/* * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2006 by Nicholas Bishop * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): Jason Wilkins, Tom Musgrove. * * ***** END GPL LICENSE BLOCK ***** * * Implements the Sculpt Mode tools * */ /** \file blender/editors/sculpt_paint/sculpt.c * \ingroup edsculpt */ #include "MEM_guardedalloc.h" #include "BLI_math.h" #include "BLI_blenlib.h" #include "BLI_utildefines.h" #include "BLI_dynstr.h" #include "BLI_ghash.h" #include "BLI_pbvh.h" #include "BLI_threads.h" #include "BLI_rand.h" #include "DNA_mesh_types.h" #include "DNA_meshdata_types.h" #include "DNA_node_types.h" #include "DNA_object_types.h" #include "DNA_scene_types.h" #include "DNA_brush_types.h" #include "BKE_brush.h" #include "BKE_cdderivedmesh.h" #include "BKE_context.h" #include "BKE_depsgraph.h" #include "BKE_key.h" #include "BKE_library.h" #include "BKE_mesh.h" #include "BKE_modifier.h" #include "BKE_multires.h" #include "BKE_paint.h" #include "BKE_report.h" #include "BKE_lattice.h" /* for armature_deform_verts */ #include "BKE_node.h" #include "BKE_subsurf.h" #include "BIF_glutil.h" #include "WM_api.h" #include "WM_types.h" #include "ED_sculpt.h" #include "ED_screen.h" #include "ED_view3d.h" #include "ED_util.h" /* for crazyspace correction */ #include "paint_intern.h" #include "sculpt_intern.h" #include "RNA_access.h" #include "RNA_define.h" #include "RE_render_ext.h" #include "GPU_buffers.h" #include #include #include #ifdef _OPENMP #include #endif void ED_sculpt_force_update(bContext *C) { Object *ob= CTX_data_active_object(C); if(ob && (ob->mode & OB_MODE_SCULPT)) multires_force_update(ob); } /* Sculpt mode handles multires differently from regular meshes, but only if * it's the last modifier on the stack and it is not on the first level */ struct MultiresModifierData *sculpt_multires_active(Scene *scene, Object *ob) { Mesh *me= (Mesh*)ob->data; ModifierData *md; if(!CustomData_get_layer(&me->ldata, CD_MDISPS)) { /* multires can't work without displacement layer */ return NULL; } for(md= modifiers_getVirtualModifierList(ob); md; md= md->next) { if(md->type == eModifierType_Multires) { MultiresModifierData *mmd= (MultiresModifierData*)md; if(!modifier_isEnabled(scene, md, eModifierMode_Realtime)) continue; if(mmd->sculptlvl > 0) return mmd; else return NULL; } } return NULL; } /* Check if there are any active modifiers in stack (used for flushing updates at enter/exit sculpt mode) */ static int sculpt_has_active_modifiers(Scene *scene, Object *ob) { ModifierData *md; md= modifiers_getVirtualModifierList(ob); /* exception for shape keys because we can edit those */ for(; md; md= md->next) { if(modifier_isEnabled(scene, md, eModifierMode_Realtime)) return 1; } return 0; } /* Checks if there are any supported deformation modifiers active */ static int sculpt_modifiers_active(Scene *scene, Sculpt *sd, Object *ob) { ModifierData *md; Mesh *me= (Mesh*)ob->data; MultiresModifierData *mmd= sculpt_multires_active(scene, ob); if(mmd) return 0; /* non-locked shape keys could be handled in the same way as deformed mesh */ if((ob->shapeflag&OB_SHAPE_LOCK)==0 && me->key && ob->shapenr) return 1; md= modifiers_getVirtualModifierList(ob); /* exception for shape keys because we can edit those */ for(; md; md= md->next) { ModifierTypeInfo *mti = modifierType_getInfo(md->type); if(!modifier_isEnabled(scene, md, eModifierMode_Realtime)) continue; if(md->type==eModifierType_ShapeKey) continue; if(mti->type==eModifierTypeType_OnlyDeform) return 1; else if((sd->flags & SCULPT_ONLY_DEFORM)==0) return 1; } return 0; } typedef enum StrokeFlags { CLIP_X = 1, CLIP_Y = 2, CLIP_Z = 4 } StrokeFlags; /* Cache stroke properties. Used because * RNA property lookup isn't particularly fast. * * For descriptions of these settings, check the operator properties. */ typedef struct StrokeCache { /* Invariants */ float initial_radius; float scale[3]; int flag; float clip_tolerance[3]; float initial_mouse[2]; /* Variants */ float radius; float radius_squared; //float traced_location[3]; float true_location[3]; float location[3]; float pen_flip; float invert; float pressure; float mouse[2]; float bstrength; float tex_mouse[2]; /* The rest is temporary storage that isn't saved as a property */ int first_time; /* Beginning of stroke may do some things special */ /* from ED_view3d_ob_project_mat_get() */ float projection_mat[4][4]; /* Clean this up! */ ViewContext *vc; Brush *brush; float (*face_norms)[3]; /* Copy of the mesh faces' normals */ float special_rotation; /* Texture rotation (radians) for anchored and rake modes */ int pixel_radius, previous_pixel_radius; float grab_delta[3], grab_delta_symmetry[3]; float old_grab_location[3], orig_grab_location[3]; int symmetry; /* Symmetry index between 0 and 7 bit combo 0 is Brush only; * 1 is X mirror; 2 is Y mirror; 3 is XY; 4 is Z; 5 is XZ; 6 is YZ; 7 is XYZ */ int mirror_symmetry_pass; /* the symmetry pass we are currently on between 0 and 7*/ float true_view_normal[3]; float view_normal[3]; float last_area_normal[3]; float last_center[3]; int radial_symmetry_pass; float symm_rot_mat[4][4]; float symm_rot_mat_inv[4][4]; float last_rake[2]; /* Last location of updating rake rotation */ int original; float vertex_rotation; char saved_active_brush_name[MAX_ID_NAME]; int alt_smooth; float plane_trim_squared; rcti previous_r; /* previous redraw rectangle */ } StrokeCache; /*** BVH Tree ***/ /* Get a screen-space rectangle of the modified area */ static int sculpt_get_redraw_rect(ARegion *ar, RegionView3D *rv3d, Object *ob, rcti *rect) { SculptSession *ss; PBVH *pbvh= ob->sculpt->pbvh; float bb_min[3], bb_max[3]; if(!pbvh) return 0; BLI_pbvh_redraw_BB(pbvh, bb_min, bb_max); /* convert 3D bounding box to screen space */ if(!paint_convert_bb_to_rect(rect, bb_min, bb_max, ar, rv3d, ob)) { return 0; } /* expand redraw rect with redraw rect from previous step to * prevent partial-redraw issues caused by fast strokes. This is * needed here (not in sculpt_flush_update) as it was before * because redraw rectangle should be the same in both of * optimized PBVH draw function and 3d view redraw (if not -- some * mesh parts could disappear from screen (sergey) */ ss = ob->sculpt; if(ss->cache) { if(!BLI_rcti_is_empty(&ss->cache->previous_r)) BLI_union_rcti(rect, &ss->cache->previous_r); } return 1; } void sculpt_get_redraw_planes(float planes[4][4], ARegion *ar, RegionView3D *rv3d, Object *ob) { PBVH *pbvh= ob->sculpt->pbvh; rcti rect; sculpt_get_redraw_rect(ar, rv3d, ob, &rect); paint_calc_redraw_planes(planes, ar, rv3d, ob, &rect); /* clear redraw flag from nodes */ if(pbvh) BLI_pbvh_update(pbvh, PBVH_UpdateRedraw, NULL); } /************************ Brush Testing *******************/ typedef struct SculptBrushTest { float radius_squared; float location[3]; float dist; } SculptBrushTest; static void sculpt_brush_test_init(SculptSession *ss, SculptBrushTest *test) { test->radius_squared= ss->cache->radius_squared; copy_v3_v3(test->location, ss->cache->location); test->dist= 0.0f; /* just for initialize */ } static int sculpt_brush_test(SculptBrushTest *test, float co[3]) { float distsq = len_squared_v3v3(co, test->location); if(distsq <= test->radius_squared) { test->dist = sqrt(distsq); return 1; } else { return 0; } } static int sculpt_brush_test_sq(SculptBrushTest *test, float co[3]) { float distsq = len_squared_v3v3(co, test->location); if(distsq <= test->radius_squared) { test->dist = distsq; return 1; } else { return 0; } } static int sculpt_brush_test_fast(SculptBrushTest *test, float co[3]) { return len_squared_v3v3(co, test->location) <= test->radius_squared; } static int sculpt_brush_test_cube(SculptBrushTest *test, float co[3], float local[4][4]) { static const float side = 0.70710678118654752440084436210485; // sqrt(.5); float local_co[3]; mul_v3_m4v3(local_co, local, co); local_co[0] = fabs(local_co[0]); local_co[1] = fabs(local_co[1]); local_co[2] = fabs(local_co[2]); if (local_co[0] <= side && local_co[1] <= side && local_co[2] <= side) { test->dist = MAX3(local_co[0], local_co[1], local_co[2]) / side; return 1; } else { return 0; } } static float frontface(Brush *brush, const float sculpt_normal[3], const short no[3], const float fno[3]) { if (brush->flag & BRUSH_FRONTFACE) { float dot; if (no) { float tmp[3]; normal_short_to_float_v3(tmp, no); dot= dot_v3v3(tmp, sculpt_normal); } else { dot= dot_v3v3(fno, sculpt_normal); } return dot > 0 ? dot : 0; } else { return 1; } } #if 0 static int sculpt_brush_test_cyl(SculptBrushTest *test, float co[3], float location[3], float an[3]) { if (sculpt_brush_test_fast(test, co)) { float t1[3], t2[3], t3[3], dist; sub_v3_v3v3(t1, location, co); sub_v3_v3v3(t2, x2, location); cross_v3_v3v3(t3, an, t1); dist = len_v3(t3)/len_v3(t2); test->dist = dist; return 1; } return 0; } #endif /* ===== Sculpting ===== * */ static float overlapped_curve(Brush* br, float x) { int i; const int n = 100 / br->spacing; const float h = br->spacing / 50.0f; const float x0 = x-1; float sum; sum = 0; for (i= 0; i < n; i++) { float xx; xx = fabs(x0 + i*h); if (xx < 1.0f) sum += brush_curve_strength(br, xx, 1); } return sum; } static float integrate_overlap(Brush* br) { int i; int m= 10; float g = 1.0f/m; float max; max= 0; for(i= 0; i < m; i++) { float overlap= overlapped_curve(br, i*g); if (overlap > max) max = overlap; } return max; } /* Uses symm to selectively flip any axis of a coordinate. */ static void flip_coord(float out[3], float in[3], const char symm) { if(symm & SCULPT_SYMM_X) out[0]= -in[0]; else out[0]= in[0]; if(symm & SCULPT_SYMM_Y) out[1]= -in[1]; else out[1]= in[1]; if(symm & SCULPT_SYMM_Z) out[2]= -in[2]; else out[2]= in[2]; } static float calc_overlap(StrokeCache *cache, const char symm, const char axis, const float angle) { float mirror[3]; float distsq; //flip_coord(mirror, cache->traced_location, symm); flip_coord(mirror, cache->true_location, symm); if(axis != 0) { float mat[4][4]= MAT4_UNITY; rotate_m4(mat, axis, angle); mul_m4_v3(mat, mirror); } //distsq = len_squared_v3v3(mirror, cache->traced_location); distsq = len_squared_v3v3(mirror, cache->true_location); if (distsq <= 4.0f*(cache->radius_squared)) return (2.0f*(cache->radius) - sqrtf(distsq)) / (2.0f*(cache->radius)); else return 0; } static float calc_radial_symmetry_feather(Sculpt *sd, StrokeCache *cache, const char symm, const char axis) { int i; float overlap; overlap = 0; for(i = 1; i < sd->radial_symm[axis-'X']; ++i) { const float angle = 2*M_PI*i/sd->radial_symm[axis-'X']; overlap += calc_overlap(cache, symm, axis, angle); } return overlap; } static float calc_symmetry_feather(Sculpt *sd, StrokeCache* cache) { if (sd->flags & SCULPT_SYMMETRY_FEATHER) { float overlap; int symm = cache->symmetry; int i; overlap = 0; for (i = 0; i <= symm; i++) { if(i == 0 || (symm & i && (symm != 5 || i != 3) && (symm != 6 || (i != 3 && i != 5)))) { overlap += calc_overlap(cache, i, 0, 0); overlap += calc_radial_symmetry_feather(sd, cache, i, 'X'); overlap += calc_radial_symmetry_feather(sd, cache, i, 'Y'); overlap += calc_radial_symmetry_feather(sd, cache, i, 'Z'); } } return 1/overlap; } else { return 1; } } /* Return modified brush strength. Includes the direction of the brush, positive * values pull vertices, negative values push. Uses tablet pressure and a * special multiplier found experimentally to scale the strength factor. */ static float brush_strength(Sculpt *sd, StrokeCache *cache, float feather) { const Scene *scene = cache->vc->scene; Brush *brush = paint_brush(&sd->paint); /* Primary strength input; square it to make lower values more sensitive */ const float root_alpha = brush_alpha(scene, brush); float alpha = root_alpha*root_alpha; float dir = brush->flag & BRUSH_DIR_IN ? -1 : 1; float pressure = brush_use_alpha_pressure(scene, brush) ? cache->pressure : 1; float pen_flip = cache->pen_flip ? -1 : 1; float invert = cache->invert ? -1 : 1; float accum = integrate_overlap(brush); /* spacing is integer percentage of radius, divide by 50 to get * normalized diameter */ float overlap = (brush->flag & BRUSH_SPACE_ATTEN && brush->flag & BRUSH_SPACE && !