/* * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): none yet. * * ***** END GPL LICENSE BLOCK ***** */ /** \file blender/editors/transform/transform.c * \ingroup edtransform */ #include #include #include #include #include #ifndef WIN32 #include #else #include #endif #include "MEM_guardedalloc.h" #include "DNA_anim_types.h" #include "DNA_armature_types.h" #include "DNA_constraint_types.h" #include "DNA_mesh_types.h" #include "DNA_meshdata_types.h" #include "DNA_movieclip_types.h" #include "DNA_scene_types.h" /* PET modes */ #include "RNA_access.h" #include "BIF_gl.h" #include "BIF_glutil.h" #include "BKE_nla.h" #include "BKE_bmesh.h" #include "BKE_context.h" #include "BKE_constraint.h" #include "BKE_global.h" #include "BKE_particle.h" #include "BKE_pointcache.h" #include "BKE_unit.h" #include "ED_image.h" #include "ED_keyframing.h" #include "ED_screen.h" #include "ED_space_api.h" #include "ED_markers.h" #include "ED_view3d.h" #include "ED_mesh.h" #include "ED_clip.h" #include "UI_view2d.h" #include "WM_types.h" #include "WM_api.h" #include "BLI_math.h" #include "BLI_blenlib.h" #include "BLI_utildefines.h" #include "BLI_ghash.h" #include "BLI_linklist.h" #include "BLI_smallhash.h" #include "BLI_array.h" #include "UI_resources.h" //#include "blendef.h" // //#include "mydevice.h" #include "transform.h" #include static void drawTransformApply(const struct bContext *C, struct ARegion *ar, void *arg); static int doEdgeSlide(TransInfo *t, float perc); /* ************************** SPACE DEPENDANT CODE **************************** */ void setTransformViewMatrices(TransInfo *t) { if (t->spacetype==SPACE_VIEW3D && t->ar && t->ar->regiontype == RGN_TYPE_WINDOW) { RegionView3D *rv3d = t->ar->regiondata; copy_m4_m4(t->viewmat, rv3d->viewmat); copy_m4_m4(t->viewinv, rv3d->viewinv); copy_m4_m4(t->persmat, rv3d->persmat); copy_m4_m4(t->persinv, rv3d->persinv); t->persp = rv3d->persp; } else { unit_m4(t->viewmat); unit_m4(t->viewinv); unit_m4(t->persmat); unit_m4(t->persinv); t->persp = RV3D_ORTHO; } calculateCenter2D(t); } static void convertViewVec2D(View2D *v2d, float vec[3], int dx, int dy) { float divx, divy; divx= v2d->mask.xmax - v2d->mask.xmin; divy= v2d->mask.ymax - v2d->mask.ymin; vec[0]= (v2d->cur.xmax - v2d->cur.xmin) * dx / divx; vec[1]= (v2d->cur.ymax - v2d->cur.ymin) * dy / divy; vec[2]= 0.0f; } void convertViewVec(TransInfo *t, float r_vec[3], int dx, int dy) { if ((t->spacetype == SPACE_VIEW3D) && (t->ar->regiontype == RGN_TYPE_WINDOW)) { float mval_f[2]; mval_f[0] = dx; mval_f[1] = dy; ED_view3d_win_to_delta(t->ar, mval_f, r_vec); } else if (t->spacetype==SPACE_IMAGE) { float aspx, aspy; convertViewVec2D(t->view, r_vec, dx, dy); ED_space_image_uv_aspect(t->sa->spacedata.first, &aspx, &aspy); r_vec[0] *= aspx; r_vec[1] *= aspy; } else if (ELEM(t->spacetype, SPACE_IPO, SPACE_NLA)) { convertViewVec2D(t->view, r_vec, dx, dy); } else if (ELEM(t->spacetype, SPACE_NODE, SPACE_SEQ)) { convertViewVec2D(&t->ar->v2d, r_vec, dx, dy); } else if (t->spacetype==SPACE_CLIP) { View2D *v2d = t->view; float divx, divy; divx = v2d->mask.xmax-v2d->mask.xmin; divy = v2d->mask.ymax-v2d->mask.ymin; r_vec[0] = (v2d->cur.xmax-v2d->cur.xmin)*(dx)/divx; r_vec[1] = (v2d->cur.ymax-v2d->cur.ymin)*(dy)/divy; r_vec[2] = 0.0f; } else { printf("%s: called in an invalid context\n", __func__); zero_v3(r_vec); } } void projectIntView(TransInfo *t, const float vec[3], int adr[2]) { if (t->spacetype==SPACE_VIEW3D) { if (t->ar->regiontype == RGN_TYPE_WINDOW) project_int_noclip(t->ar, vec, adr); } else if (t->spacetype==SPACE_IMAGE) { float aspx, aspy, v[2]; ED_space_image_uv_aspect(t->sa->spacedata.first, &aspx, &aspy); v[0]= vec[0]/aspx; v[1]= vec[1]/aspy; UI_view2d_to_region_no_clip(t->view, v[0], v[1], adr, adr+1); } else if (t->spacetype == SPACE_ACTION) { int out[2] = {0, 0}; #if 0 SpaceAction *sact = t->sa->spacedata.first; if (sact->flag & SACTION_DRAWTIME) { //vec[0] = vec[0]/((t->scene->r.frs_sec / t->scene->r.frs_sec_base)); /* same as below */ UI_view2d_to_region_no_clip((View2D *)t->view, vec[0], vec[1], out, out+1); } else #endif { UI_view2d_to_region_no_clip((View2D *)t->view, vec[0], vec[1], out, out+1); } adr[0]= out[0]; adr[1]= out[1]; } else if (ELEM(t->spacetype, SPACE_IPO, SPACE_NLA)) { int out[2] = {0, 0}; UI_view2d_to_region_no_clip((View2D *)t->view, vec[0], vec[1], out, out+1); adr[0]= out[0]; adr[1]= out[1]; } else if (t->spacetype==SPACE_SEQ) { /* XXX not tested yet, but should work */ int out[2] = {0, 0}; UI_view2d_to_region_no_clip((View2D *)t->view, vec[0], vec[1], out, out+1); adr[0]= out[0]; adr[1]= out[1]; } else if (t->spacetype==SPACE_CLIP) { UI_view2d_to_region_no_clip(t->view, vec[0], vec[1], adr, adr+1); } } void projectFloatView(TransInfo *t, const float vec[3], float adr[2]) { switch (t->spacetype) { case SPACE_VIEW3D: { if (t->ar->regiontype == RGN_TYPE_WINDOW) { project_float_noclip(t->ar, vec, adr); return; } break; } case SPACE_IMAGE: case SPACE_CLIP: case SPACE_IPO: case SPACE_NLA: { int a[2]; projectIntView(t, vec, a); adr[0] = a[0]; adr[1] = a[1]; return; } } zero_v2(adr); } void applyAspectRatio(TransInfo *t, float *vec) { if ((t->spacetype==SPACE_IMAGE) && (t->mode==TFM_TRANSLATION)) { SpaceImage *sima= t->sa->spacedata.first; float aspx, aspy; if ((sima->flag & SI_COORDFLOATS)==0) { int width, height; ED_space_image_size(sima, &width, &height); vec[0] *= width; vec[1] *= height; } ED_space_image_uv_aspect(sima, &aspx, &aspy); vec[0] /= aspx; vec[1] /= aspy; } } void removeAspectRatio(TransInfo *t, float *vec) { if ((t->spacetype==SPACE_IMAGE) && (t->mode==TFM_TRANSLATION)) { SpaceImage *sima= t->sa->spacedata.first; float aspx, aspy; if ((sima->flag & SI_COORDFLOATS)==0) { int width, height; ED_space_image_size(sima, &width, &height); vec[0] /= width; vec[1] /= height; } ED_space_image_uv_aspect(sima, &aspx, &aspy); vec[0] *= aspx; vec[1] *= aspy; } } static void viewRedrawForce(const bContext *C, TransInfo *t) { if (t->spacetype == SPACE_VIEW3D) { /* Do we need more refined tags? */ if (t->flag & T_POSE) WM_event_add_notifier(C, NC_OBJECT|ND_POSE, NULL); else WM_event_add_notifier(C, NC_OBJECT|ND_TRANSFORM, NULL); /* for realtime animation record - send notifiers recognised by animation editors */ // XXX: is this notifier a lame duck? if ((t->animtimer) && IS_AUTOKEY_ON(t->scene)) WM_event_add_notifier(C, NC_OBJECT|ND_KEYS, NULL); } else if (t->spacetype == SPACE_ACTION) { //SpaceAction *saction= (SpaceAction *)t->sa->spacedata.first; WM_event_add_notifier(C, NC_ANIMATION|ND_KEYFRAME|NA_EDITED, NULL); } else if (t->spacetype == SPACE_IPO) { //SpaceIpo *sipo= (SpaceIpo *)t->sa->spacedata.first; WM_event_add_notifier(C, NC_ANIMATION|ND_KEYFRAME|NA_EDITED, NULL); } else if (t->spacetype == SPACE_NLA) { WM_event_add_notifier(C, NC_ANIMATION|ND_NLA|NA_EDITED, NULL); } else if (t->spacetype == SPACE_NODE) { //ED_area_tag_redraw(t->sa); WM_event_add_notifier(C, NC_SPACE|ND_SPACE_NODE_VIEW, NULL); } else if (t->spacetype == SPACE_SEQ) { WM_event_add_notifier(C, NC_SCENE|ND_SEQUENCER, NULL); } else if (t->spacetype==SPACE_IMAGE) { // XXX how to deal with lock? SpaceImage *sima= (SpaceImage*)t->sa->spacedata.first; if (sima->lock) WM_event_add_notifier(C, NC_GEOM|ND_DATA, t->obedit->data); else ED_area_tag_redraw(t->sa); } else if (t->spacetype==SPACE_CLIP) { SpaceClip *sc = (SpaceClip*)t->sa->spacedata.first; MovieClip *clip = ED_space_clip(sc); /* objects could be parented to tracking data, so send this for viewport refresh */ WM_event_add_notifier(C, NC_OBJECT|ND_TRANSFORM, NULL); WM_event_add_notifier(C, NC_MOVIECLIP|NA_EDITED, clip); } } static void viewRedrawPost(bContext *C, TransInfo *t) { ED_area_headerprint(t->sa, NULL); if (t->spacetype == SPACE_VIEW3D) { /* if autokeying is enabled, send notifiers that keyframes were added */ if (IS_AUTOKEY_ON(t->scene)) WM_main_add_notifier(NC_ANIMATION|ND_KEYFRAME|NA_EDITED, NULL); /* XXX temp, first hack to get auto-render in compositor work (ton) */ WM_event_add_notifier(C, NC_SCENE|ND_TRANSFORM_DONE, CTX_data_scene(C)); } #if 0 // TRANSFORM_FIX_ME if (t->spacetype==SPACE_VIEW3D) { allqueue(REDRAWBUTSOBJECT, 0); allqueue(REDRAWVIEW3D, 0); } else if (t->spacetype==SPACE_IMAGE) { allqueue(REDRAWIMAGE, 0); allqueue(REDRAWVIEW3D, 0); } else if (ELEM3(t->spacetype, SPACE_ACTION, SPACE_NLA, SPACE_IPO)) { allqueue(REDRAWVIEW3D, 0); allqueue(REDRAWACTION, 0); allqueue(REDRAWNLA, 0); allqueue(REDRAWIPO, 0); allqueue(REDRAWTIME, 0); allqueue(REDRAWBUTSOBJECT, 0); } scrarea_queue_headredraw(curarea); #endif } /* ************************** TRANSFORMATIONS **************************** */ void BIF_selectOrientation(void) { #if 0 // TRANSFORM_FIX_ME short val; char *str_menu = BIF_menustringTransformOrientation("Orientation"); val= pupmenu(str_menu); MEM_freeN(str_menu); if (val >= 0) { G.vd->twmode = val; } #endif } static void view_editmove(unsigned short UNUSED(event)) { #if 0 // TRANSFORM_FIX_ME int refresh = 0; /* Regular: Zoom in */ /* Shift: Scroll up */ /* Ctrl: Scroll right */ /* Alt-Shift: Rotate up */ /* Alt-Ctrl: Rotate right */ /* only work in 3D window for now * In the end, will have to send to event to a 2D window handler instead */ if (Trans.flag & T_2D_EDIT) return; switch (event) { case WHEELUPMOUSE: if ( G.qual & LR_SHIFTKEY ) { if ( G.qual & LR_ALTKEY ) { G.qual &= ~LR_SHIFTKEY; persptoetsen(PAD2); G.qual |= LR_SHIFTKEY; } else { persptoetsen(PAD2); } } else if ( G.qual & LR_CTRLKEY ) { if ( G.qual & LR_ALTKEY ) { G.qual &= ~LR_CTRLKEY; persptoetsen(PAD4); G.qual |= LR_CTRLKEY; } else { persptoetsen(PAD4); } } else if (U.uiflag & USER_WHEELZOOMDIR) persptoetsen(PADMINUS); else persptoetsen(PADPLUSKEY); refresh = 1; break; case WHEELDOWNMOUSE: if ( G.qual & LR_SHIFTKEY ) { if ( G.qual & LR_ALTKEY ) { G.qual &= ~LR_SHIFTKEY; persptoetsen(PAD8); G.qual |= LR_SHIFTKEY; } else { persptoetsen(PAD8); } } else if ( G.qual & LR_CTRLKEY ) { if ( G.qual & LR_ALTKEY ) { G.qual &= ~LR_CTRLKEY; persptoetsen(PAD6); G.qual |= LR_CTRLKEY; } else { persptoetsen(PAD6); } } else if (U.uiflag & USER_WHEELZOOMDIR) persptoetsen(PADPLUSKEY); else persptoetsen(PADMINUS); refresh = 1; break; } if (refresh) setTransformViewMatrices(&Trans); #endif } /* ************************************************* */ /* NOTE: these defines are saved in keymap files, do not change values but just add new ones */ #define TFM_MODAL_CANCEL 1 #define TFM_MODAL_CONFIRM 2 #define TFM_MODAL_TRANSLATE 