge_faces[loop->e] > 2) { is_manifold_consistent = false; break; } if (edge_vert[loop->e] == -1) { edge_vert[loop->e] = loop->v; } else if (edge_vert[loop->e] == loop->v) { /* Mesh has flips in the surface so it is non consistent */ is_manifold_consistent = false; break; } } if (is_manifold_consistent) { /* check for wire edges */ for (unsigned int i = 0; i < mesh->totedge; i++) { if (edge_faces[i] == 0) { is_manifold_consistent = false; break; } } } MEM_freeN(edge_faces); MEM_freeN(edge_vert); return is_manifold_consistent; } static void quadriflow_free_job(void *customdata) { QuadriFlowJob *qj = customdata; MEM_freeN(qj); } /* called by quadriflowjob, only to check job 'stop' value */ static int quadriflow_break_job(void *customdata) { QuadriFlowJob *qj = (QuadriFlowJob *)customdata; // return *(qj->stop); /* this is not nice yet, need to make the jobs list template better * for identifying/acting upon various different jobs */ /* but for now we'll reuse the render break... */ bool should_break = (G.is_break); if (should_break) { qj->success = -1; } return should_break; } /* called by oceanbake, wmJob sends notifier */ static void quadriflow_update_job(void *customdata, float progress, int *cancel) { QuadriFlowJob *qj = customdata; if (quadriflow_break_job(qj)) { *cancel = 1; } else { *cancel = 0; } *(qj->do_update) = true; *(qj->progress) = progress; } static Mesh *remesh_symmetry_bisect(Main *bmain, Mesh *mesh, eSymmetryAxes symmetry_axes) { MirrorModifierData mmd = {{0}}; mmd.tolerance = QUADRIFLOW_MIRROR_BISECT_TOLERANCE; Mesh *mesh_bisect, *mesh_bisect_temp; mesh_bisect = BKE_mesh_copy(bmain, mesh); int axis; float plane_co[3], plane_no[3]; zero_v3(plane_co); for (char i = 0; i < 3; i++) { eSymmetryAxes symm_it = (eSymmetryAxes)(1 << i); if (symmetry_axes & symm_it) { axis = i; mmd.flag = 0; mmd.flag &= MOD_MIR_BISECT_AXIS_X << i; zero_v3(plane_no); plane_no[axis] = -1.0f; mesh_bisect_temp = mesh_bisect; mesh_bisect = BKE_mesh_mirror_bisect_on_mirror_plane( &mmd, mesh_bisect, axis, plane_co, plane_no); if (mesh_bisect_temp != mesh_bisect) { BKE_id_free(bmain, mesh_bisect_temp); } } } BKE_id_free(bmain, mesh); return mesh_bisect; } static Mesh *remesh_symmetry_mirror(Object *ob, Mesh *mesh, eSymmetryAxes symmetry_axes) { MirrorModifierData mmd = {{0}}; mmd.tolerance = QUADRIFLOW_MIRROR_BISECT_TOLERANCE; Mesh *mesh_mirror, *mesh_mirror_temp; mesh_mirror = mesh; int axis; for (char i = 0; i < 3; i++) { eSymmetryAxes symm_it = (eSymmetryAxes)(1 << i); if (symmetry_axes & symm_it) { axis = i; mmd.flag = 0; mmd.flag &= MOD_MIR_AXIS_X << i; mesh_mirror_temp = mesh_mirror; mesh_mirror = BKE_mesh_mirror_apply_mirror_on_axis(&mmd, NULL, ob, mesh_mirror, axis); if (mesh_mirror_temp != mesh_mirror) { BKE_id_free(NULL, mesh_mirror_temp); } } } return mesh_mirror; } static void quadriflow_start_job(void *customdata, short *stop, short *do_update, float *progress) { QuadriFlowJob *qj = customdata; qj->stop = stop; qj->do_update = do_update; qj->progress = progress; qj->success = 1; G.is_break = false; /* XXX shared with render - replace with job 'stop' switch */ Object *ob = qj->owner; Mesh *mesh = ob->data; Mesh *new_mesh; Mesh *bisect_mesh; /* Check if the mesh is manifold. Quadriflow requires manifold meshes */ if (!mesh_is_manifold_consistent(mesh)) { qj->success = -2; return; } /* Run Quadriflow bisect operations on a copy of the mesh to keep the code readable without * freeing the original ID */ bisect_mesh = BKE_mesh_copy(qj->bmain, mesh); /* Bisect the input mesh using the paint symmetry settings */ bisect_mesh = remesh_symmetry_bisect(qj->bmain, bisect_mesh, qj->symmetry_axes); new_mesh = BKE_mesh_remesh_quadriflow_to_mesh_nomain(bisect_mesh, qj->target_faces, qj->seed, qj->use_preserve_sharp, qj->use_preserve_boundary || qj->use_paint_symmetry, qj->use_mesh_curvature, quadriflow_update_job, (void *)qj); BKE_id_free(qj->bmain, bisect_mesh); if (new_mesh == NULL) { *do_update = true; *stop = 0; if (qj->success == 1) { /* This is not a user cancelation event */ qj->success = 0; } return; } /* Mirror the Quadriflow result to build the final mesh */ new_mesh = remesh_symmetry_mirror(qj->owner, new_mesh, qj->symmetry_axes); if (ob->mode == OB_MODE_SCULPT) { ED_sculpt_undo_geometry_begin(ob, "QuadriFlow Remesh"); } if (qj->preserve_paint_mask) { BKE_mesh_runtime_clear_geometry(mesh); BKE_mesh_remesh_reproject_paint_mask(new_mesh, mesh); } BKE_mesh_nomain_to_mesh(new_mesh, mesh, ob, &CD_MASK_MESH, true); if (qj->smooth_normals) { if (qj->use_paint_symmetry) { BKE_mesh_calc_normals(ob->data); } BKE_mesh_smooth_flag_set(ob->data, true); } if (ob->mode == OB_MODE_SCULPT) { ED_sculpt_undo_geometry_end(ob); } BKE_mesh_batch_cache_dirty_tag(ob->data, BKE_MESH_BATCH_DIRTY_ALL); *do_update = true; *stop = 0; } static void quadriflow_end_job(void *customdata) { QuadriFlowJob *qj = customdata; Object *ob = qj->owner; WM_set_locked_interface(G_MAIN->wm.first, false); switch (qj->success) { case 1: DEG_id_tag_update(&ob->id, ID_RECALC_GEOMETRY); WM_reportf(RPT_INFO, "QuadriFlow: Completed remeshing!"); break; case 0: WM_reportf(RPT_ERROR, "QuadriFlow: remeshing failed!"); break; case -1: WM_report(RPT_WARNING, "QuadriFlow: remeshing canceled!"); break; case -2: WM_report(RPT_WARNING, "QuadriFlow: The mesh needs to be manifold and have face normals that point in a " "consistent direction."); break; } } static int quadriflow_remesh_exec(bContext *C, wmOperator *op) { QuadriFlowJob *job = MEM_mallocN(sizeof(QuadriFlowJob), "QuadriFlowJob"); job->owner = CTX_data_active_object(C); job->bmain = CTX_data_main(C); job->target_faces = RNA_int_get(op->ptr, "target_faces"); job->seed = RNA_int_get(op->ptr, "seed"); job->use_paint_symmetry = RNA_boolean_get(op->ptr, "use_paint_symmetry"); job->use_preserve_sharp = RNA_boolean_get(op->ptr, "use_preserve_sharp"); job->use_preserve_boundary = RNA_boolean_get(op->ptr, "use_preserve_boundary"); job->use_mesh_curvature = RNA_boolean_get(op->ptr, "use_mesh_curvature"); job->preserve_paint_mask = RNA_boolean_get(op->ptr, "preserve_paint_mask"); job->smooth_normals = RNA_boolean_get(op->ptr, "smooth_normals"); /* Update the target face count if symmetry is enabled */ Sculpt *sd = CTX_data_tool_settings(C)->sculpt; if (sd && job->use_paint_symmetry) { job->symmetry_axes = (eSymmetryAxes)(sd->paint.symmetry_flags & PAINT_SYMM_AXIS_ALL); for (char i = 0; i < 3; i++) { eSymmetryAxes symm_it = (eSymmetryAxes)(1 << i); if (job->symmetry_axes & symm_it) { job->target_faces = job->target_faces / 2; } } } else { job->use_paint_symmetry = false; job->symmetry_axes = 0; } wmJob *wm_job = WM_jobs_get(CTX_wm_manager(C), CTX_wm_window(C), CTX_data_scene(C), "QuadriFlow Remesh", WM_JOB_PROGRESS, WM_JOB_TYPE_QUADRIFLOW_REMESH); WM_jobs_customdata_set(wm_job, job, quadriflow_free_job); WM_jobs_timer(wm_job, 0.1, NC_GEOM | ND_DATA, NC_GEOM | ND_DATA); WM_jobs_callbacks(wm_job, quadriflow_start_job, NULL, NULL, quadriflow_end_job); WM_set_locked_interface(CTX_wm_manager(C), true); WM_jobs_start(CTX_wm_manager(C), wm_job); return OPERATOR_FINISHED; } static bool quadriflow_check(bContext *C, wmOperator *op) { int mode = RNA_enum_get(op->ptr, "mode"); if (mode == QUADRIFLOW_REMESH_EDGE_LENGTH) { float area = RNA_float_get(op->ptr, "mesh_area"); if (area < 0.0f) { Object *ob = CTX_data_active_object(C); area = BKE_mesh_calc_area(ob->data); RNA_float_set(op->ptr, "mesh_area", area); } int num_faces; float edge_len = RNA_float_get(op->ptr, "target_edge_length"); num_faces = area / (edge_len * edge_len); RNA_int_set(op->ptr, "target_faces", num_faces); } else if (mode == QUADRIFLOW_REMESH_RATIO) { Object *ob = CTX_data_active_object(C); Mesh *mesh = ob->data; int num_faces; float ratio = RNA_float_get(op->ptr, "target_ratio"); num_faces = mesh->totpoly * ratio; RNA_int_set(op->ptr, "target_faces", num_faces); } return true; } /* Hide the target variables if they are not active */ static bool quadriflow_poll_property(const bContext *C, wmOperator *op, const PropertyRNA *prop) { const char *prop_id = RNA_property_identifier(prop); if (STRPREFIX(prop_id, "target")) { int mode = RNA_enum_get(op->ptr, "mode"); if (STREQ(prop_id, "target_edge_length") && mode != QUADRIFLOW_REMESH_EDGE_LENGTH) { return false; } else if (STREQ(prop_id, "target_faces")) { if (mode != QUADRIFLOW_REMESH_FACES) { /* Make sure we can edit the target_faces value even if it doesn't start as EDITABLE */ float area = RNA_float_get(op->ptr, "mesh_area"); if (area < -0.8f) { area += 0.2f; /* Make sure we have up to date values from the start */ RNA_def_property_flag((PropertyRNA *)prop, PROP_EDITABLE); quadriflow_check((bContext *)C, op); } /* Only disable input */ RNA_def_property_clear_flag((PropertyRNA *)prop, PROP_EDITABLE); } else { RNA_def_property_flag((PropertyRNA *)prop, PROP_EDITABLE); } } else if (STREQ(prop_id, "target_ratio") && mode != QUADRIFLOW_REMESH_RATIO) { return false; } } return true; } static const EnumPropertyItem mode_type_items[] = { {QUADRIFLOW_REMESH_RATIO, "RATIO", 0, "Ratio", "Specify target number of faces relative to the current mesh"}, {QUADRIFLOW_REMESH_EDGE_LENGTH, "EDGE", 0, "Edge Length", "Input target edge length in the new mesh"}, {QUADRIFLOW_REMESH_FACES, "FACES", 0, "Faces", "Input target number of faces in the new mesh"}, {0, NULL, 0, NULL, NULL}, }; void OBJECT_OT_quadriflow_remesh(wmOperatorType *ot) { /* identifiers */ ot->name = "QuadriFlow Remesh"; ot->description = "Create a new quad based mesh using the surface data of the current mesh. All data " "layers will be lost"; ot->idname = "OBJECT_OT_quadriflow_remesh"; /* api callbacks */ ot->poll = object_remesh_poll; ot->poll_property = quadriflow_poll_property; ot->check = quadriflow_check; ot->invoke = WM_operator_props_popup_confirm; ot->exec = quadriflow_remesh_exec; ot->flag = OPTYPE_REGISTER | OPTYPE_UNDO; PropertyRNA *prop; /* properties */ RNA_def_boolean(ot->srna, "use_paint_symmetry", true, "Use Paint Symmetry", "Generates a symmetrycal mesh using the paint symmetry configuration"); RNA_def_boolean(ot->srna, "use_preserve_sharp", false, "Preserve Sharp", "Try to preserve sharp features on the mesh"); RNA_def_boolean(ot->srna, "use_preserve_boundary", false, "Preserve Mesh Boundary", "Try to preserve mesh boundary on the mesh"); RNA_def_boolean(ot->srna, "use_mesh_curvature", false, "Use Mesh Curvature", "Take the mesh curvature into account when remeshing"); RNA_def_boolean(ot->srna, "preserve_paint_mask", false, "Preserve Paint Mask", "Reproject the paint mask onto the new mesh"); RNA_def_boolean(ot->srna, "smooth_normals", false, "Smooth Normals", "Set the output mesh normals to smooth"); RNA_def_enum(ot->srna, "mode", mode_type_items, QUADRIFLOW_REMESH_FACES, "Mode", "How to specify the amount of detail for the new mesh"); prop = RNA_def_float(ot->srna, "target_ratio", 1, 0, FLT_MAX, "Ratio", "Relative number of faces compared to the current mesh", 0.0f, 1.0f); prop = RNA_def_float(ot->srna, "target_edge_length", 0.1f, 0.0000001f, FLT_MAX, "Edge Length", "Target edge length in the new mesh", 0.00001f, 1.0f); prop = RNA_def_int(ot->srna, "target_faces", 4000, 1, INT_MAX, "Number of Faces", "Approximate number of faces (quads) in the new mesh", 1, INT_MAX); prop = RNA_def_float( ot->srna, "mesh_area", -1.0f, -FLT_MAX, FLT_MAX, "Old Object Face Area", "This property is only used to cache the object area for later calculations", 0.0f, FLT_MAX); RNA_def_property_flag(prop, PROP_HIDDEN | PROP_SKIP_SAVE); RNA_def_int(ot->srna, "seed", 0, 0, INT_MAX, "Seed", "Random seed to use with the solver. Different seeds will cause the remesher to " "come up with different quad layouts on the mesh", 0, 255); }