(brush->flag & BRUSH_ANCHORED) && (brush->spacing < 100)) ? 1.0f/accum : 1; float flip = dir * invert * pen_flip; switch(brush->sculpt_tool){ case SCULPT_TOOL_CLAY: case SCULPT_TOOL_CLAY_TUBES: case SCULPT_TOOL_DRAW: case SCULPT_TOOL_LAYER: return alpha * flip * pressure * overlap * feather; case SCULPT_TOOL_CREASE: case SCULPT_TOOL_BLOB: return alpha * flip * pressure * overlap * feather; case SCULPT_TOOL_INFLATE: if (flip > 0) { return 0.250f * alpha * flip * pressure * overlap * feather; } else { return 0.125f * alpha * flip * pressure * overlap * feather; } case SCULPT_TOOL_FILL: case SCULPT_TOOL_SCRAPE: case SCULPT_TOOL_FLATTEN: if (flip > 0) { overlap = (1+overlap) / 2; return alpha * flip * pressure * overlap * feather; } else { /* reduce strength for DEEPEN, PEAKS, and CONTRAST */ return 0.5f * alpha * flip * pressure * overlap * feather; } case SCULPT_TOOL_SMOOTH: return alpha * pressure * feather; case SCULPT_TOOL_PINCH: if (flip > 0) { return alpha * flip * pressure * overlap * feather; } else { return 0.25f * alpha * flip * pressure * overlap * feather; } case SCULPT_TOOL_NUDGE: overlap = (1+overlap) / 2; return alpha * pressure * overlap * feather; case SCULPT_TOOL_THUMB: return alpha*pressure*feather; case SCULPT_TOOL_SNAKE_HOOK: return feather; case SCULPT_TOOL_GRAB: return feather; case SCULPT_TOOL_ROTATE: return alpha*pressure*feather; default: return 0; } } /* Return a multiplier for brush strength on a particular vertex. */ static float tex_strength(SculptSession *ss, Brush *br, float point[3], const float len, const float sculpt_normal[3], const short vno[3], const float fno[3]) { MTex *mtex = &br->mtex; float avg= 1; if(!mtex->tex) { avg= 1; } else if(mtex->brush_map_mode == MTEX_MAP_MODE_3D) { float jnk; /* Get strength by feeding the vertex * location directly into a texture */ externtex(mtex, point, &avg, &jnk, &jnk, &jnk, &jnk, 0); } else if(ss->texcache) { float rotation = -mtex->rot; float symm_point[3], point_2d[2]; float x, y; float radius; /* if the active area is being applied for symmetry, flip it * across the symmetry axis and rotate it back to the original * position in order to project it. This insures that the * brush texture will be oriented correctly. */ flip_coord(symm_point, point, ss->cache->mirror_symmetry_pass); if (ss->cache->radial_symmetry_pass) mul_m4_v3(ss->cache->symm_rot_mat_inv, symm_point); ED_view3d_project_float_v2(ss->cache->vc->ar, symm_point, point_2d, ss->cache->projection_mat); /* if fixed mode, keep coordinates relative to mouse */ if(mtex->brush_map_mode == MTEX_MAP_MODE_FIXED) { rotation += ss->cache->special_rotation; point_2d[0] -= ss->cache->tex_mouse[0]; point_2d[1] -= ss->cache->tex_mouse[1]; radius = ss->cache->pixel_radius; // use pressure adjusted size for fixed mode x = point_2d[0] + ss->cache->vc->ar->winrct.xmin; y = point_2d[1] + ss->cache->vc->ar->winrct.ymin; } else /* else (mtex->brush_map_mode == MTEX_MAP_MODE_TILED) */ /* leave the coordinates relative to the screen */ { radius = brush_size(ss->cache->vc->scene, br); // use unadjusted size for tiled mode x = point_2d[0]; y = point_2d[1]; } x /= ss->cache->vc->ar->winx; y /= ss->cache->vc->ar->winy; if (mtex->brush_map_mode == MTEX_MAP_MODE_TILED) { x -= 0.5f; y -= 0.5f; } x *= ss->cache->vc->ar->winx / radius; y *= ss->cache->vc->ar->winy / radius; /* it is probably worth optimizing for those cases where * the texture is not rotated by skipping the calls to * atan2, sqrtf, sin, and cos. */ if (rotation > 0.001f || rotation < -0.001f) { const float angle = atan2f(y, x) + rotation; const float flen = sqrtf(x*x + y*y); x = flen * cosf(angle); y = flen * sinf(angle); } x *= br->mtex.size[0]; y *= br->mtex.size[1]; x += br->mtex.ofs[0]; y += br->mtex.ofs[1]; avg = paint_get_tex_pixel(br, x, y); } avg += br->texture_sample_bias; /* Falloff curve */ avg *= brush_curve_strength(br, len, ss->cache->radius); avg *= frontface(br, sculpt_normal, vno, fno); return avg; } typedef struct { Sculpt *sd; SculptSession *ss; float radius_squared; int original; } SculptSearchSphereData; /* Test AABB against sphere */ static int sculpt_search_sphere_cb(PBVHNode *node, void *data_v) { SculptSearchSphereData *data = data_v; float *center = data->ss->cache->location, nearest[3]; float t[3], bb_min[3], bb_max[3]; int i; if(data->original) BLI_pbvh_node_get_original_BB(node, bb_min, bb_max); else BLI_pbvh_node_get_BB(node, bb_min, bb_max); for(i = 0; i < 3; ++i) { if(bb_min[i] > center[i]) nearest[i] = bb_min[i]; else if(bb_max[i] < center[i]) nearest[i] = bb_max[i]; else nearest[i] = center[i]; } sub_v3_v3v3(t, center, nearest); return dot_v3v3(t, t) < data->radius_squared; } /* Handles clipping against a mirror modifier and SCULPT_LOCK axis flags */ static void sculpt_clip(Sculpt *sd, SculptSession *ss, float *co, const float val[3]) { int i; for(i=0; i<3; ++i) { if(sd->flags & (SCULPT_LOCK_X << i)) continue; if((ss->cache->flag & (CLIP_X << i)) && (fabsf(co[i]) <= ss->cache->clip_tolerance[i])) co[i]= 0.0f; else co[i]= val[i]; } } static void add_norm_if(float view_vec[3], float out[3], float out_flip[3], float fno[3]) { if((dot_v3v3(view_vec, fno)) > 0) { add_v3_v3(out, fno); } else { add_v3_v3(out_flip, fno); /* out_flip is used when out is {0,0,0} */ } } static void calc_area_normal(Sculpt *sd, Object *ob, float an[3], PBVHNode **nodes, int totnode) { SculptSession *ss = ob->sculpt; int n; float out_flip[3] = {0.0f, 0.0f, 0.0f}; (void)sd; /* unused w/o openmp */ zero_v3(an); #pragma omp parallel for schedule(guided) if (sd->flags & SCULPT_USE_OPENMP) for(n=0; ncache->original) { BLI_pbvh_vertex_iter_begin(ss->pbvh, nodes[n], vd, PBVH_ITER_UNIQUE) { if(sculpt_brush_test_fast(&test, unode->co[vd.i])) { float fno[3]; normal_short_to_float_v3(fno, unode->no[vd.i]); add_norm_if(ss->cache->view_normal, private_an, private_out_flip, fno); } } BLI_pbvh_vertex_iter_end; } else { BLI_pbvh_vertex_iter_begin(ss->pbvh, nodes[n], vd, PBVH_ITER_UNIQUE) { if(sculpt_brush_test_fast(&test, vd.co)) { if(vd.no) { float fno[3]; normal_short_to_float_v3(fno, vd.no); add_norm_if(ss->cache->view_normal, private_an, private_out_flip, fno); } else { add_norm_if(ss->cache->view_normal, private_an, private_out_flip, vd.fno); } } } BLI_pbvh_vertex_iter_end; } #pragma omp critical { add_v3_v3(an, private_an); add_v3_v3(out_flip, private_out_flip); } } if (is_zero_v3(an)) copy_v3_v3(an, out_flip); normalize_v3(an); } /* This initializes the faces to be moved for this sculpt for draw/layer/flatten; then it * finds average normal for all active vertices - note that this is called once for each mirroring direction */ static void calc_sculpt_normal(Sculpt *sd, Object *ob, float an[3], PBVHNode **nodes, int totnode) { SculptSession *ss = ob->sculpt; Brush *brush = paint_brush(&sd->paint); if (ss->cache->mirror_symmetry_pass == 0 && ss->cache->radial_symmetry_pass == 0 && (ss->cache->first_time || !(brush->flag & BRUSH_ORIGINAL_NORMAL))) { switch (brush->sculpt_plane) { case SCULPT_DISP_DIR_VIEW: ED_view3d_global_to_vector(ss->cache->vc->rv3d, ss->cache->vc->rv3d->twmat[3], an); break; case SCULPT_DISP_DIR_X: an[1] = 0.0; an[2] = 0.0; an[0] = 1.0; break; case SCULPT_DISP_DIR_Y: an[0] = 0.0; an[2] = 0.0; an[1] = 1.0; break; case SCULPT_DISP_DIR_Z: an[0] = 0.0; an[1] = 0.0; an[2] = 1.0; break; case SCULPT_DISP_DIR_AREA: calc_area_normal(sd, ob, an, nodes, totnode); default: break; } copy_v3_v3(ss->cache->last_area_normal, an); } else { copy_v3_v3(an, ss->cache->last_area_normal); flip_coord(an, an, ss->cache->mirror_symmetry_pass); mul_m4_v3(ss->cache->symm_rot_mat, an); } } /* For the smooth brush, uses the neighboring vertices around vert to calculate * a smoothed location for vert. Skips corner vertices (used by only one * polygon.) */ static void neighbor_average(SculptSession *ss, float avg[3], unsigned vert) { const int ncount = BLI_countlist(&ss->pmap[vert]); const MVert *mvert = ss->mvert; float (*deform_co)[3] = ss->deform_cos; zero_v3(avg); /* Don't modify corner vertices */ if(ncount != 1) { IndexNode *node; int total = 0; for(node = ss->pmap[vert].first; node; node = node->next) { const MPoly *p= &ss->mpoly[node->index]; unsigned f_adj_v[3]; if(poly_get_adj_loops_from_vert(f_adj_v, p, ss->mloop, vert) != -1) { int i; for (i = 0; i < 3; i++) { if (ncount != 2 || BLI_countlist(&ss->pmap[f_adj_v[i]]) <= 2) { add_v3_v3(avg, deform_co ? deform_co[f_adj_v[i]] : mvert[f_adj_v[i]].co); total++; } } } } if(total > 0) { mul_v3_fl(avg, 1.0f / total); return; } } copy_v3_v3(avg, deform_co ? deform_co[vert] : mvert[vert].co); } static void do_mesh_smooth_brush(Sculpt *sd, SculptSession *ss, PBVHNode *node, float bstrength) { Brush *brush = paint_brush(&sd->paint); PBVHVertexIter vd; SculptBrushTest test; CLAMP(bstrength, 0.0f, 1.0f); sculpt_brush_test_init(ss, &test); BLI_pbvh_vertex_iter_begin(ss->pbvh, node, vd, PBVH_ITER_UNIQUE) { if(sculpt_brush_test(&test, vd.co)) { const float fade = bstrength*tex_strength(ss, brush, vd.co, test.dist, ss->cache->view_normal, vd.no, vd.fno); float avg[3], val[3]; neighbor_average(ss, avg, vd.vert_indices[vd.i]); sub_v3_v3v3(val, avg, vd.co); mul_v3_fl(val, fade); add_v3_v3(val, vd.co); sculpt_clip(sd, ss, vd.co, val); if(vd.mvert) vd.mvert->flag |= ME_VERT_PBVH_UPDATE; } } BLI_pbvh_vertex_iter_end; } static void do_multires_smooth_brush(Sculpt *sd, SculptSession *ss, PBVHNode *node, float bstrength) { Brush *brush = paint_brush(&sd->paint); SculptBrushTest test; DMGridData **griddata, *data; DMGridAdjacency *gridadj, *adj; float (*tmpgrid)[3], (*tmprow)[3]; int v1, v2, v3, v4; int *grid_indices, totgrid, gridsize, i, x, y; sculpt_brush_test_init(ss, &test); CLAMP(bstrength, 0.0f, 1.0f); BLI_pbvh_node_get_grids(ss->pbvh, node, &grid_indices, &totgrid, NULL, &gridsize, &griddata, &gridadj); #pragma omp critical { tmpgrid= MEM_mallocN(sizeof(float)*3*gridsize*gridsize, "tmpgrid"); tmprow= MEM_mallocN(sizeof(float)*3*gridsize, "tmprow"); } for(i = 0; i < totgrid; ++i) { data = griddata[grid_indices[i]]; adj = &gridadj[grid_indices[i]]; memset(tmpgrid, 0, sizeof(float)*3*gridsize*gridsize); for (y= 0; y < gridsize-1; y++) { float tmp[3]; v1 = y*gridsize; add_v3_v3v3(tmprow[0], data[v1].co, data[v1+gridsize].co); for (x= 0; x < gridsize-1; x++) { v1 = x + y*gridsize; v2 = v1 + 1; v3 = v1 + gridsize; v4 = v3 + 1; add_v3_v3v3(tmprow[x+1], data[v2].co, data[v4].co); add_v3_v3v3(tmp, tmprow[x+1], tmprow[x]); add_v3_v3(tmpgrid[v1], tmp); add_v3_v3(tmpgrid[v2], tmp); add_v3_v3(tmpgrid[v3], tmp); add_v3_v3(tmpgrid[v4], tmp); } } /* blend with existing coordinates */ for(y = 0; y < gridsize; ++y) { for(x = 0; x < gridsize; ++x) { float *co; float *fno; int index; if(x == 0 && adj->index[0] == -1) continue; if(x == gridsize - 1 && adj->index[2] == -1) continue; if(y == 0 && adj->index[3] == -1) continue; if(y == gridsize - 1 && adj->index[1] == -1) continue; index = x + y*gridsize; co= data[index].co; fno= data[index].no; if(sculpt_brush_test(&test, co)) { const float fade = bstrength*tex_strength(ss, brush, co, test.dist, ss->cache->view_normal, NULL, fno); float *avg, val[3]; float n; avg = tmpgrid[x + y*gridsize]; n = 1/16.0f; if(x == 0 || x == gridsize - 1) n *= 2; if(y == 0 || y == gridsize - 1) n *= 2; mul_v3_fl(avg, n); sub_v3_v3v3(val, avg, co); mul_v3_fl(val, fade); add_v3_v3(val, co); sculpt_clip(sd, ss, co, val); } } } } #pragma omp critical { MEM_freeN(tmpgrid); MEM_freeN(tmprow); } } static void smooth(Sculpt *sd, Object *ob, PBVHNode **nodes, int totnode, float bstrength) { SculptSession *ss = ob->sculpt; const int max_iterations = 4; const float fract = 1.0f/max_iterations; int iteration, n, count; float last; CLAMP(bstrength, 0, 1); count = (int)(bstrength*max_iterations); last = max_iterations*(bstrength - count*fract); for(iteration = 0; iteration <= count; ++iteration) { #pragma omp parallel for schedule(guided) if (sd->flags & SCULPT_USE_OPENMP) for(n=0; nmultires) { do_multires_smooth_brush(sd, ss, nodes[n], iteration != count ? 1.0f : last); } else if(ss->pmap) do_mesh_smooth_brush(sd, ss, nodes[n], iteration != count ? 1.0f : last); } if(ss->multires) multires_stitch_grids(ob); } } static void do_smooth_brush(Sculpt *sd, Object *ob, PBVHNode **nodes, int totnode) { SculptSession *ss = ob->sculpt; smooth(sd, ob, nodes, totnode, ss->cache->bstrength); } static void do_draw_brush(Sculpt *sd, Object *ob, PBVHNode **nodes, int totnode) { SculptSession *ss = ob->sculpt; Brush *brush = paint_brush(&sd->paint); float offset[3], area_normal[3]; float bstrength= ss->cache->bstrength; int n; calc_sculpt_normal(sd, ob, area_normal, nodes, totnode); /* offset with as much as possible factored in already */ mul_v3_v3fl(offset, area_normal, ss->cache->radius); mul_v3_v3(offset, ss->cache->scale); mul_v3_fl(offset, bstrength); /* threaded loop over nodes */ #pragma omp parallel for schedule(guided) if (sd->flags & SCULPT_USE_OPENMP) for(n=0; npbvh, nodes[n])->co; sculpt_brush_test_init(ss, &test); BLI_pbvh_vertex_iter_begin(ss->pbvh, nodes[n], vd, PBVH_ITER_UNIQUE) { if (sculpt_brush_test(&test, vd.co)) { /* offset vertex */ float fade = tex_strength(ss, brush, vd.co, test.dist, area_normal, vd.no, vd.fno); mul_v3_v3fl(proxy[vd.i], offset, fade); if(vd.mvert) vd.mvert->flag |= ME_VERT_PBVH_UPDATE; } } BLI_pbvh_vertex_iter_end; } } static void do_crease_brush(Sculpt *sd, Object *ob, PBVHNode **nodes, int totnode) { SculptSession *ss = ob->sculpt; const Scene *scene = ss->cache->vc->scene; Brush *brush = paint_brush(&sd->paint); float offset[3], area_normal[3]; float bstrength= ss->cache->bstrength; float flippedbstrength, crease_correction; int n; calc_sculpt_normal(sd, ob, area_normal, nodes, totnode); /* offset with as much as possible factored in already */ mul_v3_v3fl(offset, area_normal, ss->cache->radius); mul_v3_v3(offset, ss->cache->scale); mul_v3_fl(offset, bstrength); /* we divide out the squared alpha and multiply by the squared crease to give us the pinch strength */ if(brush_alpha(scene, brush) > 0.0f) crease_correction = brush->crease_pinch_factor*brush->crease_pinch_factor/(brush_alpha(scene, brush)*brush_alpha(scene, brush)); else crease_correction = brush->crease_pinch_factor*brush->crease_pinch_factor; /* we always want crease to pinch or blob to relax even when draw is negative */ flippedbstrength = (bstrength < 0) ? -crease_correction*bstrength : crease_correction*bstrength; if(brush->sculpt_tool == SCULPT_TOOL_BLOB) flippedbstrength *= -1.0f; /* threaded loop over nodes */ #pragma omp parallel for schedule(guided) if (sd->flags & SCULPT_USE_OPENMP) for(n=0; npbvh, nodes[n])->co; sculpt_brush_test_init(ss, &test); BLI_pbvh_vertex_iter_begin(ss->pbvh, nodes[n], vd, PBVH_ITER_UNIQUE) { if(sculpt_brush_test(&test, vd.co)) { /* offset vertex */ const float fade = tex_strength(ss, brush, vd.co, test.dist, area_normal, vd.no, vd.fno); float val1[3]; float val2[3]; /* first we pinch */ sub_v3_v3v3(val1, test.location, vd.co); //mul_v3_v3(val1, ss->cache->scale); mul_v3_fl(val1, fade*flippedbstrength); /* then we draw */ mul_v3_v3fl(val2, offset, fade); add_v3_v3v3(proxy[vd.i], val1, val2); if(vd.mvert) vd.mvert->flag |= ME_VERT_PBVH_UPDATE; } } BLI_pbvh_vertex_iter_end; } } static void do_pinch_brush(Sculpt *sd, Object *ob, PBVHNode **nodes, int totnode) { SculptSession *ss = ob->sculpt; Brush *brush = paint_brush(&sd->paint); float bstrength= ss->cache->bstrength; int n; #pragma omp parallel for schedule(guided) if (sd->flags & SCULPT_USE_OPENMP) for(n=0; npbvh, nodes[n])->co; sculpt_brush_test_init(ss, &test); BLI_pbvh_vertex_iter_begin(ss->pbvh, nodes[n], vd, PBVH_ITER_UNIQUE) { if(sculpt_brush_test(&test, vd.co)) { float fade = bstrength*tex_strength(ss, brush, vd.co, test.dist, ss->cache->view_normal, vd.no, vd.fno); float val[3]; sub_v3_v3v3(val, test.location, vd.co); mul_v3_v3fl(proxy[vd.i], val, fade); if(vd.mvert) vd.mvert->flag |= ME_VERT_PBVH_UPDATE; } } BLI_pbvh_vertex_iter_end; } } static void do_grab_brush(Sculpt *sd, Object *ob, PBVHNode **nodes, int totnode) { SculptSession *ss = ob->sculpt; Brush *brush= paint_brush(&sd->paint); float bstrength= ss->cache->bstrength; float grab_delta[3], an[3]; int n; float len; if (brush->normal_weight > 0 || brush->flag & BRUSH_FRONTFACE) { int cache= 1; /* grab brush requires to test on original data */ SWAP(int, ss->cache->original, cache); calc_sculpt_normal(sd, ob, an, nodes, totnode); SWAP(int, ss->cache->original, cache); } copy_v3_v3(grab_delta, ss->cache->grab_delta_symmetry); len = len_v3(grab_delta); if (brush->normal_weight > 0) { mul_v3_fl(an, len*brush->normal_weight); mul_v3_fl(grab_delta, 1.0f - brush->normal_weight); add_v3_v3(grab_delta, an); } #pragma omp parallel for schedule(guided) if (sd->flags & SCULPT_USE_OPENMP) for(n=0; nco; origno= unode->no; proxy= BLI_pbvh_node_add_proxy(ss->pbvh, nodes[n])->co; sculpt_brush_test_init(ss, &test); BLI_pbvh_vertex_iter_begin(ss->pbvh, nodes[n], vd, PBVH_ITER_UNIQUE) { if(sculpt_brush_test(&test, origco[vd.i])) { const float fade = bstrength*tex_strength(ss, brush, origco[vd.i], test.dist, an, origno[vd.i], NULL); mul_v3_v3fl(proxy[vd.i], grab_delta, fade); if(vd.mvert) vd.mvert->flag |= ME_VERT_PBVH_UPDATE; } } BLI_pbvh_vertex_iter_end; } } static void do_nudge_brush(Sculpt *sd, Object *ob, PBVHNode **nodes, int totnode) { SculptSession *ss = ob->sculpt; Brush *brush = paint_brush(&sd->paint); float bstrength = ss->cache->bstrength; float grab_delta[3]; int n; float an[3]; float tmp[3], cono[3]; copy_v3_v3(grab_delta, ss->cache->grab_delta_symmetry); calc_sculpt_normal(sd, ob, an, nodes, totnode); cross_v3_v3v3(tmp, an, grab_delta); cross_v3_v3v3(cono, tmp, an); #pragma omp parallel for schedule(guided) if (sd->flags & SCULPT_USE_OPENMP) for(n = 0; n < totnode; n++) { PBVHVertexIter vd; SculptBrushTest test; float (*proxy)[3]; proxy= BLI_pbvh_node_add_proxy(ss->pbvh, nodes[n])->co; sculpt_brush_test_init(ss, &test); BLI_pbvh_vertex_iter_begin(ss->pbvh, nodes[n], vd, PBVH_ITER_UNIQUE) { if(sculpt_brush_test(&test, vd.co)) { const float fade = bstrength*tex_strength(ss, brush, vd.co, test.dist, an, vd.no, vd.fno); mul_v3_v3fl(proxy[vd.i], cono, fade); if(vd.mvert) vd.mvert->flag |= ME_VERT_PBVH_UPDATE; } } BLI_pbvh_vertex_iter_end; } } static void do_snake_hook_brush(Sculpt *sd, Object *ob, PBVHNode **nodes, int totnode) { SculptSession *ss = ob->sculpt; Brush *brush = paint_brush(&sd->paint); float bstrength = ss->cache->bstrength; float grab_delta[3], an[3]; int n; float len; if (brush->normal_weight > 0 || brush->flag & BRUSH_FRONTFACE) calc_sculpt_normal(sd, ob, an, nodes, totnode); copy_v3_v3(grab_delta, ss->cache->grab_delta_symmetry); len = len_v3(grab_delta); if (bstrength < 0) negate_v3(grab_delta); if (brush->normal_weight > 0) { mul_v3_fl(an, len*brush->normal_weight); mul_v3_fl(grab_delta, 1.0f - brush->normal_weight); add_v3_v3(grab_delta, an); } #pragma omp parallel for schedule(guided) if (sd->flags & SCULPT_USE_OPENMP) for(n = 0; n < totnode; n++) { PBVHVertexIter vd; SculptBrushTest test; float (*proxy)[3]; proxy= BLI_pbvh_node_add_proxy(ss->pbvh, nodes[n])->co; sculpt_brush_test_init(ss, &test); BLI_pbvh_vertex_iter_begin(ss->pbvh, nodes[n], vd, PBVH_ITER_UNIQUE) { if(sculpt_brush_test(&test, vd.co)) { const float fade = bstrength*tex_strength(ss, brush, vd.co, test.dist, an, vd.no, vd.fno); mul_v3_v3fl(proxy[vd.i], grab_delta, fade); if(vd.mvert) vd.mvert->flag |= ME_VERT_PBVH_UPDATE; } } BLI_pbvh_vertex_iter_end; } } static void do_thumb_brush(Sculpt *sd, Object *ob, PBVHNode **nodes, int totnode) { SculptSession *ss = ob->sculpt; Brush *brush = paint_brush(&sd->paint); float bstrength = ss->cache->bstrength; float grab_delta[3]; int n; float an[3]; float tmp[3], cono[3]; copy_v3_v3(grab_delta, ss->cache->grab_delta_symmetry); calc_sculpt_normal(sd, ob, an, nodes, totnode); cross_v3_v3v3(tmp, an, grab_delta); cross_v3_v3v3(cono, tmp, an); #pragma omp parallel for schedule(guided) if (sd->flags & SCULPT_USE_OPENMP) for(n = 0; n < totnode; n++) { PBVHVertexIter vd; SculptUndoNode* unode; SculptBrushTest test; float (*origco)[3]; short (*origno)[3]; float (*proxy)[3]; unode= sculpt_undo_push_node(ob, nodes[n]); origco= unode->co; origno= unode->no; proxy= BLI_pbvh_node_add_proxy(ss->pbvh, nodes[n])->co; sculpt_brush_test_init(ss, &test); BLI_pbvh_vertex_iter_begin(ss->pbvh, nodes[n], vd, PBVH_ITER_UNIQUE) { if(sculpt_brush_test(&test, origco[vd.i])) { const