3 #define TFM_MODAL_ROTATE 4 #define TFM_MODAL_RESIZE 5 #define TFM_MODAL_SNAP_INV_ON 6 #define TFM_MODAL_SNAP_INV_OFF 7 #define TFM_MODAL_SNAP_TOGGLE 8 #define TFM_MODAL_AXIS_X 9 #define TFM_MODAL_AXIS_Y 10 #define TFM_MODAL_AXIS_Z 11 #define TFM_MODAL_PLANE_X 12 #define TFM_MODAL_PLANE_Y 13 #define TFM_MODAL_PLANE_Z 14 #define TFM_MODAL_CONS_OFF 15 #define TFM_MODAL_ADD_SNAP 16 #define TFM_MODAL_REMOVE_SNAP 17 /* 18 and 19 used by numinput, defined in transform.h * */ #define TFM_MODAL_PROPSIZE_UP 20 #define TFM_MODAL_PROPSIZE_DOWN 21 #define TFM_MODAL_AUTOIK_LEN_INC 22 #define TFM_MODAL_AUTOIK_LEN_DEC 23 /* called in transform_ops.c, on each regeneration of keymaps */ wmKeyMap* transform_modal_keymap(wmKeyConfig *keyconf) { static EnumPropertyItem modal_items[] = { {TFM_MODAL_CANCEL, "CANCEL", 0, "Cancel", ""}, {TFM_MODAL_CONFIRM, "CONFIRM", 0, "Confirm", ""}, {TFM_MODAL_TRANSLATE, "TRANSLATE", 0, "Translate", ""}, {TFM_MODAL_ROTATE, "ROTATE", 0, "Rotate", ""}, {TFM_MODAL_RESIZE, "RESIZE", 0, "Resize", ""}, {TFM_MODAL_SNAP_INV_ON, "SNAP_INV_ON", 0, "Invert Snap On", ""}, {TFM_MODAL_SNAP_INV_OFF, "SNAP_INV_OFF", 0, "Invert Snap Off", ""}, {TFM_MODAL_SNAP_TOGGLE, "SNAP_TOGGLE", 0, "Snap Toggle", ""}, {TFM_MODAL_AXIS_X, "AXIS_X", 0, "Orientation X axis", ""}, {TFM_MODAL_AXIS_Y, "AXIS_Y", 0, "Orientation Y axis", ""}, {TFM_MODAL_AXIS_Z, "AXIS_Z", 0, "Orientation Z axis", ""}, {TFM_MODAL_PLANE_X, "PLANE_X", 0, "Orientation X plane", ""}, {TFM_MODAL_PLANE_Y, "PLANE_Y", 0, "Orientation Y plane", ""}, {TFM_MODAL_PLANE_Z, "PLANE_Z", 0, "Orientation Z plane", ""}, {TFM_MODAL_CONS_OFF, "CONS_OFF", 0, "Remove Constraints", ""}, {TFM_MODAL_ADD_SNAP, "ADD_SNAP", 0, "Add Snap Point", ""}, {TFM_MODAL_REMOVE_SNAP, "REMOVE_SNAP", 0, "Remove Last Snap Point", ""}, {NUM_MODAL_INCREMENT_UP, "INCREMENT_UP", 0, "Numinput Increment Up", ""}, {NUM_MODAL_INCREMENT_DOWN, "INCREMENT_DOWN", 0, "Numinput Increment Down", ""}, {TFM_MODAL_PROPSIZE_UP, "PROPORTIONAL_SIZE_UP", 0, "Increase Proportional Influence", ""}, {TFM_MODAL_PROPSIZE_DOWN, "PROPORTIONAL_SIZE_DOWN", 0, "Decrease Proportional Influence", ""}, {TFM_MODAL_AUTOIK_LEN_INC, "AUTOIK_CHAIN_LEN_UP", 0, "Increase Max AutoIK Chain Length", ""}, {TFM_MODAL_AUTOIK_LEN_DEC, "AUTOIK_CHAIN_LEN_DOWN", 0, "Decrease Max AutoIK Chain Length", ""}, {0, NULL, 0, NULL, NULL}}; wmKeyMap *keymap= WM_modalkeymap_get(keyconf, "Transform Modal Map"); /* this function is called for each spacetype, only needs to add map once */ if (keymap && keymap->modal_items) return NULL; keymap= WM_modalkeymap_add(keyconf, "Transform Modal Map", modal_items); /* items for modal map */ WM_modalkeymap_add_item(keymap, ESCKEY, KM_PRESS, KM_ANY, 0, TFM_MODAL_CANCEL); WM_modalkeymap_add_item(keymap, LEFTMOUSE, KM_PRESS, KM_ANY, 0, TFM_MODAL_CONFIRM); WM_modalkeymap_add_item(keymap, RETKEY, KM_PRESS, KM_ANY, 0, TFM_MODAL_CONFIRM); WM_modalkeymap_add_item(keymap, PADENTER, KM_PRESS, KM_ANY, 0, TFM_MODAL_CONFIRM); WM_modalkeymap_add_item(keymap, GKEY, KM_PRESS, 0, 0, TFM_MODAL_TRANSLATE); WM_modalkeymap_add_item(keymap, RKEY, KM_PRESS, 0, 0, TFM_MODAL_ROTATE); WM_modalkeymap_add_item(keymap, SKEY, KM_PRESS, 0, 0, TFM_MODAL_RESIZE); WM_modalkeymap_add_item(keymap, TABKEY, KM_PRESS, KM_SHIFT, 0, TFM_MODAL_SNAP_TOGGLE); WM_modalkeymap_add_item(keymap, LEFTCTRLKEY, KM_PRESS, KM_ANY, 0, TFM_MODAL_SNAP_INV_ON); WM_modalkeymap_add_item(keymap, LEFTCTRLKEY, KM_RELEASE, KM_ANY, 0, TFM_MODAL_SNAP_INV_OFF); WM_modalkeymap_add_item(keymap, RIGHTCTRLKEY, KM_PRESS, KM_ANY, 0, TFM_MODAL_SNAP_INV_ON); WM_modalkeymap_add_item(keymap, RIGHTCTRLKEY, KM_RELEASE, KM_ANY, 0, TFM_MODAL_SNAP_INV_OFF); WM_modalkeymap_add_item(keymap, AKEY, KM_PRESS, 0, 0, TFM_MODAL_ADD_SNAP); WM_modalkeymap_add_item(keymap, AKEY, KM_PRESS, KM_ALT, 0, TFM_MODAL_REMOVE_SNAP); WM_modalkeymap_add_item(keymap, PAGEUPKEY, KM_PRESS, 0, 0, TFM_MODAL_PROPSIZE_UP); WM_modalkeymap_add_item(keymap, PAGEDOWNKEY, KM_PRESS, 0, 0, TFM_MODAL_PROPSIZE_DOWN); WM_modalkeymap_add_item(keymap, WHEELDOWNMOUSE, KM_PRESS, 0, 0, TFM_MODAL_PROPSIZE_UP); WM_modalkeymap_add_item(keymap, WHEELUPMOUSE, KM_PRESS, 0, 0, TFM_MODAL_PROPSIZE_DOWN); WM_modalkeymap_add_item(keymap, PAGEUPKEY, KM_PRESS, KM_SHIFT, 0, TFM_MODAL_AUTOIK_LEN_INC); WM_modalkeymap_add_item(keymap, PAGEDOWNKEY, KM_PRESS, KM_SHIFT, 0, TFM_MODAL_AUTOIK_LEN_DEC); WM_modalkeymap_add_item(keymap, WHEELDOWNMOUSE, KM_PRESS, KM_SHIFT, 0, TFM_MODAL_AUTOIK_LEN_INC); WM_modalkeymap_add_item(keymap, WHEELUPMOUSE, KM_PRESS, KM_SHIFT, 0, TFM_MODAL_AUTOIK_LEN_DEC); return keymap; } int transformEvent(TransInfo *t, wmEvent *event) { float mati[3][3]= MAT3_UNITY; char cmode = constraintModeToChar(t); int handled = 1; t->redraw |= handleMouseInput(t, &t->mouse, event); if (event->type == MOUSEMOVE) { copy_v2_v2_int(t->mval, event->mval); // t->redraw |= TREDRAW_SOFT; /* Use this for soft redraw. Might cause flicker in object mode */ t->redraw |= TREDRAW_HARD; if (t->state == TRANS_STARTING) { t->state = TRANS_RUNNING; } applyMouseInput(t, &t->mouse, t->mval, t->values); // Snapping mouse move events t->redraw |= handleSnapping(t, event); } /* handle modal keymap first */ if (event->type == EVT_MODAL_MAP) { switch (event->val) { case TFM_MODAL_CANCEL: t->state = TRANS_CANCEL; break; case TFM_MODAL_CONFIRM: t->state = TRANS_CONFIRM; break; case TFM_MODAL_TRANSLATE: /* only switch when... */ if ( ELEM3(t->mode, TFM_ROTATION, TFM_RESIZE, TFM_TRACKBALL) ) { resetTransRestrictions(t); restoreTransObjects(t); initTranslation(t); initSnapping(t, NULL); // need to reinit after mode change t->redraw |= TREDRAW_HARD; } else if (t->mode == TFM_TRANSLATION) { if (t->options&CTX_MOVIECLIP) { restoreTransObjects(t); t->flag^= T_ALT_TRANSFORM; t->redraw |= TREDRAW_HARD; } } break; case TFM_MODAL_ROTATE: /* only switch when... */ if (!