float fade = bstrength*tex_strength(ss, brush, origco[vd.i], test.dist, an, origno[vd.i], NULL); mul_v3_v3fl(proxy[vd.i], cono, fade); if(vd.mvert) vd.mvert->flag |= ME_VERT_PBVH_UPDATE; } } BLI_pbvh_vertex_iter_end; } } static void do_rotate_brush(Sculpt *sd, Object *ob, PBVHNode **nodes, int totnode) { SculptSession *ss = ob->sculpt; Brush *brush= paint_brush(&sd->paint); float bstrength= ss->cache->bstrength; float an[3]; int n; float m[4][4], rot[4][4], lmat[4][4], ilmat[4][4]; static const int flip[8] = { 1, -1, -1, 1, -1, 1, 1, -1 }; float angle = ss->cache->vertex_rotation * flip[ss->cache->mirror_symmetry_pass]; calc_sculpt_normal(sd, ob, an, nodes, totnode); unit_m4(m); unit_m4(lmat); copy_v3_v3(lmat[3], ss->cache->location); invert_m4_m4(ilmat, lmat); axis_angle_to_mat4(rot, an, angle); mul_serie_m4(m, lmat, rot, ilmat, NULL, NULL, NULL, NULL, NULL); #pragma omp parallel for schedule(guided) if (sd->flags & SCULPT_USE_OPENMP) for(n=0; nco; origno= unode->no; proxy= BLI_pbvh_node_add_proxy(ss->pbvh, nodes[n])->co; sculpt_brush_test_init(ss, &test); BLI_pbvh_vertex_iter_begin(ss->pbvh, nodes[n], vd, PBVH_ITER_UNIQUE) { if(sculpt_brush_test(&test, origco[vd.i])) { const float fade = bstrength*tex_strength(ss, brush, origco[vd.i], test.dist, an, origno[vd.i], NULL); mul_v3_m4v3(proxy[vd.i], m, origco[vd.i]); sub_v3_v3(proxy[vd.i], origco[vd.i]); mul_v3_fl(proxy[vd.i], fade); if(vd.mvert) vd.mvert->flag |= ME_VERT_PBVH_UPDATE; } } BLI_pbvh_vertex_iter_end; } } static void do_layer_brush(Sculpt *sd, Object *ob, PBVHNode **nodes, int totnode) { SculptSession *ss = ob->sculpt; Brush *brush = paint_brush(&sd->paint); float bstrength= ss->cache->bstrength; float area_normal[3], offset[3]; float lim= brush->height; int n; if(bstrength < 0) lim = -lim; calc_sculpt_normal(sd, ob, area_normal, nodes, totnode); mul_v3_v3v3(offset, ss->cache->scale, area_normal); #pragma omp parallel for schedule(guided) if (sd->flags & SCULPT_USE_OPENMP) for(n=0; npbvh, nodes[n])->co; unode= sculpt_undo_push_node(ob, nodes[n]); origco=unode->co; if (!unode->layer_disp) { #pragma omp critical unode->layer_disp= MEM_callocN(sizeof(float)*unode->totvert, "layer disp"); } layer_disp= unode->layer_disp; sculpt_brush_test_init(ss, &test); BLI_pbvh_vertex_iter_begin(ss->pbvh, nodes[n], vd, PBVH_ITER_UNIQUE) { if(sculpt_brush_test(&test, origco[vd.i])) { const float fade = bstrength*tex_strength(ss, brush, vd.co, test.dist, area_normal, vd.no, vd.fno); float *disp= &layer_disp[vd.i]; float val[3]; *disp+= fade; /* Don't let the displacement go past the limit */ if((lim < 0 && *disp < lim) || (lim >= 0 && *disp > lim)) *disp = lim; mul_v3_v3fl(val, offset, *disp); if(ss->layer_co && (brush->flag & BRUSH_PERSISTENT)) { int index= vd.vert_indices[vd.i]; /* persistent base */ add_v3_v3(val, ss->layer_co[index]); } else { add_v3_v3(val, origco[vd.i]); } sculpt_clip(sd, ss, vd.co, val); if(vd.mvert) vd.mvert->flag |= ME_VERT_PBVH_UPDATE; } } BLI_pbvh_vertex_iter_end; } } static void do_inflate_brush(Sculpt *sd, Object *ob, PBVHNode **nodes, int totnode) { SculptSession *ss = ob->sculpt; Brush *brush = paint_brush(&sd->paint); float bstrength= ss->cache->bstrength; int n; #pragma omp parallel for schedule(guided) if (sd->flags & SCULPT_USE_OPENMP) for(n=0; npbvh, nodes[n])->co; sculpt_brush_test_init(ss, &test); BLI_pbvh_vertex_iter_begin(ss->pbvh, nodes[n], vd, PBVH_ITER_UNIQUE) { if(sculpt_brush_test(&test, vd.co)) { const float fade = bstrength*tex_strength(ss, brush, vd.co, test.dist, ss->cache->view_normal, vd.no, vd.fno); float val[3]; if(vd.fno) copy_v3_v3(val, vd.fno); else normal_short_to_float_v3(val, vd.no); mul_v3_fl(val, fade * ss->cache->radius); mul_v3_v3v3(proxy[vd.i], val, ss->cache->scale); if(vd.mvert) vd.mvert->flag |= ME_VERT_PBVH_UPDATE; } } BLI_pbvh_vertex_iter_end; } } static void calc_flatten_center(Sculpt *sd, Object *ob, PBVHNode **nodes, int totnode, float fc[3]) { SculptSession *ss = ob->sculpt; int n; float count = 0; (void)sd; /* unused w/o openmp */ zero_v3(fc); #pragma omp parallel for schedule(guided) if (sd->flags & SCULPT_USE_OPENMP) for(n=0; ncache->original) { BLI_pbvh_vertex_iter_begin(ss->pbvh, nodes[n], vd, PBVH_ITER_UNIQUE) { if(sculpt_brush_test_fast(&test, unode->co[vd.i])) { add_v3_v3(private_fc, unode->co[vd.i]); private_count++; } } BLI_pbvh_vertex_iter_end; } else { BLI_pbvh_vertex_iter_begin(ss->pbvh, nodes[n], vd, PBVH_ITER_UNIQUE) { if(sculpt_brush_test_fast(&test, vd.co)) { add_v3_v3(private_fc, vd.co); private_count++; } } BLI_pbvh_vertex_iter_end; } #pragma omp critical { add_v3_v3(fc, private_fc); count += private_count; } } mul_v3_fl(fc, 1.0f / count); } /* this calculates flatten center and area normal together, * amortizing the memory bandwidth and loop overhead to calculate both at the same time */ static void calc_area_normal_and_flatten_center(Sculpt *sd, Object *ob, PBVHNode **nodes, int totnode, float an[3], float fc[3]) { SculptSession *ss = ob->sculpt; int n; // an float out_flip[3] = {0.0f, 0.0f, 0.0f}; // fc float count = 0; (void)sd; /* unused w/o openmp */ // an zero_v3(an); // fc zero_v3(fc); #pragma omp parallel for schedule(guided) if (sd->flags & SCULPT_USE_OPENMP) for(n=0; ncache->original) { BLI_pbvh_vertex_iter_begin(ss->pbvh, nodes[n], vd, PBVH_ITER_UNIQUE) { if(sculpt_brush_test_fast(&test, unode->co[vd.i])) { // an float fno[3]; normal_short_to_float_v3(fno, unode->no[vd.i]); add_norm_if(ss->cache->view_normal, private_an, private_out_flip, fno); // fc add_v3_v3(private_fc, unode->co[vd.i]); private_count++; } } BLI_pbvh_vertex_iter_end; } else { BLI_pbvh_vertex_iter_begin(ss->pbvh, nodes[n], vd, PBVH_ITER_UNIQUE) { if(sculpt_brush_test_fast(&test, vd.co)) { // an if(vd.no) { float fno[3]; normal_short_to_float_v3(fno, vd.no); add_norm_if(ss->cache->view_normal, private_an, private_out_flip, fno); } else { add_norm_if(ss->cache->view_normal, private_an, private_out_flip, vd.fno); } // fc add_v3_v3(private_fc, vd.co); private_count++; } } BLI_pbvh_vertex_iter_end; } #pragma omp critical { // an add_v3_v3(an, private_an); add_v3_v3(out_flip, private_out_flip); // fc add_v3_v3(fc, private_fc); count += private_count; } } // an if (is_zero_v3(an)) copy_v3_v3(an, out_flip); normalize_v3(an); // fc if (count != 0) { mul_v3_fl(fc, 1.0f / count); } else { zero_v3(fc); } } static void calc_sculpt_plane(Sculpt *sd, Object *ob, PBVHNode **nodes, int totnode, float an[3], float fc[3]) { SculptSession *ss = ob->sculpt; Brush *brush = paint_brush(&sd->paint); if (ss->cache->mirror_symmetry_pass == 0 && ss->cache->radial_symmetry_pass == 0 && (ss->cache->first_time || !(brush->flag & BRUSH_ORIGINAL_NORMAL))) { switch (brush->sculpt_plane) { case SCULPT_DISP_DIR_VIEW: ED_view3d_global_to_vector(ss->cache->vc->rv3d, ss->cache->vc->rv3d->twmat[3], an); break; case SCULPT_DISP_DIR_X: an[1] = 0.0; an[2] = 0.0; an[0] = 1.0; break; case SCULPT_DISP_DIR_Y: an[0] = 0.0; an[2] = 0.0; an[1] = 1.0; break; case SCULPT_DISP_DIR_Z: an[0] = 0.0; an[1] = 0.0; an[2] = 1.0; break; case SCULPT_DISP_DIR_AREA: calc_area_normal_and_flatten_center(sd, ob, nodes, totnode, an, fc); default: break; } // fc /* flatten center has not been calculated yet if we are not using the area normal */ if (brush->sculpt_plane != SCULPT_DISP_DIR_AREA) calc_flatten_center(sd, ob, nodes, totnode, fc); // an copy_v3_v3(ss->cache->last_area_normal, an); // fc copy_v3_v3(ss->cache->last_center, fc); } else { // an copy_v3_v3(an, ss->cache->last_area_normal); // fc copy_v3_v3(fc, ss->cache->last_center); // an flip_coord(an, an, ss->cache->mirror_symmetry_pass); // fc flip_coord(fc, fc, ss->cache->mirror_symmetry_pass); // an mul_m4_v3(ss->cache->symm_rot_mat, an); // fc mul_m4_v3(ss->cache->symm_rot_mat, fc); } } /* Projects a point onto a plane along the plane's normal */ static void point_plane_project(float intr[3], float co[3], float plane_normal[3], float plane_center[3]) { sub_v3_v3v3(intr, co, plane_center); mul_v3_v3fl(intr, plane_normal, dot_v3v3(plane_normal, intr)); sub_v3_v3v3(intr, co, intr); } static int plane_trim(StrokeCache *cache, Brush *brush, float val[3]) { return !(brush->flag & BRUSH_PLANE_TRIM) || (dot_v3v3(val, val) <= cache->radius_squared*cache->plane_trim_squared); } static int plane_point_side_flip(float co[3], float plane_normal[3], float plane_center[3], int flip) { float delta[3]; float d; sub_v3_v3v3(delta, co, plane_center); d = dot_v3v3(plane_normal, delta); if (flip) d = -d; return d <= 0.0f; } static int plane_point_side(float co[3], float plane_normal[3], float plane_center[3]) { float delta[3]; sub_v3_v3v3(delta, co, plane_center); return dot_v3v3(plane_normal, delta) <= 0.0f; } static float get_offset(Sculpt *sd, SculptSession *ss) { Brush* brush = paint_brush(&sd->paint); float rv = brush->plane_offset; if (brush->flag & BRUSH_OFFSET_PRESSURE) { rv *= ss->cache->pressure; } return rv; } static void do_flatten_brush(Sculpt *sd, Object *ob, PBVHNode **nodes, int totnode) { SculptSession *ss = ob->sculpt; Brush *brush = paint_brush(&sd->paint); float bstrength = ss->cache->bstrength; const float radius = ss->cache->radius; float an[3]; float fc[3]; float offset = get_offset(sd, ss); float displace; int n; float temp[3]; calc_sculpt_plane(sd, ob, nodes, totnode, an, fc); displace = radius*offset; mul_v3_v3v3(temp, an, ss->cache->scale); mul_v3_fl(temp, displace); add_v3_v3(fc, temp); #pragma omp parallel for schedule(guided) if (sd->flags & SCULPT_USE_OPENMP) for(n = 0; n < totnode; n++) { PBVHVertexIter vd; SculptBrushTest test; float (*proxy)[3]; proxy= BLI_pbvh_node_add_proxy(ss->pbvh, nodes[n])->co; sculpt_brush_test_init(ss, &test); BLI_pbvh_vertex_iter_begin(ss->pbvh, nodes[n], vd, PBVH_ITER_UNIQUE) { if (sculpt_brush_test_sq(&test, vd.co)) { float intr[3]; float val[3]; point_plane_project(intr, vd.co, an, fc); sub_v3_v3v3(val, intr, vd.co); if (plane_trim(ss->cache, brush, val)) { const float fade = bstrength*tex_strength(ss, brush, vd.co, sqrt(test.dist), an, vd.no, vd.fno); mul_v3_v3fl(proxy[vd.i], val, fade); if(vd.mvert) vd.mvert->flag |= ME_VERT_PBVH_UPDATE; } } } BLI_pbvh_vertex_iter_end; } } static void do_clay_brush(Sculpt *sd, Object *ob, PBVHNode **nodes, int totnode) { SculptSession *ss = ob->sculpt; Brush *brush = paint_brush(&sd->paint); float bstrength = ss->cache->bstrength; float radius = ss->cache->radius; float offset = get_offset(sd, ss); float displace; float an[3]; // area normal float fc[3]; // flatten center int n; float temp[3]; //float p[3]; int flip; calc_sculpt_plane(sd, ob, nodes, totnode, an, fc); flip = bstrength < 0; if (flip) { bstrength = -bstrength; radius = -radius; } displace = radius * (0.25f+offset); mul_v3_v3v3(temp, an, ss->cache->scale); mul_v3_fl(temp, displace); add_v3_v3(fc, temp); //add_v3_v3v3(p, ss->cache->location, an); #pragma