(t->options & CTX_TEXTURE) && !(t->options & CTX_MOVIECLIP)) { if ( ELEM4(t->mode, TFM_ROTATION, TFM_RESIZE, TFM_TRACKBALL, TFM_TRANSLATION) ) { resetTransRestrictions(t); if (t->mode == TFM_ROTATION) { restoreTransObjects(t); initTrackball(t); } else { restoreTransObjects(t); initRotation(t); } initSnapping(t, NULL); // need to reinit after mode change t->redraw |= TREDRAW_HARD; } } break; case TFM_MODAL_RESIZE: /* only switch when... */ if ( ELEM3(t->mode, TFM_ROTATION, TFM_TRANSLATION, TFM_TRACKBALL) ) { resetTransRestrictions(t); restoreTransObjects(t); initResize(t); initSnapping(t, NULL); // need to reinit after mode change t->redraw |= TREDRAW_HARD; } break; case TFM_MODAL_SNAP_INV_ON: t->modifiers |= MOD_SNAP_INVERT; t->redraw |= TREDRAW_HARD; break; case TFM_MODAL_SNAP_INV_OFF: t->modifiers &= ~MOD_SNAP_INVERT; t->redraw |= TREDRAW_HARD; break; case TFM_MODAL_SNAP_TOGGLE: t->modifiers ^= MOD_SNAP; t->redraw |= TREDRAW_HARD; break; case TFM_MODAL_AXIS_X: if ((t->flag & T_NO_CONSTRAINT)==0) { if (cmode == 'X') { stopConstraint(t); } else { if (t->flag & T_2D_EDIT) { setUserConstraint(t, V3D_MANIP_GLOBAL, (CON_AXIS0), "along X"); } else { setUserConstraint(t, t->current_orientation, (CON_AXIS0), "along %s X"); } } t->redraw |= TREDRAW_HARD; } break; case TFM_MODAL_AXIS_Y: if ((t->flag & T_NO_CONSTRAINT)==0) { if (cmode == 'Y') { stopConstraint(t); } else { if (t->flag & T_2D_EDIT) { setUserConstraint(t, V3D_MANIP_GLOBAL, (CON_AXIS1), "along Y"); } else { setUserConstraint(t, t->current_orientation, (CON_AXIS1), "along %s Y"); } } t->redraw |= TREDRAW_HARD; } break; case TFM_MODAL_AXIS_Z: if ((t->flag & (T_NO_CONSTRAINT|T_2D_EDIT))== 0) { if (cmode == 'Z') { stopConstraint(t); } else { setUserConstraint(t, t->current_orientation, (CON_AXIS2), "along %s Z"); } t->redraw |= TREDRAW_HARD; } break; case TFM_MODAL_PLANE_X: if ((t->flag & (T_NO_CONSTRAINT|T_2D_EDIT))== 0) { if (cmode == 'X') { stopConstraint(t); } else { setUserConstraint(t, t->current_orientation, (CON_AXIS1|CON_AXIS2), "locking %s X"); } t->redraw |= TREDRAW_HARD; } break; case TFM_MODAL_PLANE_Y: if ((t->flag & (T_NO_CONSTRAINT|T_2D_EDIT))== 0) { if (cmode == 'Y') { stopConstraint(t); } else { setUserConstraint(t, t->current_orientation, (CON_AXIS0|CON_AXIS2), "locking %s Y"); } t->redraw |= TREDRAW_HARD; } break; case TFM_MODAL_PLANE_Z: if ((t->flag & (T_NO_CONSTRAINT|T_2D_EDIT))== 0) { if (cmode == 'Z') { stopConstraint(t); } else { setUserConstraint(t, t->current_orientation, (CON_AXIS0|CON_AXIS1), "locking %s Z"); } t->redraw |= TREDRAW_HARD; } break; case TFM_MODAL_CONS_OFF: if ((t->flag & T_NO_CONSTRAINT)==0) { stopConstraint(t); t->redraw |= TREDRAW_HARD; } break; case TFM_MODAL_ADD_SNAP: addSnapPoint(t); t->redraw |= TREDRAW_HARD; break; case TFM_MODAL_REMOVE_SNAP: removeSnapPoint(t); t->redraw |= TREDRAW_HARD; break; case TFM_MODAL_PROPSIZE_UP: if (t->flag & T_PROP_EDIT) { t->prop_size*= 1.1f; if (t->spacetype==SPACE_VIEW3D && t->persp != RV3D_ORTHO) t->prop_size= MIN2(t->prop_size, ((View3D *)t->view)->far); calculatePropRatio(t); } t->redraw |= TREDRAW_HARD; break; case TFM_MODAL_PROPSIZE_DOWN: if (t->flag & T_PROP_EDIT) { t->prop_size*= 0.90909090f; calculatePropRatio(t); } t->redraw |= TREDRAW_HARD; break; case TFM_MODAL_AUTOIK_LEN_INC: if (t->flag & T_AUTOIK) transform_autoik_update(t, 1); t->redraw |= TREDRAW_HARD; break; case TFM_MODAL_AUTOIK_LEN_DEC: if (t->flag & T_AUTOIK) transform_autoik_update(t, -1); t->redraw |= TREDRAW_HARD; break; default: handled = 0; break; } // Modal numinput events t->redraw |= handleNumInput(&(t->num), event); } /* else do non-mapped events */ else if (event->val == KM_PRESS) { switch (event->type) { case RIGHTMOUSE: t->state = TRANS_CANCEL; break; /* enforce redraw of transform when modifiers are used */ case LEFTSHIFTKEY: case RIGHTSHIFTKEY: t->modifiers |= MOD_CONSTRAINT_PLANE; t->redraw |= TREDRAW_HARD; break; case SPACEKEY: if ((t->spacetype==SPACE_VIEW3D) && event->alt) { #if 0 // TRANSFORM_FIX_ME int mval[2]; getmouseco_sc(mval); BIF_selectOrientation(); calc_manipulator_stats(curarea); copy_m3_m4(t->spacemtx, G.vd->twmat); warp_pointer(mval[0], mval[1]); #endif } else { t->state = TRANS_CONFIRM; } break; case MIDDLEMOUSE: if ((t->flag & T_NO_CONSTRAINT)==0) { /* exception for switching to dolly, or trackball, in camera view */ if (t->flag & T_CAMERA) { if (t->mode==TFM_TRANSLATION) setLocalConstraint(t, (CON_AXIS2), "along local Z"); else if (t->mode==TFM_ROTATION) { restoreTransObjects(t); initTrackball(t); } } else { t->modifiers |= MOD_CONSTRAINT_SELECT; if (t->con.mode & CON_APPLY) { stopConstraint(t); } else { if (event->shift) { initSelectConstraint(t, t->spacemtx); } else { /* bit hackish... but it prevents mmb select to print the orientation from menu */ strcpy(t->spacename, "global"); initSelectConstraint(t, mati); } postSelectConstraint(t); } } t->redraw |= TREDRAW_HARD; } break; case ESCKEY: t->state = TRANS_CANCEL; break; case PADENTER: case RETKEY: t->state = TRANS_CONFIRM; break; case GKEY: /* only switch when... */ if ( ELEM3(t->mode, TFM_ROTATION, TFM_RESIZE, TFM_TRACKBALL) ) { resetTransRestrictions(t); restoreTransObjects(t); initTranslation(t); initSnapping(t, NULL); // need to reinit after mode change t->redraw |= TREDRAW_HARD; } break; case SKEY: /* only switch when... */ if ( ELEM3(t->mode, TFM_ROTATION, TFM_TRANSLATION, TFM_TRACKBALL) ) { resetTransRestrictions(t); restoreTransObjects(t); initResize(t); initSnapping(t, NULL); // need to reinit after mode change t->redraw |= TREDRAW_HARD; } break; case RKEY: /* only switch when... */ if (!(t->options & CTX_TEXTURE) && !(t->options & CTX_MOVIECLIP)) { if ( ELEM4(t->mode, TFM_ROTATION, TFM_RESIZE, TFM_TRACKBALL, TFM_TRANSLATION) ) { resetTransRestrictions(t); if (t->mode == TFM_ROTATION) { restoreTransObjects(t); initTrackball(t); } else { restoreTransObjects(t); initRotation(t); } initSnapping(t, NULL); // need to reinit after mode change t->redraw |= TREDRAW_HARD; } } break; case CKEY: if (event->alt) { t->flag ^= T_PROP_CONNECTED; sort_trans_data_dist(t); calculatePropRatio(t); t->redraw= 1; } else { stopConstraint(t); t->redraw |= TREDRAW_HARD; } break; case XKEY: if ((t->flag & T_NO_CONSTRAINT)==0) { if (t->flag & T_2D_EDIT) { if (cmode == 'X') { stopConstraint(t); } else { setUserConstraint(t, V3D_MANIP_GLOBAL, (CON_AXIS0), "along X"); } } else { if (cmode == 'X') { if (t->con.orientation != V3D_MANIP_GLOBAL) { stopConstraint(t); } else { short orientation = t->current_orientation != V3D_MANIP_GLOBAL ? t->current_orientation : V3D_MANIP_LOCAL; if ((t->modifiers & MOD_CONSTRAINT_PLANE) == 0) setUserConstraint(t, orientation, (CON_AXIS0), "along %s X"); else if (t->modifiers & MOD_CONSTRAINT_PLANE) setUserConstraint(t, orientation, (CON_AXIS1|CON_AXIS2), "locking %s X"); } } else { if ((t->modifiers & MOD_CONSTRAINT_PLANE) == 0) setUserConstraint(t, V3D_MANIP_GLOBAL, (CON_AXIS0), "along %s X"); else if (t->modifiers & MOD_CONSTRAINT_PLANE) setUserConstraint(t, V3D_MANIP_GLOBAL, (CON_AXIS1|CON_AXIS2), "locking %s X"); } } t->redraw |= TREDRAW_HARD; } break; case YKEY: if ((t->flag & T_NO_CONSTRAINT)==0) { if (t->flag & T_2D_EDIT) { if (cmode == 'Y') { stopConstraint(t); } else { setUserConstraint(t, V3D_MANIP_GLOBAL, (CON_AXIS1), "along Y"); } } else { if (cmode == 'Y') { if (t->con.orientation != V3D_MANIP_GLOBAL) { stopConstraint(t); } else { short orientation = t->current_orientation != V3D_MANIP_GLOBAL ? t->current_orientation : V3D_MANIP_LOCAL; if ((t->modifiers & MOD_CONSTRAINT_PLANE) == 0) setUserConstraint(t, orientation, (CON_AXIS1), "along %s Y"); else if (t->modifiers & MOD_CONSTRAINT_PLANE) setUserConstraint(t, orientation, (CON_AXIS0|CON_AXIS2), "locking %s Y"); } } else { if ((t->modifiers & MOD_CONSTRAINT_PLANE) == 0) setUserConstraint(t, V3D_MANIP_GLOBAL, (CON_AXIS1), "along %s Y"); else if (t->modifiers & MOD_CONSTRAINT_PLANE) setUserConstraint(t, V3D_MANIP_GLOBAL, (CON_AXIS0|CON_AXIS2), "locking %s Y"); } } t->redraw |= TREDRAW_HARD; } break; case ZKEY: if ((t->flag & (T_NO_CONSTRAINT|T_2D_EDIT))==0) { if (cmode == 'Z') { if (t->con.orientation != V3D_MANIP_GLOBAL) { stopConstraint(t); } else { short orientation = t->current_orientation != V3D_MANIP_GLOBAL ? t->current_orientation : V3D_MANIP_LOCAL; if ((t->modifiers & MOD_CONSTRAINT_PLANE) == 0) setUserConstraint(t, orientation, (CON_AXIS2), "along %s Z"); else if (t->modifiers & MOD_CONSTRAINT_PLANE) setUserConstraint(t, orientation, (CON_AXIS0|CON_AXIS1), "locking %s Z"); } } else { if ((t->modifiers & MOD_CONSTRAINT_PLANE) == 0) setUserConstraint(t, V3D_MANIP_GLOBAL, (CON_AXIS2), "along %s Z"); else if (t->modifiers & MOD_CONSTRAINT_PLANE) setUserConstraint(t, V3D_MANIP_GLOBAL, (CON_AXIS0|CON_AXIS1), "locking %s Z"); } t->redraw |= TREDRAW_HARD; } break; case OKEY: if (t->flag & T_PROP_EDIT && event->shift) { t->prop_mode = (t->prop_mode + 1) % PROP_MODE_MAX; calculatePropRatio(t); t->redraw |= TREDRAW_HARD; } break; case PADPLUSKEY: if (event->alt && t->flag & T_PROP_EDIT) { t->prop_size *= 1.1f; if (t->spacetype==SPACE_VIEW3D && t->persp != RV3D_ORTHO) t->prop_size= MIN2(t->prop_size, ((View3D *)t->view)->far); calculatePropRatio(t); } t->redraw= 1; break; case PAGEUPKEY: case WHEELDOWNMOUSE: if (t->flag & T_AUTOIK) { transform_autoik_update(t, 1); } else view_editmove(event->type); t->redraw= 1; break; case PADMINUS: if (event->alt && t->flag & T_PROP_EDIT) { t->prop_size*= 0.90909090f; calculatePropRatio(t); } t->redraw= 1; break; case PAGEDOWNKEY: case WHEELUPMOUSE: if (t->flag & T_AUTOIK) { transform_autoik_update(t, -1); } else view_editmove(event->type); t->redraw= 1; break; default: handled = 0; break; } // Numerical input events t->redraw |= handleNumInput(&(t->num), event); // Snapping key events t->redraw |= handleSnapping(t, event); } else