omp parallel for schedule(guided) if (sd->flags & SCULPT_USE_OPENMP) for (n = 0; n < totnode; n++) { PBVHVertexIter vd; SculptBrushTest test; float (*proxy)[3]; proxy= BLI_pbvh_node_add_proxy(ss->pbvh, nodes[n])->co; sculpt_brush_test_init(ss, &test); BLI_pbvh_vertex_iter_begin(ss->pbvh, nodes[n], vd, PBVH_ITER_UNIQUE) { if (sculpt_brush_test_sq(&test, vd.co)) { if (plane_point_side_flip(vd.co, an, fc, flip)) { //if (sculpt_brush_test_cyl(&test, vd.co, ss->cache->location, p)) { float intr[3]; float val[3]; point_plane_project(intr, vd.co, an, fc); sub_v3_v3v3(val, intr, vd.co); if (plane_trim(ss->cache, brush, val)) { const float fade = bstrength*tex_strength(ss, brush, vd.co, sqrt(test.dist), an, vd.no, vd.fno); mul_v3_v3fl(proxy[vd.i], val, fade); if(vd.mvert) vd.mvert->flag |= ME_VERT_PBVH_UPDATE; } } } } BLI_pbvh_vertex_iter_end; } } static void do_clay_tubes_brush(Sculpt *sd, Object *ob, PBVHNode **nodes, int totnode) { SculptSession *ss = ob->sculpt; Brush *brush = paint_brush(&sd->paint); float bstrength = ss->cache->bstrength; float radius = ss->cache->radius; float offset = get_offset(sd, ss); float displace; float sn[3]; // sculpt normal float an[3]; // area normal float fc[3]; // flatten center int n; float temp[3]; float mat[4][4]; float scale[4][4]; float tmat[4][4]; int flip; calc_sculpt_plane(sd, ob, nodes, totnode, sn, fc); if (brush->sculpt_plane != SCULPT_DISP_DIR_AREA || (brush->flag & BRUSH_ORIGINAL_NORMAL)) calc_area_normal(sd, ob, an, nodes, totnode); else copy_v3_v3(an, sn); if (ss->cache->first_time) return; // delay the first daub because grab delta is not setup flip = bstrength < 0; if (flip) { bstrength = -bstrength; radius = -radius; } displace = radius * (0.25f+offset); mul_v3_v3v3(temp, sn, ss->cache->scale); mul_v3_fl(temp, displace); add_v3_v3(fc, temp); cross_v3_v3v3(mat[0], an, ss->cache->grab_delta_symmetry); mat[0][3] = 0; cross_v3_v3v3(mat[1], an, mat[0]); mat[1][3] = 0; copy_v3_v3(mat[2], an); mat[2][3] = 0; copy_v3_v3(mat[3], ss->cache->location); mat[3][3] = 1; normalize_m4(mat); scale_m4_fl(scale, ss->cache->radius); mult_m4_m4m4(tmat, mat, scale); invert_m4_m4(mat, tmat); #pragma omp parallel for schedule(guided) if (sd->flags & SCULPT_USE_OPENMP) for (n = 0; n < totnode; n++) { PBVHVertexIter vd; SculptBrushTest test; float (*proxy)[3]; proxy= BLI_pbvh_node_add_proxy(ss->pbvh, nodes[n])->co; sculpt_brush_test_init(ss, &test); BLI_pbvh_vertex_iter_begin(ss->pbvh, nodes[n], vd, PBVH_ITER_UNIQUE) { if (sculpt_brush_test_cube(&test, vd.co, mat)) { if (plane_point_side_flip(vd.co, sn, fc, flip)) { float intr[3]; float val[3]; point_plane_project(intr, vd.co, sn, fc); sub_v3_v3v3(val, intr, vd.co); if (plane_trim(ss->cache, brush, val)) { const float fade = bstrength*tex_strength(ss, brush, vd.co, ss->cache->radius*test.dist, an, vd.no, vd.fno); mul_v3_v3fl(proxy[vd.i], val, fade); if(vd.mvert) vd.mvert->flag |= ME_VERT_PBVH_UPDATE; } } } } BLI_pbvh_vertex_iter_end; } } static void do_fill_brush(Sculpt *sd, Object *ob, PBVHNode **nodes, int totnode) { SculptSession *ss = ob->sculpt; Brush *brush = paint_brush(&sd->paint); float bstrength = ss->cache->bstrength; const float radius = ss->cache->radius; float an[3]; float fc[3]; float offset = get_offset(sd, ss); float displace; int n; float temp[3]; calc_sculpt_plane(sd, ob, nodes, totnode, an, fc); displace = radius*offset; mul_v3_v3v3(temp, an, ss->cache->scale); mul_v3_fl(temp, displace); add_v3_v3(fc, temp); #pragma omp parallel for schedule(guided) if (sd->flags & SCULPT_USE_OPENMP) for (n = 0; n < totnode; n++) { PBVHVertexIter vd; SculptBrushTest test; float (*proxy)[3]; proxy= BLI_pbvh_node_add_proxy(ss->pbvh, nodes[n])->co; sculpt_brush_test_init(ss, &test); BLI_pbvh_vertex_iter_begin(ss->pbvh, nodes[n], vd, PBVH_ITER_UNIQUE) { if (sculpt_brush_test_sq(&test, vd.co)) { if (plane_point_side(vd.co, an, fc)) { float intr[3]; float val[3]; point_plane_project(intr, vd.co, an, fc); sub_v3_v3v3(val, intr, vd.co); if (plane_trim(ss->cache, brush, val)) { const float fade = bstrength*tex_strength(ss, brush, vd.co, sqrt(test.dist), an, vd.no, vd.fno); mul_v3_v3fl(proxy[vd.i], val, fade); if(vd.mvert) vd.mvert->flag |= ME_VERT_PBVH_UPDATE; } } } } BLI_pbvh_vertex_iter_end; } } static void do_scrape_brush(Sculpt *sd, Object *ob, PBVHNode **nodes, int totnode) { SculptSession *ss = ob->sculpt; Brush *brush = paint_brush(&sd->paint); float bstrength = ss->cache->bstrength; const float radius = ss->cache->radius; float an[3]; float fc[3]; float offset = get_offset(sd, ss); float displace; int n; float temp[3]; calc_sculpt_plane(sd, ob, nodes, totnode, an, fc); displace = -radius*offset; mul_v3_v3v3(temp, an, ss->cache->scale); mul_v3_fl(temp, displace); add_v3_v3(fc, temp); #pragma omp parallel for schedule(guided) if (sd->flags & SCULPT_USE_OPENMP) for (n = 0; n < totnode; n++) { PBVHVertexIter vd; SculptBrushTest test; float (*proxy)[3]; proxy= BLI_pbvh_node_add_proxy(ss->pbvh, nodes[n])->co; sculpt_brush_test_init(ss, &test); BLI_pbvh_vertex_iter_begin(ss->pbvh, nodes[n], vd, PBVH_ITER_UNIQUE) { if (sculpt_brush_test_sq(&test, vd.co)) { if (!plane_point_side(vd.co, an, fc)) { float intr[3]; float val[3]; point_plane_project(intr, vd.co, an, fc); sub_v3_v3v3(val, intr, vd.co); if (plane_trim(ss->cache, brush, val)) { const float fade = bstrength*tex_strength(ss, brush, vd.co, sqrt(test.dist), an, vd.no, vd.fno); mul_v3_v3fl(proxy[vd.i], val, fade); if(vd.mvert) vd.mvert->flag |= ME_VERT_PBVH_UPDATE; } } } } BLI_pbvh_vertex_iter_end; } } void sculpt_vertcos_to_key(Object *ob, KeyBlock *kb, float (*vertCos)[3]) { Mesh *me= (Mesh*)ob->data; float (*ofs)[3]= NULL; int a, is_basis= 0; KeyBlock *currkey; /* for relative keys editing of base should update other keys */ if (me->key->type == KEY_RELATIVE) for (currkey = me->key->block.first; currkey; currkey= currkey->next) if(ob->shapenr-1 == currkey->relative) { is_basis= 1; break; } if (is_basis) { ofs= key_to_vertcos(ob, kb); /* calculate key coord offsets (from previous location) */ for (a= 0; a < me->totvert; a++) { sub_v3_v3v3(ofs[a], vertCos[a], ofs[a]); } /* apply offsets on other keys */ currkey = me->key->block.first; while (currkey) { int apply_offset = ((currkey != kb) && (ob->shapenr-1 == currkey->relative)); if (apply_offset) offset_to_key(ob, currkey, ofs); currkey= currkey->next; } MEM_freeN(ofs); } /* modifying of basis key should update mesh */ if (kb == me->key->refkey) { MVert *mvert= me->mvert; for (a= 0; a < me->totvert; a++, mvert++) copy_v3_v3(mvert->co, vertCos[a]); mesh_calc_normals_mapping(me->mvert, me->totvert, me->mloop, me->mpoly, me->totloop, me->totpoly, NULL, NULL, 0, NULL, NULL); } /* apply new coords on active key block */ vertcos_to_key(ob, kb, vertCos); } static void do_brush_action(Sculpt *sd, Object *ob, Brush *brush) { SculptSession *ss = ob->sculpt; SculptSearchSphereData data; PBVHNode **nodes = NULL; int n, totnode; /* Build a list of all nodes that are potentially within the brush's area of influence */ data.ss = ss; data.sd = sd; data.radius_squared = ss->cache->radius_squared; data.original = ELEM4(brush->sculpt_tool, SCULPT_TOOL_GRAB, SCULPT_TOOL_ROTATE, SCULPT_TOOL_THUMB, SCULPT_TOOL_LAYER); BLI_pbvh_search_gather(ss->pbvh, sculpt_search_sphere_cb, &data, &nodes, &totnode); /* Only act if some verts are inside the brush area */ if (totnode) { #pragma omp parallel for schedule(guided) if (sd->flags & SCULPT_USE_OPENMP) for (n= 0; n < totnode; n++) { sculpt_undo_push_node(ob, nodes[n]); BLI_pbvh_node_mark_update(nodes[n]); } /* Apply one type of brush action */ switch(brush->sculpt_tool){ case SCULPT_TOOL_DRAW: do_draw_brush(sd, ob, nodes, totnode); break; case SCULPT_TOOL_SMOOTH: do_smooth_brush(sd, ob, nodes, totnode); break; case SCULPT_TOOL_CREASE: do_crease_brush(sd, ob, nodes, totnode); break; case SCULPT_TOOL_BLOB: do_crease_brush(sd, ob, nodes, totnode); break; case SCULPT_TOOL_PINCH: do_pinch_brush(sd, ob, nodes, totnode); break; case SCULPT_TOOL_INFLATE: do_inflate_brush(sd, ob, nodes, totnode); break; case SCULPT_TOOL_GRAB: do_grab_brush(sd, ob, nodes, totnode); break; case SCULPT_TOOL_ROTATE: do_rotate_brush(sd, ob, nodes, totnode); break; case SCULPT_TOOL_SNAKE_HOOK: do_snake_hook_brush(sd, ob, nodes, totnode); break; case SCULPT_TOOL_NUDGE: do_nudge_brush(sd, ob, nodes, totnode); break; case SCULPT_TOOL_THUMB: do_thumb_brush(sd, ob, nodes, totnode); break; case SCULPT_TOOL_LAYER: do_layer_brush(sd, ob, nodes, totnode); break; case SCULPT_TOOL_FLATTEN: do_flatten_brush(sd, ob, nodes, totnode); break; case SCULPT_TOOL_CLAY: do_clay_brush(sd, ob, nodes, totnode); break; case SCULPT_TOOL_CLAY_TUBES: do_clay_tubes_brush(sd, ob, nodes, totnode); break; case SCULPT_TOOL_FILL: do_fill_brush(sd, ob, nodes, totnode); break; case SCULPT_TOOL_SCRAPE: do_scrape_brush(sd, ob, nodes, totnode); break; } if (brush->sculpt_tool != SCULPT_TOOL_SMOOTH && brush->autosmooth_factor > 0) { if (brush->flag & BRUSH_INVERSE_SMOOTH_PRESSURE) { smooth(sd, ob, nodes, totnode, brush->autosmooth_factor*(1-ss->cache->pressure)); } else { smooth(sd, ob, nodes, totnode, brush->autosmooth_factor); } } MEM_freeN(nodes); } } /* flush displacement from deformed PBVH vertex to original mesh */ static void sculpt_flush_pbvhvert_deform(Object *ob, PBVHVertexIter *vd) { SculptSession *ss = ob->sculpt; Mesh *me= ob->data; float disp[3], newco[3]; int index= vd->vert_indices[vd->i]; sub_v3_v3v3(disp, vd->co, ss->deform_cos[index]); mul_m3_v3(ss->deform_imats[index], disp); add_v3_v3v3(newco, disp, ss->orig_cos[index]); copy_v3_v3(ss->deform_cos[index], vd->co); copy_v3_v3(ss->orig_cos[index], newco); if(!ss->kb) copy_v3_v3(me->mvert[index].co, newco); } static void sculpt_combine_proxies(Sculpt *sd, Object *ob) { SculptSession *ss = ob->sculpt; Brush *brush= paint_brush(&sd->paint); PBVHNode** nodes; int totnode, n; BLI_pbvh_gather_proxies(ss->pbvh, &nodes, &totnode); if(!ELEM(brush->sculpt_tool, SCULPT_TOOL_SMOOTH, SCULPT_TOOL_LAYER)) { /* these brushes start from original coordinates */ const int use_orco = (ELEM3(brush->sculpt_tool, SCULPT_TOOL_GRAB, SCULPT_TOOL_ROTATE, SCULPT_TOOL_THUMB)); #pragma omp parallel for schedule(guided) if (sd->flags & SCULPT_USE_OPENMP) for (n= 0; n < totnode; n++) { PBVHVertexIter vd; PBVHProxyNode* proxies; int proxy_count; float (*orco)[3]; if(use_orco) orco= sculpt_undo_push_node(ob, nodes[n])->co; BLI_pbvh_node_get_proxies(nodes[n], &proxies, &proxy_count); BLI_pbvh_vertex_iter_begin(ss->pbvh, nodes[n], vd, PBVH_ITER_UNIQUE) { float val[3]; int p; if(use_orco) copy_v3_v3(val, orco[vd.i]); else copy_v3_v3(val, vd.co); for (p= 0; p < proxy_count; p++) add_v3_v3(val, proxies[p].co[vd.i]); sculpt_clip(sd, ss, vd.co, val); if(ss->modifiers_active) sculpt_flush_pbvhvert_deform(ob, &vd); } BLI_pbvh_vertex_iter_end; BLI_pbvh_node_free_proxies(nodes[n]); } } if (nodes) MEM_freeN(nodes); } /* copy the modified vertices from bvh to the active key */ static void sculpt_update_keyblock(Object *ob) { SculptSession *ss = ob->sculpt; float (*vertCos)[3]; /* Keyblock update happens after hadning deformation caused by modifiers, * so ss->orig_cos would be updated with new stroke */ if(ss->orig_cos) vertCos = ss->orig_cos; else vertCos = BLI_pbvh_get_vertCos(ss->pbvh); if (vertCos) { sculpt_vertcos_to_key(ob, ss->kb, vertCos); if(vertCos != ss->orig_cos) MEM_freeN(vertCos); } } /* flush displacement from deformed PBVH to original layer */ static void sculpt_flush_stroke_deform(Sculpt *sd, Object *ob) { SculptSession *ss = ob->sculpt; Brush *brush= paint_brush(&sd->paint); if(ELEM(brush->sculpt_tool, SCULPT_TOOL_SMOOTH, SCULPT_TOOL_LAYER)) { /* this brushes aren't using proxies, so sculpt_combine_proxies() wouldn't * propagate needed deformation to original base */ int n, totnode; Mesh *me= (Mesh*)ob->data; PBVHNode** nodes; float (*vertCos)[3]= NULL; if(ss->kb) vertCos= MEM_callocN(sizeof(*vertCos)*me->totvert, "flushStrokeDeofrm keyVerts"); BLI_pbvh_search_gather(ss->pbvh, NULL, NULL, &nodes, &totnode); #pragma omp parallel for schedule(guided) if (sd->flags & SCULPT_USE_OPENMP) for (n= 0; n < totnode; n++) { PBVHVertexIter vd; BLI_pbvh_vertex_iter_begin(ss->pbvh, nodes[n], vd, PBVH_ITER_UNIQUE) { sculpt_flush_pbvhvert_deform(ob, &vd); if(vertCos) { int index= vd.vert_indices[vd.i]; copy_v3_v3(vertCos[index], ss->orig_cos[index]); } } BLI_pbvh_vertex_iter_end; } if(vertCos) { sculpt_vertcos_to_key(ob, ss->kb, vertCos); MEM_freeN(vertCos); } MEM_freeN(nodes); /* Modifiers could depend on mesh normals, so we should update them/ * Note, then if sculpting happens on locked key, normals should be re-calculated * after applying coords from keyblock on base mesh */ mesh_calc_normals(me->mvert, me->totvert, me->mloop, me->mpoly, me->totloop, me->totpoly, NULL); } else if (ss->kb) sculpt_update_keyblock(ob); } //static int max_overlap_count(Sculpt *sd) //{ // int count[3]; // int i, j; // // for (i= 0; i < 3; i++) { // count[i] = sd->radial_symm[i]; // // for (j= 0; j < 3; j++) { // if (i != j && sd->flags & (SCULPT_SYMM_X<location, cache->true_location, symm); flip_coord(cache->grab_delta_symmetry, cache->grab_delta, symm); flip_coord(cache->view_normal, cache->true_view_normal, symm); // XXX This reduces the length of the grab delta if it approaches the line of symmetry // XXX However, a different approach appears to be needed //if (sd->flags & SCULPT_SYMMETRY_FEATHER) { // float frac = 1.0f/max_overlap_count(sd); // float reduce = (feather-frac)/(1-frac); // printf("feather: %f frac: %f reduce: %f\n", feather, frac, reduce); // if (frac < 1) // mul_v3_fl(cache->grab_delta_symmetry, reduce); //} unit_m4(cache->symm_rot_mat); unit_m4(cache->symm_rot_mat_inv); if(axis) { /* expects XYZ */ rotate_m4(cache->symm_rot_mat, axis, angle); rotate_m4(cache->symm_rot_mat_inv, axis, -angle); } mul_m4_v3(cache->symm_rot_mat, cache->location); mul_m4_v3(cache->symm_rot_mat, cache->grab_delta_symmetry); } static void do_radial_symmetry(Sculpt *sd, Object *ob, Brush *brush, const char symm, const int axis, const float feather) { SculptSession *ss = ob->sculpt; int i; for(i = 1; i < sd->radial_symm[axis-'X']; ++i) { const float angle = 2*M_PI*i/sd->radial_symm[axis-'X']; ss->cache->radial_symmetry_pass= i; calc_brushdata_symm(sd, ss->cache, symm, axis, angle, feather); do_brush_action(sd, ob, brush); } } /* noise texture gives different values for the same input coord; this * can tear a multires mesh during sculpting so do a stitch in this * case */ static void sculpt_fix_noise_tear(Sculpt *sd, Object *ob) { SculptSession *ss = ob->sculpt; Brush *brush = paint_brush(&sd->paint); MTex *mtex = &brush->mtex; if(ss->multires && mtex->tex && mtex->tex->type == TEX_NOISE) multires_stitch_grids(ob); } static void do_symmetrical_brush_actions(Sculpt *sd, Object *ob) { Brush *brush = paint_brush(&sd->paint); SculptSession *ss = ob->sculpt; StrokeCache *cache = ss->cache; const char symm = sd->flags & 7; int i; float feather = calc_symmetry_feather(sd, ss->cache); cache->bstrength= brush_strength(sd, cache, feather); cache->symmetry= symm; /* symm is a bit combination of XYZ - 1 is mirror X; 2 is Y; 3 is XY; 4 is Z; 5 is XZ; 6 is YZ; 7 is XYZ */ for(i = 0; i <= symm; ++i) { if(i == 0 || (symm & i && (symm != 5 || i != 3) && (symm != 6 || (i != 3 && i != 5)))) { cache->mirror_symmetry_pass= i; cache->radial_symmetry_pass= 0; calc_brushdata_symm(sd, cache, i, 0, 0, feather); do_brush_action(sd, ob, brush); do_radial_symmetry(sd, ob, brush, i, 'X', feather); do_radial_symmetry(sd, ob, brush, i, 'Y', feather); do_radial_symmetry(sd, ob, brush, i, 'Z', feather); } } sculpt_combine_proxies(sd, ob); /* hack to fix noise texture tearing mesh */ sculpt_fix_noise_tear(sd, ob); if (ss->modifiers_active) sculpt_flush_stroke_deform(sd, ob); cache->first_time= 0; } static void sculpt_update_tex(const Scene *scene, Sculpt *sd, SculptSession *ss) { Brush *brush = paint_brush(&sd->paint); const int radius= brush_size(scene, brush); if(ss->texcache) { MEM_freeN(ss->texcache); ss->texcache= NULL; } /* Need to allocate a bigger buffer for bigger brush size */ ss->texcache_side = 2*radius; if(!ss->texcache || ss->texcache_side > ss->texcache_actual) { ss->texcache = brush_gen_texture_cache(brush, radius); ss->texcache_actual = ss->texcache_side; } } void sculpt_update_mesh_elements(Scene *scene, Sculpt *sd, Object *ob, int need_pmap) { DerivedMesh *dm = mesh_get_derived_final(scene, ob, CD_MASK_BAREMESH); SculptSession *ss = ob->sculpt; MultiresModifierData *mmd= sculpt_multires_active(scene, ob); ss->modifiers_active= sculpt_modifiers_active(scene, sd, ob); if(!mmd) ss->kb= ob_get_keyblock(ob); else ss->kb= NULL; if(mmd) { ss->multires = mmd; ss->totvert = dm->getNumVerts(dm); ss->totpoly = dm->getNumPolys(dm); ss->mvert= NULL; ss->mpoly= NULL; ss->mloop= NULL; ss->face_normals= NULL; } else { Mesh *me = get_mesh(ob); ss->totvert = me->totvert; ss->totpoly = me->totpoly; ss->mvert = me->mvert; ss->mpoly = me->mpoly; ss->mloop = me->mloop; ss->face_normals = NULL; ss->multires = NULL; } /* BMESH ONLY --- at some point we should move sculpt code to use polygons only - but for now it needs tessfaces */ BKE_mesh_tessface_ensure(ob->data); ss->pbvh = dm->getPBVH(ob, dm); ss->pmap = (need_pmap && dm->getPolyMap)? dm->getPolyMap(ob, dm): NULL; if(ss->modifiers_active) { if(!ss->orig_cos) { int a; free_sculptsession_deformMats(ss); if(ss->kb) ss->orig_cos = key_to_vertcos(ob, ss->kb); else ss->orig_cos = mesh_getVertexCos(ob->data, NULL); crazyspace_build_sculpt(scene, ob, &ss->deform_imats, &ss->deform_cos); BLI_pbvh_apply_vertCos(ss->pbvh, ss->deform_cos); for(a = 0; a < ((Mesh*)ob->data)->totvert; ++a) invert_m3(ss->deform_imats[a]); } } else free_sculptsession_deformMats(ss); /* if pbvh is deformed, key block is already applied to it */ if (ss->kb && !BLI_pbvh_isDeformed(ss->pbvh)) { float (*vertCos)[3]= key_to_vertcos(ob, ss->kb); if (vertCos) { /* apply shape keys coordinates to PBVH */ BLI_pbvh_apply_vertCos(ss->pbvh, vertCos); MEM_freeN(vertCos); } } } static int sculpt_mode_poll(bContext *C) { Object *ob = CTX_data_active_object(C); return ob && ob->mode & OB_MODE_SCULPT; } int sculpt_poll(bContext *C) { return sculpt_mode_poll(C) && paint_poll(C); } static const char *sculpt_tool_name(Sculpt *sd) { Brush *brush = paint_brush(&sd->paint); switch(brush->sculpt_tool) { case SCULPT_TOOL_DRAW: return "Draw Brush"; break; case SCULPT_TOOL_SMOOTH: return "Smooth Brush"; break; case SCULPT_TOOL_CREASE: return "Crease Brush"; break; case SCULPT_TOOL_BLOB: return "Blob Brush"; break; case SCULPT_TOOL_PINCH: return "Pinch Brush"; break; case SCULPT_TOOL_INFLATE: return "Inflate Brush"; break; case SCULPT_TOOL_GRAB: return "Grab Brush"; break; case SCULPT_TOOL_NUDGE: return "Nudge Brush"; break; case SCULPT_TOOL_THUMB: return "Thumb Brush"; break; case SCULPT_TOOL_LAYER: return "Layer Brush"; break; case SCULPT_TOOL_FLATTEN: return "Flatten Brush"; break; case SCULPT_TOOL_CLAY: return "Clay Brush"; break; case SCULPT_TOOL_CLAY_TUBES: return "Clay Tubes Brush"; break; case SCULPT_TOOL_FILL: return "Fill Brush"; break; case SCULPT_TOOL_SCRAPE: return "Scrape Brush"; break; default: return "Sculpting"; break; } } /** * Operator for applying a stroke (various attributes including mouse path) * using the current brush. */ static void sculpt_cache_free(StrokeCache *cache) { if(cache->face_norms) MEM_freeN(cache->face_norms); MEM_freeN(cache); } /* Initialize mirror modifier clipping */ static void sculpt_init_mirror_clipping(Object *ob, SculptSession *ss) { ModifierData *md; int i; for(md= ob->modifiers.first; md; md= md->next) { if(md->type==eModifierType_Mirror && (md->mode & eModifierMode_Realtime)) { MirrorModifierData *mmd = (MirrorModifierData*)md; if(mmd->flag & MOD_MIR_CLIPPING) { /* check each axis for mirroring */ for(i = 0; i < 3; ++i) { if(mmd->flag & (MOD_MIR_AXIS_X << i)) { /* enable sculpt clipping */ ss->cache->flag |= CLIP_X << i; /* update the clip tolerance */ if(mmd->tolerance > ss->cache->clip_tolerance[i]) ss->cache->clip_tolerance[i] = mmd->tolerance; } } } } } } /* Initialize the stroke cache invariants from operator properties */ static void sculpt_update_cache_invariants(bContext* C, Sculpt *sd, SculptSession *ss, wmOperator *op, wmEvent *event) { StrokeCache *cache = MEM_callocN(sizeof(StrokeCache), "stroke cache"); Brush *brush = paint_brush(&sd->paint); ViewContext *vc = paint_stroke_view_context(op->customdata); Object *ob= CTX_data_active_object(C); int i; int mode; ss->cache = cache; /* Set scaling adjustment */ ss->cache->scale[0] = 1.0f / ob->size[0]; ss->cache->scale[1] = 1.0f / ob->size[1]; ss->cache->scale[2] = 1.0f / ob->size[2]; ss->cache->plane_trim_squared = brush->plane_trim * brush->plane_trim; ss->cache->flag = 0; sculpt_init_mirror_clipping(ob, ss); /* Initial mouse location */ if (event) { ss->cache->initial_mouse[0] = event->x; ss->cache->initial_mouse[1] = event->y; } else { ss->cache->initial_mouse[0] = 0; ss->cache->initial_mouse[1] = 0; } mode = RNA_enum_get(op->ptr, "mode"); cache->invert = mode == BRUSH_STROKE_INVERT; cache->alt_smooth = mode == BRUSH_STROKE_SMOOTH; /* not very nice, but with current events system implementation * we can't handle brush appearance inversion hotkey separately (sergey) */ if(cache->invert) brush->flag |= BRUSH_INVERTED; else brush->flag &= ~BRUSH_INVERTED; /* Alt-Smooth */ if (ss->cache->alt_smooth) { Paint *p= &sd->paint; Brush *br; BLI_strncpy(cache->saved_active_brush_name, brush->id.name+2, sizeof(cache->saved_active_brush_name)); br= (Brush *)find_id("BR", "Smooth"); if(br) { paint_brush_set(p, br); brush = br; } } copy_v2_v2(cache->mouse, cache->initial_mouse); copy_v2_v2(cache->tex_mouse, cache->initial_mouse); /* Truly temporary data that isn't stored in properties */ cache->vc = vc; cache->brush = brush; /* cache projection matrix */ ED_view3d_ob_project_mat_get(cache->vc->rv3d, ob, cache->projection_mat); ED_view3d_global_to_vector(cache->vc->rv3d, cache->vc->rv3d->twmat[3], cache->true_view_normal); /* Initialize layer brush displacements and persistent coords */ if(brush->sculpt_tool == SCULPT_TOOL_LAYER) { /* not supported yet for multires */ if(!ss->multires && !ss->layer_co && (brush->flag & BRUSH_PERSISTENT)) { if(!ss->layer_co) ss->layer_co= MEM_mallocN(sizeof(float) * 3 * ss->totvert, "sculpt mesh vertices copy"); if(ss->deform_cos) memcpy(ss->layer_co, ss->deform_cos, ss->totvert); else { for(i = 0; i < ss->totvert; ++i) { copy_v3_v3(ss->layer_co[i], ss->mvert[i].co); } } } } /* Make copies of the mesh vertex locations and normals for some tools */ if(brush->flag & BRUSH_ANCHORED) { if(ss->face_normals) { float *fn = ss->face_normals; cache->face_norms= MEM_mallocN(sizeof(float) * 3 * ss->totpoly, "Sculpt face norms"); for(i = 0; i < ss->totpoly; ++i, fn += 3) copy_v3_v3(cache->face_norms[i], fn); } cache->original = 1; } if(ELEM8(brush->sculpt_tool, SCULPT_TOOL_DRAW, SCULPT_TOOL_CREASE, SCULPT_TOOL_BLOB, SCULPT_TOOL_LAYER, SCULPT_TOOL_INFLATE, SCULPT_TOOL_CLAY, SCULPT_TOOL_CLAY_TUBES, SCULPT_TOOL_ROTATE)) if(!