if (event->val==KM_RELEASE) { switch (event->type) { case LEFTSHIFTKEY: case RIGHTSHIFTKEY: t->modifiers &= ~MOD_CONSTRAINT_PLANE; t->redraw |= TREDRAW_HARD; break; case MIDDLEMOUSE: if ((t->flag & T_NO_CONSTRAINT)==0) { t->modifiers &= ~MOD_CONSTRAINT_SELECT; postSelectConstraint(t); t->redraw |= TREDRAW_HARD; } break; // case LEFTMOUSE: // case RIGHTMOUSE: // if (WM_modal_tweak_exit(event, t->event_type)) //// if (t->options & CTX_TWEAK) // t->state = TRANS_CONFIRM; // break; default: handled = 0; break; } /* confirm transform if launch key is released after mouse move */ if (t->flag & T_RELEASE_CONFIRM) { /* XXX Keyrepeat bug in Xorg fucks this up, will test when fixed */ if (event->type == t->launch_event && (t->launch_event == LEFTMOUSE || t->launch_event == RIGHTMOUSE)) { t->state = TRANS_CONFIRM; } } } // Per transform event, if present if (t->handleEvent) t->redraw |= t->handleEvent(t, event); if (handled || t->redraw) return 0; else return OPERATOR_PASS_THROUGH; } int calculateTransformCenter(bContext *C, int centerMode, float *vec) { TransInfo *t = MEM_callocN(sizeof(TransInfo), "TransInfo data"); int success = 1; t->state = TRANS_RUNNING; t->options = CTX_NONE; t->mode = TFM_DUMMY; initTransInfo(C, t, NULL, NULL); // internal data, mouse, vectors createTransData(C, t); // make TransData structs from selection t->around = centerMode; // override userdefined mode if (t->total == 0) { success = 0; } else { success = 1; calculateCenter(t); // Copy center from constraint center. Transform center can be local copy_v3_v3(vec, t->con.center); } /* aftertrans does insert ipos and action channels, and clears base flags, doesnt read transdata */ special_aftertrans_update(C, t); postTrans(C, t); MEM_freeN(t); return success; } typedef enum { UP, DOWN, LEFT, RIGHT } ArrowDirection; static void drawArrow(ArrowDirection d, short offset, short length, short size) { switch (d) { case LEFT: offset = -offset; length = -length; size = -size; case RIGHT: glBegin(GL_LINES); glVertex2s( offset, 0); glVertex2s( offset + length, 0); glVertex2s( offset + length, 0); glVertex2s( offset + length - size, -size); glVertex2s( offset + length, 0); glVertex2s( offset + length - size, size); glEnd(); break; case DOWN: offset = -offset; length = -length; size = -size; case UP: glBegin(GL_LINES); glVertex2s( 0, offset); glVertex2s( 0, offset + length); glVertex2s( 0, offset + length); glVertex2s(-size, offset + length - size); glVertex2s( 0, offset + length); glVertex2s( size, offset + length - size); glEnd(); break; } } static void drawArrowHead(ArrowDirection d, short size) { switch (d) { case LEFT: size = -size; case RIGHT: glBegin(GL_LINES); glVertex2s( 0, 0); glVertex2s( -size, -size); glVertex2s( 0, 0); glVertex2s( -size, size); glEnd(); break; case DOWN: size = -size; case UP: glBegin(GL_LINES); glVertex2s( 0, 0); glVertex2s(-size, -size); glVertex2s( 0, 0); glVertex2s( size, -size); glEnd(); break; } } static void drawArc(float size, float angle_start, float angle_end, int segments) { float delta = (angle_end - angle_start) / segments; float angle; glBegin(GL_LINE_STRIP); for ( angle = angle_start; angle < angle_end; angle += delta) { glVertex2f( cosf(angle) * size, sinf(angle) * size); } glVertex2f( cosf(angle_end) * size, sinf(angle_end) * size); glEnd(); } static int helpline_poll(bContext *C) { ARegion *ar= CTX_wm_region(C); if (ar && ar->regiontype==RGN_TYPE_WINDOW) return 1; return 0; } static void drawHelpline(bContext *UNUSED(C), int x, int y, void *customdata) { TransInfo *t = (TransInfo*)customdata; if (t->helpline != HLP_NONE && !(t->flag & T_USES_MANIPULATOR)) { float vecrot[3], cent[2]; int mval[2]; mval[0]= x; mval[1]= y; copy_v3_v3(vecrot, t->center); if (t->flag & T_EDIT) { Object *ob= t->obedit; if (ob) mul_m4_v3(ob->obmat, vecrot); } else if (t->flag & T_POSE) { Object *ob=t->poseobj; if (ob) mul_m4_v3(ob->obmat, vecrot); } projectFloatView(t, vecrot, cent); // no overflow in extreme cases glPushMatrix(); switch (t->helpline) { case HLP_SPRING: UI_ThemeColor(TH_WIRE); setlinestyle(3); glBegin(GL_LINE_STRIP); glVertex2iv(t->mval); glVertex2fv(cent); glEnd(); glTranslatef(mval[0], mval[1], 0); glRotatef(-RAD2DEGF(atan2f(cent[0] - t->mval[0], cent[1] - t->mval[1])), 0, 0, 1); setlinestyle(0); glLineWidth(3.0); drawArrow(UP, 5, 10, 5); drawArrow(DOWN, 5, 10, 5); glLineWidth(1.0); break; case HLP_HARROW: UI_ThemeColor(TH_WIRE); glTranslatef(mval[0], mval[1], 0); glLineWidth(3.0); drawArrow(RIGHT, 5, 10, 5); drawArrow(LEFT, 5, 10, 5); glLineWidth(1.0); break; case HLP_VARROW: UI_ThemeColor(TH_WIRE); glTranslatef(mval[0], mval[1], 0); glLineWidth(3.0); glBegin(GL_LINES); drawArrow(UP, 5, 10, 5); drawArrow(DOWN, 5, 10, 5); glLineWidth(1.0); break; case HLP_ANGLE: { float dx = t->mval[0] - cent[0], dy = t->mval[1] - cent[1]; float angle = atan2f(dy, dx); float dist = sqrtf(dx*dx + dy*dy); float delta_angle = MIN2(15.0f / dist, (float)M_PI/4.0f); float spacing_angle = MIN2(5.0f / dist, (float)M_PI/12.0f); UI_ThemeColor(TH_WIRE); setlinestyle(3); glBegin(GL_LINE_STRIP); glVertex2iv(t->mval); glVertex2fv(cent); glEnd(); glTranslatef(cent[0] - t->mval[0] + mval[0], cent[1] - t->mval[1] + mval[1], 