(brush->flag & BRUSH_ACCUMULATE)) cache->original = 1; cache->special_rotation = (brush->flag & BRUSH_RAKE) ? sd->last_angle : 0; //cache->last_rake[0] = sd->last_x; //cache->last_rake[1] = sd->last_y; cache->first_time= 1; cache->vertex_rotation= 0; } static void sculpt_update_brush_delta(Sculpt *sd, Object *ob, Brush *brush) { SculptSession *ss = ob->sculpt; StrokeCache *cache = ss->cache; int tool = brush->sculpt_tool; if(ELEM5(tool, SCULPT_TOOL_GRAB, SCULPT_TOOL_NUDGE, SCULPT_TOOL_CLAY_TUBES, SCULPT_TOOL_SNAKE_HOOK, SCULPT_TOOL_THUMB)) { float grab_location[3], imat[4][4], delta[3], loc[3]; if(cache->first_time) { copy_v3_v3(cache->orig_grab_location, cache->true_location); } else if(tool == SCULPT_TOOL_SNAKE_HOOK) add_v3_v3(cache->true_location, cache->grab_delta); /* compute 3d coordinate at same z from original location + mouse */ mul_v3_m4v3(loc, ob->obmat, cache->orig_grab_location); initgrabz(cache->vc->rv3d, loc[0], loc[1], loc[2]); ED_view3d_win_to_delta(cache->vc->ar, cache->mouse, grab_location); /* compute delta to move verts by */ if(!cache->first_time) { switch(tool) { case SCULPT_TOOL_GRAB: case SCULPT_TOOL_THUMB: sub_v3_v3v3(delta, grab_location, cache->old_grab_location); invert_m4_m4(imat, ob->obmat); mul_mat3_m4_v3(imat, delta); add_v3_v3(cache->grab_delta, delta); break; case SCULPT_TOOL_CLAY_TUBES: case SCULPT_TOOL_NUDGE: sub_v3_v3v3(cache->grab_delta, grab_location, cache->old_grab_location); invert_m4_m4(imat, ob->obmat); mul_mat3_m4_v3(imat, cache->grab_delta); break; case SCULPT_TOOL_SNAKE_HOOK: sub_v3_v3v3(cache->grab_delta, grab_location, cache->old_grab_location); invert_m4_m4(imat, ob->obmat); mul_mat3_m4_v3(imat, cache->grab_delta); break; } } else { zero_v3(cache->grab_delta); } copy_v3_v3(cache->old_grab_location, grab_location); if(tool == SCULPT_TOOL_GRAB) copy_v3_v3(sd->anchored_location, cache->true_location); else if(tool == SCULPT_TOOL_THUMB) copy_v3_v3(sd->anchored_location, cache->orig_grab_location); if(ELEM(tool, SCULPT_TOOL_GRAB, SCULPT_TOOL_THUMB)) { /* location stays the same for finding vertices in brush radius */ copy_v3_v3(cache->true_location, cache->orig_grab_location); sd->draw_anchored = 1; copy_v2_v2(sd->anchored_initial_mouse, cache->initial_mouse); sd->anchored_size = cache->pixel_radius; } } } /* Initialize the stroke cache variants from operator properties */ static void sculpt_update_cache_variants(bContext *C, Sculpt *sd, Object *ob, struct PaintStroke *stroke, PointerRNA *ptr) { Scene *scene = CTX_data_scene(C); SculptSession *ss = ob->sculpt; StrokeCache *cache = ss->cache; Brush *brush = paint_brush(&sd->paint); int dx, dy; //RNA_float_get_array(ptr, "location", cache->traced_location); if (cache->first_time || !((brush->flag & BRUSH_ANCHORED)|| (brush->sculpt_tool == SCULPT_TOOL_SNAKE_HOOK)|| (brush->sculpt_tool == SCULPT_TOOL_ROTATE)) ) { RNA_float_get_array(ptr, "location", cache->true_location); } cache->pen_flip = RNA_boolean_get(ptr, "pen_flip"); RNA_float_get_array(ptr, "mouse", cache->mouse); /* XXX: Use preassure value from first brush step for brushes which don't * support strokes (grab, thumb). They depends on initial state and * brush coord/pressure/etc. * It's more an events design issue, which doesn't split coordinate/pressure/angle * changing events. We should avoid this after events system re-design */ if(paint_space_stroke_enabled(brush) || cache->first_time) cache->pressure = RNA_float_get(ptr, "pressure"); /* Truly temporary data that isn't stored in properties */ sd->draw_pressure= 1; sd->pressure_value= cache->pressure; cache->previous_pixel_radius = cache->pixel_radius; cache->pixel_radius = brush_size(scene, brush); if(cache->first_time) { if (!brush_use_locked_size(scene, brush)) { cache->initial_radius= paint_calc_object_space_radius(cache->vc, cache->true_location, brush_size(scene, brush)); brush_set_unprojected_radius(scene, brush, cache->initial_radius); } else { cache->initial_radius= brush_unprojected_radius(scene, brush); } } if(brush_use_size_pressure(scene, brush)) { cache->pixel_radius *= cache->pressure; cache->radius= cache->initial_radius * cache->pressure; } else cache->radius= cache->initial_radius; cache->radius_squared = cache->radius*cache->radius; if(!(brush->flag & BRUSH_ANCHORED || ELEM4(brush->sculpt_tool, SCULPT_TOOL_GRAB, SCULPT_TOOL_SNAKE_HOOK, SCULPT_TOOL_THUMB, SCULPT_TOOL_ROTATE))) { copy_v2_v2(cache->tex_mouse, cache->mouse); if ( (brush->mtex.brush_map_mode == MTEX_MAP_MODE_FIXED) && (brush->flag & BRUSH_RANDOM_ROTATION) && !(brush->flag & BRUSH_RAKE)) { cache->special_rotation = 2.0f*(float)M_PI*BLI_frand(); } } if(brush->flag & BRUSH_ANCHORED) { int hit = 0; dx = cache->mouse[0] - cache->initial_mouse[0]; dy = cache->mouse[1] - cache->initial_mouse[1]; sd->anchored_size = cache->pixel_radius = sqrt(dx*dx + dy*dy); cache->special_rotation = atan2(dx, dy) + M_PI; if (brush->flag & BRUSH_EDGE_TO_EDGE) { float halfway[2]; float out[3]; halfway[0] = (float)dx * 0.5f + cache->initial_mouse[0]; halfway[1] = (float)dy * 0.5f + cache->initial_mouse[1]; if (sculpt_stroke_get_location(C, out, halfway)) { copy_v3_v3(sd->anchored_location, out); copy_v2_v2(sd->anchored_initial_mouse, halfway); copy_v2_v2(cache->tex_mouse, halfway); copy_v3_v3(cache->true_location, sd->anchored_location); sd->anchored_size /= 2.0f; cache->pixel_radius /= 2.0f; hit = 1; } } if (!hit) copy_v2_v2(sd->anchored_initial_mouse, cache->initial_mouse); cache->radius= paint_calc_object_space_radius(paint_stroke_view_context(stroke), cache->true_location, cache->pixel_radius); cache->radius_squared = cache->radius*cache->radius; copy_v3_v3(sd->anchored_location, cache->true_location); sd->draw_anchored = 1; } else if(brush->flag & BRUSH_RAKE) { const float u = 0.5f; const float v = 1 - u; const float r = 20; const float dx = cache->last_rake[0] - cache->mouse[0]; const float dy = cache->last_rake[1] - cache->mouse[1]; if (cache->first_time) { copy_v2_v2(cache->last_rake, cache->mouse); } else if (dx*dx + dy*dy >= r*r) { cache->special_rotation = atan2(dx, dy); cache->last_rake[0] = u*cache->last_rake[0] + v*cache->mouse[0]; cache->last_rake[1] = u*cache->last_rake[1] + v*cache->mouse[1]; } } sculpt_update_brush_delta(sd, ob, brush); if(brush->sculpt_tool == SCULPT_TOOL_ROTATE) { dx = cache->mouse[0] - cache->initial_mouse[0]; dy = cache->mouse[1] - cache->initial_mouse[1]; cache->vertex_rotation = -atan2f(dx, dy) * cache->bstrength; sd->draw_anchored = 1; copy_v2_v2(sd->anchored_initial_mouse, cache->initial_mouse); copy_v3_v3(sd->anchored_location, cache->true_location); sd->anchored_size = cache->pixel_radius; } sd->special_rotation = cache->special_rotation; } static void sculpt_stroke_modifiers_check(bContext *C, Object *ob) { SculptSession *ss = ob->sculpt; if(ss->modifiers_active) { Sculpt *sd = CTX_data_tool_settings(C)->sculpt; Brush *brush = paint_brush(&sd->paint); sculpt_update_mesh_elements(CTX_data_scene(C), sd, ob, brush->sculpt_tool == SCULPT_TOOL_SMOOTH); } } typedef struct { SculptSession *ss; float *ray_start, *ray_normal; int hit; float dist; int original; } SculptRaycastData; static void sculpt_raycast_cb(PBVHNode *node, void *data_v, float* tmin) { if (BLI_pbvh_node_get_tmin(node) < *tmin) { SculptRaycastData *srd = data_v; float (*origco)[3]= NULL; if(srd->original && srd->ss->cache) { /* intersect with coordinates from before we started stroke */ SculptUndoNode *unode= sculpt_undo_get_node(node); origco= (unode)? unode->co: NULL; } if (BLI_pbvh_node_raycast(srd->ss->pbvh, node, origco, srd->ray_start, srd->ray_normal, &srd->dist)) { srd->hit = 1; *tmin = srd->dist; } } } /* Do a raycast in the tree to find the 3d brush location * (This allows us to ignore the GL depth buffer) * Returns 0 if the ray doesn't hit the mesh, non-zero otherwise */ int sculpt_stroke_get_location(bContext *C, float out[3], float mouse[2]) { ViewContext vc; Object *ob; SculptSession *ss; StrokeCache *cache; float ray_start[3], ray_end[3], ray_normal[3], dist; float obimat[4][4]; float mval[2]; SculptRaycastData srd; view3d_set_viewcontext(C, &vc); ob = vc.obact; ss = ob->sculpt; cache = ss->cache; sculpt_stroke_modifiers_check(C, ob); mval[0] = mouse[0] - vc.ar->winrct.xmin; mval[1] = mouse[1] - vc.ar->winrct.ymin; ED_view3d_win_to_segment_clip(vc.ar, vc.v3d, mval, ray_start, ray_end); invert_m4_m4(obimat, ob->obmat); mul_m4_v3(obimat, ray_start); mul_m4_v3(obimat, ray_end); sub_v3_v3v3(ray_normal, ray_end, ray_start); dist= normalize_v3(ray_normal); srd.ss = vc.obact->sculpt; srd.ray_start = ray_start; srd.ray_normal = ray_normal; srd.dist = dist; srd.hit = 0; srd.original = (cache)? cache->original: 0; BLI_pbvh_raycast(ss->pbvh, sculpt_raycast_cb, &srd, ray_start, ray_normal, srd.original); copy_v3_v3(out, ray_normal); mul_v3_fl(out, srd.dist); add_v3_v3(out, ray_start); return srd.hit; } static void sculpt_brush_init_tex(const Scene *scene, Sculpt *sd, SculptSession *ss) { Brush *brush = paint_brush(&sd->paint); MTex *mtex= &brush->mtex; /* init mtex nodes */ if(mtex->tex && mtex->tex->nodetree) ntreeTexBeginExecTree(mtex->tex->nodetree, 1); /* has internal flag to detect it only does it once */ /* TODO: Shouldn't really have to do this at the start of every * stroke, but sculpt would need some sort of notification when * changes are made to the texture. */ sculpt_update_tex(scene, sd, ss); } static