0); setlinestyle(0); glLineWidth(3.0); drawArc(dist, angle - delta_angle, angle - spacing_angle, 10); drawArc(dist, angle + spacing_angle, angle + delta_angle, 10); glPushMatrix(); glTranslatef(cosf(angle - delta_angle) * dist, sinf(angle - delta_angle) * dist, 0); glRotatef(RAD2DEGF(angle - delta_angle), 0, 0, 1); drawArrowHead(DOWN, 5); glPopMatrix(); glTranslatef(cosf(angle + delta_angle) * dist, sinf(angle + delta_angle) * dist, 0); glRotatef(RAD2DEGF(angle + delta_angle), 0, 0, 1); drawArrowHead(UP, 5); glLineWidth(1.0); break; } case HLP_TRACKBALL: { unsigned char col[3], col2[3]; UI_GetThemeColor3ubv(TH_GRID, col); glTranslatef(mval[0], mval[1], 0); glLineWidth(3.0); UI_make_axis_color(col, col2, 'X'); glColor3ubv((GLubyte *)col2); drawArrow(RIGHT, 5, 10, 5); drawArrow(LEFT, 5, 10, 5); UI_make_axis_color(col, col2, 'Y'); glColor3ubv((GLubyte *)col2); drawArrow(UP, 5, 10, 5); drawArrow(DOWN, 5, 10, 5); glLineWidth(1.0); break; } } glPopMatrix(); } } static void drawTransformView(const struct bContext *C, struct ARegion *UNUSED(ar), void *arg) { TransInfo *t = arg; drawConstraint(t); drawPropCircle(C, t); drawSnapping(C, t); } #if 0 static void drawTransformPixel(const struct bContext *UNUSED(C), struct ARegion *UNUSED(ar), void *UNUSED(arg)) { // TransInfo *t = arg; // // drawHelpline(C, t->mval[0], t->mval[1], t); } #endif void saveTransform(bContext *C, TransInfo *t, wmOperator *op) { ToolSettings *ts = CTX_data_tool_settings(C); int constraint_axis[3] = {0, 0, 0}; int proportional = 0; PropertyRNA *prop; // Save back mode in case we're in the generic operator if ((prop= RNA_struct_find_property(op->ptr, "mode"))) { RNA_property_enum_set(op->ptr, prop, t->mode); } if ((prop= RNA_struct_find_property(op->ptr, "value"))) { float *values= (t->flag & T_AUTOVALUES) ? t->auto_values : t->values; if (RNA_property_array_check(prop)) { RNA_property_float_set_array(op->ptr, prop, values); } else { RNA_property_float_set(op->ptr, prop, values[0]); } } /* convert flag to enum */ switch (t->flag & (T_PROP_EDIT|T_PROP_CONNECTED)) { case (T_PROP_EDIT|T_PROP_CONNECTED): proportional = PROP_EDIT_CONNECTED; break; case T_PROP_EDIT: proportional = PROP_EDIT_ON; break; default: proportional = PROP_EDIT_OFF; } // If modal, save settings back in scene if not set as operator argument if (t->flag & T_MODAL) { /* save settings if not set in operator */ if ((prop = RNA_struct_find_property(op->ptr, "proportional")) && !RNA_property_is_set(op->ptr, prop)) { if (t->obedit) ts->proportional = proportional; else ts->proportional_objects = (proportional != PROP_EDIT_OFF); } if ((prop = RNA_struct_find_property(op->ptr, "proportional_size")) && !RNA_property_is_set(op->ptr, prop)) { ts->proportional_size = t->prop_size; } if ((prop = RNA_struct_find_property(op->ptr, "proportional_edit_falloff")) && !RNA_property_is_set(op->ptr, prop)) { ts->prop_mode = t->prop_mode; } /* do we check for parameter? */ if (t->modifiers & MOD_SNAP) { ts->snap_flag |= SCE_SNAP; } else { ts->snap_flag &= ~SCE_SNAP; } if (t->spacetype == SPACE_VIEW3D) { if ((prop = RNA_struct_find_property(op->ptr, "constraint_orientation")) && !RNA_property_is_set(op->ptr, prop)) { View3D *v3d = t->view; v3d->twmode = t->current_orientation; } } } if (RNA_struct_find_property(op->ptr, "proportional")) { RNA_enum_set(op->ptr, "proportional", proportional); RNA_enum_set(op->ptr, "proportional_edit_falloff", t->prop_mode); RNA_float_set(op->ptr, "proportional_size", t->prop_size); } if ((prop = RNA_struct_find_property(op->ptr, "axis"))) { RNA_property_float_set_array(op->ptr, prop, t->axis); } if ((prop = RNA_struct_find_property(op->ptr, "mirror"))) { RNA_property_boolean_set(op->ptr, prop, t->flag & T_MIRROR); } if ((prop = RNA_struct_find_property(op->ptr, "constraint_axis"))) { /* constraint orientation can be global, event if user selects something else * so use the orientation in the constraint if set * */ if (t->con.mode & CON_APPLY) { RNA_enum_set(op->ptr, "constraint_orientation", t->con.orientation); } else { RNA_enum_set(op->ptr, "constraint_orientation", t->current_orientation); } if (t->con.mode & CON_APPLY) { if (t->con.mode & CON_AXIS0) { constraint_axis[0] = 1; } if (t->con.mode & CON_AXIS1) { constraint_axis[1] = 1; } if (t->con.mode & CON_AXIS2) { constraint_axis[2] = 1; } } RNA_property_boolean_set_array(op->ptr, prop, constraint_axis); } } /* note: caller needs to free 't' on a 0 return */ int initTransform(bContext *C, TransInfo *t, wmOperator *op, wmEvent *event, int mode) { int options = 0; PropertyRNA *prop; t->context = C; /* added initialize, for external calls to set stuff in TransInfo, like undo string */ t->state = TRANS_STARTING; if ( (prop = RNA_struct_find_property(op->ptr, "texture_space")) && RNA_property_is_set(op->ptr, prop)) { if (RNA_property_boolean_get(op->ptr, prop)) { options |= CTX_TEXTURE; } } t->options = options; t->mode = mode; t->launch_event = event ? event->type : -1; if (t->launch_event == EVT_TWEAK_R) { t->launch_event = RIGHTMOUSE; } else if (t->launch_event == EVT_TWEAK_L) { t->launch_event = LEFTMOUSE; } // XXX Remove this when wm_operator_call_internal doesn't use window->eventstate (which can have type = 0) // For manipulator only, so