int sculpt_brush_stroke_init(bContext *C, wmOperator *op) { Scene *scene= CTX_data_scene(C); Object *ob= CTX_data_active_object(C); Sculpt *sd = CTX_data_tool_settings(C)->sculpt; SculptSession *ss = CTX_data_active_object(C)->sculpt; Brush *brush = paint_brush(&sd->paint); int mode= RNA_enum_get(op->ptr, "mode"); int is_smooth= 0; view3d_operator_needs_opengl(C); sculpt_brush_init_tex(scene, sd, ss); is_smooth|= mode == BRUSH_STROKE_SMOOTH; is_smooth|= brush->sculpt_tool == SCULPT_TOOL_SMOOTH; sculpt_update_mesh_elements(scene, sd, ob, is_smooth); return 1; } static void sculpt_restore_mesh(Sculpt *sd, SculptSession *ss) { Brush *brush = paint_brush(&sd->paint); /* Restore the mesh before continuing with anchored stroke */ if((brush->flag & BRUSH_ANCHORED) || (brush->sculpt_tool == SCULPT_TOOL_GRAB && brush_use_size_pressure(ss->cache->vc->scene, brush)) || (brush->flag & BRUSH_RESTORE_MESH)) { StrokeCache *cache = ss->cache; int i; PBVHNode **nodes; int n, totnode; BLI_pbvh_search_gather(ss->pbvh, NULL, NULL, &nodes, &totnode); #pragma omp parallel for schedule(guided) if (sd->flags & SCULPT_USE_OPENMP) for(n=0; npbvh, nodes[n], vd, PBVH_ITER_UNIQUE) { copy_v3_v3(vd.co, unode->co[vd.i]); if(vd.no) copy_v3_v3_short(vd.no, unode->no[vd.i]); else normal_short_to_float_v3(vd.fno, unode->no[vd.i]); if(vd.mvert) vd.mvert->flag |= ME_VERT_PBVH_UPDATE; } BLI_pbvh_vertex_iter_end; BLI_pbvh_node_mark_update(nodes[n]); } } if(ss->face_normals) { float *fn = ss->face_normals; for(i = 0; i < ss->totpoly; ++i, fn += 3) copy_v3_v3(fn, cache->face_norms[i]); } if(nodes) MEM_freeN(nodes); } } static void sculpt_flush_update(bContext *C) { Object *ob = CTX_data_active_object(C); SculptSession *ss = ob->sculpt; ARegion *ar = CTX_wm_region(C); MultiresModifierData *mmd = ss->multires; if(mmd) multires_mark_as_modified(ob, MULTIRES_COORDS_MODIFIED); if(ob->derivedFinal) /* VBO no longer valid */ GPU_drawobject_free(ob->derivedFinal); if(ss->modifiers_active) { DAG_id_tag_update(&ob->id, OB_RECALC_DATA); ED_region_tag_redraw(ar); } else { rcti r; BLI_pbvh_update(ss->pbvh, PBVH_UpdateBB, NULL); if (sculpt_get_redraw_rect(ar, CTX_wm_region_view3d(C), ob, &r)) { if (ss->cache) ss->cache->previous_r= r; r.xmin += ar->winrct.xmin + 1; r.xmax += ar->winrct.xmin - 1; r.ymin += ar->winrct.ymin + 1; r.ymax += ar->winrct.ymin - 1; ss->partial_redraw = 1; ED_region_tag_redraw_partial(ar, &r); } } } /* Returns whether the mouse/stylus is over the mesh (1) * or over the background (0) */ static int over_mesh(bContext *C, struct wmOperator *UNUSED(op), float x, float y) { float mouse[2], co[3]; mouse[0] = x; mouse[1] = y; return sculpt_stroke_get_location(C, co, mouse); } static int sculpt_stroke_test_start(bContext *C, struct wmOperator *op, wmEvent *event) { /* Don't start the stroke until mouse goes over the mesh. * note: event will only be null when re-executing the saved stroke. */ if(event==NULL || over_mesh(C, op, event->x, event->y)) { Object *ob = CTX_data_active_object(C); SculptSession *ss = ob->sculpt; Sculpt *sd = CTX_data_tool_settings(C)->sculpt; ED_view3d_init_mats_rv3d(ob, CTX_wm_region_view3d(C)); sculpt_update_cache_invariants(C, sd, ss, op, event); sculpt_undo_push_begin(sculpt_tool_name(sd)); #ifdef _OPENMP /* If using OpenMP then create a number of threads two times the * number of processor cores. * Justification: Empirically I've found that two threads per * processor gives higher throughput. */ if (sd->flags & SCULPT_USE_OPENMP) { int num_procs; num_procs = omp_get_num_procs(); omp_set_num_threads(2*num_procs); } #endif return 1; } else return 0; } static void sculpt_stroke_update_step(bContext *C, struct PaintStroke *stroke, PointerRNA *itemptr) { Sculpt *sd = CTX_data_tool_settings(C)->sculpt; Object *ob = CTX_data_active_object(C); SculptSession *ss = ob->sculpt; sculpt_stroke_modifiers_check(C, ob); sculpt_update_cache_variants(C, sd, ob, stroke, itemptr); sculpt_restore_mesh(sd, ss); do_symmetrical_brush_actions(sd, ob); /* Cleanup */ sculpt_flush_update(C); } static void sculpt_brush_exit_tex(Sculpt *sd) { Brush *brush= paint_brush(&sd->paint); MTex *mtex= &brush->mtex; if(mtex->tex && mtex->tex->nodetree) ntreeTexEndExecTree(mtex->tex->nodetree->execdata, 1); } static void sculpt_stroke_done(bContext *C, struct PaintStroke *UNUSED(stroke)) { Object *ob= CTX_data_active_object(C); SculptSession *ss = ob->sculpt; Sculpt *sd = CTX_data_tool_settings(C)->sculpt; // reset values used to draw brush after completing the stroke sd->draw_anchored= 0; sd->draw_pressure= 0; sd->special_rotation= 0; /* Finished */ if(ss->cache) { Brush *brush= paint_brush(&sd->paint); brush->flag &= ~BRUSH_INVERTED; sculpt_stroke_modifiers_check(C, ob); /* Alt-Smooth */ if (ss->cache->alt_smooth) { Paint *p= &sd->paint; brush= (Brush *)find_id("BR", ss->cache->saved_active_brush_name); if(brush) { paint_brush_set(p, brush); } } sculpt_cache_free(ss->cache); ss->cache = NULL; sculpt_undo_push_end(); BLI_pbvh_update(ss->pbvh, PBVH_UpdateOriginalBB, NULL); /* optimization: if there is locked key and active modifiers present in */ /* the stack, keyblock is updating at each step. otherwise we could update */ /* keyblock only when stroke is finished */ if(ss->kb && !ss->modifiers_active) sculpt_update_keyblock(ob); ss->partial_redraw = 0; /* try to avoid calling this, only for e.g. linked duplicates now */ if(((Mesh*)ob->data)->id.us > 1) DAG_id_tag_update(&ob->id, OB_RECALC_DATA); WM_event_add_notifier(C, NC_OBJECT|ND_DRAW, ob); } sculpt_brush_exit_tex(sd); } static int sculpt_brush_stroke_invoke(bContext *C, wmOperator *op, wmEvent *event) { struct PaintStroke *stroke; int ignore_background_click; if(!sculpt_brush_stroke_init(C, op)) return OPERATOR_CANCELLED; stroke = paint_stroke_new(C, sculpt_stroke_get_location, sculpt_stroke_test_start, sculpt_stroke_update_step, sculpt_stroke_done, event->type); op->customdata = stroke; /* For tablet rotation */ ignore_background_click = RNA_boolean_get(op->ptr, "ignore_background_click"); if(ignore_background_click && !over_mesh(C, op, event->x, event->y)) { paint_stroke_free(stroke); return OPERATOR_PASS_THROUGH; } /* add modal handler */ WM_event_add_modal_handler(C, op); op->type->modal(C, op, event); return OPERATOR_RUNNING_MODAL; } static int sculpt_brush_stroke_exec(bContext *C, wmOperator *op) { if(!sculpt_brush_stroke_init(C, op)) return OPERATOR_CANCELLED; op->customdata = paint_stroke_new(C, sculpt_stroke_get_location, sculpt_stroke_test_start, sculpt_stroke_update_step, sculpt_stroke_done, 0); /* frees op->customdata */ paint_stroke_exec(C, op); return OPERATOR_FINISHED; } static int sculpt_brush_stroke_cancel(bContext *C, wmOperator *op) { Object *ob= CTX_data_active_object(C); SculptSession *ss = ob->sculpt; Sculpt *sd = CTX_data_tool_settings(C)->sculpt; paint_stroke_cancel(C, op); if(ss->cache) { sculpt_cache_free(ss->cache); ss->cache = NULL; } sculpt_brush_exit_tex(sd); return OPERATOR_CANCELLED; } static void SCULPT_OT_brush_stroke(wmOperatorType *ot) { static EnumPropertyItem stroke_mode_items[] = { {BRUSH_STROKE_NORMAL, "NORMAL", 0, "Normal", "Apply brush normally"}, {BRUSH_STROKE_INVERT, "INVERT", 0, "Invert", "Invert action of brush for duration of stroke"}, {BRUSH_STROKE_SMOOTH, "SMOOTH", 0, "Smooth", "Switch brush to smooth mode for duration of stroke"}, {0} }; /* identifiers */ ot->name= "Sculpt Mode"; ot->idname= "SCULPT_OT_brush_stroke"; /* api callbacks */ ot->invoke= sculpt_brush_stroke_invoke; ot->modal= paint_stroke_modal; ot->exec= sculpt_brush_stroke_exec; ot->poll= sculpt_poll; ot->cancel= sculpt_brush_stroke_cancel; /* flags (sculpt does own undo? (ton) */ ot->flag= OPTYPE_BLOCKING; /* properties */ RNA_def_collection_runtime(ot->srna, "stroke", &RNA_OperatorStrokeElement, "Stroke", ""); RNA_def_enum(ot->srna, "mode", stroke_mode_items, BRUSH_STROKE_NORMAL, "Sculpt Stroke Mode", "Action taken when a sculpt stroke is made"); RNA_def_boolean(ot->srna, "ignore_background_click", 0, "Ignore Background Click", "Clicks on the background do not start the stroke"); } /**** Reset the copy of the mesh that is being sculpted on (currently just for the layer brush) ****/ static int sculpt_set_persistent_base(bContext *C, wmOperator *UNUSED(op)) { SculptSession *ss = CTX_data_active_object(C)->sculpt; if(ss) { if(ss->layer_co) MEM_freeN(ss->layer_co); ss->layer_co = NULL; } return OPERATOR_FINISHED; } static void SCULPT_OT_set_persistent_base(wmOperatorType *ot) { /* identifiers */ ot->name= "Set Persistent Base"; ot->idname= "SCULPT_OT_set_persistent_base"; /* api callbacks */ ot->exec= sculpt_set_persistent_base; ot->poll= sculpt_mode_poll; ot->flag= OPTYPE_REGISTER|OPTYPE_UNDO; } /**** Toggle operator for turning sculpt mode on or off ****/ static void sculpt_init_session(Scene *scene, Object *ob) { ob->sculpt = MEM_callocN(sizeof(SculptSession), "sculpt session"); sculpt_update_mesh_elements(scene, scene->toolsettings->sculpt, ob, 0); } static int sculpt_toggle_mode(bContext *C, wmOperator *UNUSED(op)) { Scene *scene = CTX_data_scene(C); ToolSettings *ts = CTX_data_tool_settings(C); Object *ob = CTX_data_active_object(C); MultiresModifierData *mmd= sculpt_multires_active(scene, ob); int flush_recalc= 0; /* multires in sculpt mode could have different from object mode subdivision level */ flush_recalc |= mmd && mmd->sculptlvl != mmd->lvl; /* if object has got active modifiers, it's dm could be different in sculpt mode */ flush_recalc |= sculpt_has_active_modifiers(scene, ob); if(ob->mode & OB_MODE_SCULPT) { if(mmd) multires_force_update(ob); if(flush_recalc) DAG_id_tag_update(&ob->id, OB_RECALC_DATA); /* Leave sculptmode */ ob->mode &= ~OB_MODE_SCULPT; free_sculptsession(ob); } else { /* Enter sculptmode */ ob->mode |= OB_MODE_SCULPT; if(flush_recalc) DAG_id_tag_update(&ob->id, OB_RECALC_DATA); /* Create persistent sculpt mode data */ if(!ts->sculpt) { ts->sculpt = MEM_callocN(sizeof(Sculpt), "sculpt mode data"); /* Turn on X plane mirror symmetry by default */ ts->sculpt->flags |= SCULPT_SYMM_X; } /* Create sculpt mode session data */ if(ob->sculpt) free_sculptsession(ob); sculpt_init_session(scene, ob); paint_init(&ts->sculpt->paint, PAINT_CURSOR_SCULPT); paint_cursor_start(C, sculpt_poll); } WM_event_add_notifier(C, NC_SCENE|ND_MODE, CTX_data_scene(C)); return OPERATOR_FINISHED; } static void SCULPT_OT_sculptmode_toggle(wmOperatorType *ot) { /* identifiers */ ot->name= "Sculpt Mode"; ot->idname= "SCULPT_OT_sculptmode_toggle"; /* api callbacks */ ot->exec= sculpt_toggle_mode; ot->poll= ED_operator_object_active_editable_mesh; ot->flag= OPTYPE_REGISTER|OPTYPE_UNDO; } void ED_operatortypes_sculpt(void) { WM_operatortype_append(SCULPT_OT_brush_stroke); WM_operatortype_append(SCULPT_OT_sculptmode_toggle); WM_operatortype_append(SCULPT_OT_set_persistent_base); }