assume LEFTMOUSE if (t->launch_event == 0) { t->launch_event = LEFTMOUSE; } if (!initTransInfo(C, t, op, event)) { /* internal data, mouse, vectors */ return 0; } if (t->spacetype == SPACE_VIEW3D) { //calc_manipulator_stats(curarea); initTransformOrientation(C, t); t->draw_handle_apply = ED_region_draw_cb_activate(t->ar->type, drawTransformApply, t, REGION_DRAW_PRE_VIEW); t->draw_handle_view = ED_region_draw_cb_activate(t->ar->type, drawTransformView, t, REGION_DRAW_POST_VIEW); //t->draw_handle_pixel = ED_region_draw_cb_activate(t->ar->type, drawTransformPixel, t, REGION_DRAW_POST_PIXEL); t->draw_handle_cursor = WM_paint_cursor_activate(CTX_wm_manager(C), helpline_poll, drawHelpline, t); } else if (t->spacetype == SPACE_IMAGE) { unit_m3(t->spacemtx); t->draw_handle_view = ED_region_draw_cb_activate(t->ar->type, drawTransformView, t, REGION_DRAW_POST_VIEW); //t->draw_handle_pixel = ED_region_draw_cb_activate(t->ar->type, drawTransformPixel, t, REGION_DRAW_POST_PIXEL); t->draw_handle_cursor = WM_paint_cursor_activate(CTX_wm_manager(C), helpline_poll, drawHelpline, t); } else if (t->spacetype == SPACE_CLIP) { unit_m3(t->spacemtx); t->draw_handle_view = ED_region_draw_cb_activate(t->ar->type, drawTransformView, t, REGION_DRAW_POST_VIEW); t->options |= CTX_MOVIECLIP; } else unit_m3(t->spacemtx); createTransData(C, t); // make TransData structs from selection if (t->total == 0) { postTrans(C, t); return 0; } /* Stupid code to have Ctrl-Click on manipulator work ok */ if (event) { wmKeyMap *keymap = WM_keymap_active(CTX_wm_manager(C), op->type->modalkeymap); wmKeyMapItem *kmi; for (kmi = keymap->items.first; kmi; kmi = kmi->next) { if (kmi->propvalue == TFM_MODAL_SNAP_INV_ON && kmi->val == KM_PRESS) { if ((ELEM(kmi->type, LEFTCTRLKEY, RIGHTCTRLKEY) && event->ctrl) || (ELEM(kmi->type, LEFTSHIFTKEY, RIGHTSHIFTKEY) && event->shift) || (ELEM(kmi->type, LEFTALTKEY, RIGHTALTKEY) && event->alt) || ((kmi->type == OSKEY) && event->oskey) ) { t->modifiers |= MOD_SNAP_INVERT; } break; } } } initSnapping(t, op); // Initialize snapping data AFTER mode flags /* EVIL! posemode code can switch translation to rotate when 1 bone is selected. will be removed (ton) */ /* EVIL2: we gave as argument also texture space context bit... was cleared */ /* EVIL3: extend mode for animation editors also switches modes... but is best way to avoid duplicate code */ mode = t->mode; calculatePropRatio(t); calculateCenter(t); initMouseInput(t, &t->mouse, t->center2d, t->imval); switch (mode) { case TFM_TRANSLATION: initTranslation(t); break; case TFM_ROTATION: initRotation(t); break; case TFM_RESIZE: initResize(t); break; case TFM_TOSPHERE: initToSphere(t); break; case TFM_SHEAR: initShear(t); break; case TFM_WARP: initWarp(t); break; case TFM_SHRINKFATTEN: initShrinkFatten(t); break; case TFM_TILT: initTilt(t); break; case TFM_CURVE_SHRINKFATTEN: initCurveShrinkFatten(t); break; case TFM_TRACKBALL: initTrackball(t); break; case TFM_PUSHPULL: initPushPull(t); break; case TFM_CREASE: initCrease(t); break; case TFM_BONESIZE: { /* used for both B-Bone width (bonesize) as for deform-dist (envelope) */ bArmature *arm= t->poseobj->data; if (arm->drawtype==ARM_ENVELOPE) initBoneEnvelope(t); else initBoneSize(t); } break; case TFM_BONE_ENVELOPE: initBoneEnvelope(t); break; case TFM_EDGE_SLIDE: initEdgeSlide(t); break; case TFM_BONE_ROLL: initBoneRoll(t); break; case TFM_TIME_TRANSLATE: initTimeTranslate(t); break; case TFM_TIME_SLIDE: initTimeSlide(t); break; case TFM_TIME_SCALE: initTimeScale(t); break; case TFM_TIME_DUPLICATE: /* same as TFM_TIME_EXTEND, but we need the mode info for later * so that duplicate-culling will work properly */ if (ELEM(t->spacetype, SPACE_IPO, SPACE_NLA)) initTranslation(t); else initTimeTranslate(t); t->mode = mode; break; case TFM_TIME_EXTEND: /* now that transdata has been made, do like for TFM_TIME_TRANSLATE (for most Animation * Editors because they have only 1D transforms for time values) or TFM_TRANSLATION * (for Graph/NLA Editors only since they uses 'standard' transforms to get 2D movement) * depending on which editor this was called from */ if (ELEM(t->spacetype, SPACE_IPO, SPACE_NLA)) initTranslation(t); else initTimeTranslate(t); break; case TFM_BAKE_TIME: initBakeTime(t); break; case TFM_MIRROR: initMirror(t); break; case TFM_BEVEL: initBevel(t); break; case TFM_BWEIGHT: initBevelWeight(t); break; case TFM_ALIGN: initAlign(t); break; case TFM_SEQ_SLIDE: initSeqSlide(t); break; } if (t->state == TRANS_CANCEL) { postTrans(C, t); return 0; } /* overwrite initial values if operator supplied a non-null vector */ if ((prop = RNA_struct_find_property(op->ptr, "value")) && RNA_property_is_set(op->ptr, prop)) { float values[4]= {0}; /* in case value isn't length 4, avoid uninitialized memory */ if (RNA_property_array_check(prop)) { RNA_float_get_array(op->ptr, "value", values); } else { values[0]= RNA_float_get(op->ptr, "value"); } copy_v4_v4(t->values, values); copy_v4_v4(t->auto_values, values); t->flag |= T_AUTOVALUES; } /* Transformation axis from operator */ if ((prop = RNA_struct_find_property(op->ptr, "axis")) && RNA_property_is_set(op->ptr, prop)) { RNA_property_float_get_array(op->ptr, prop, t->axis); normalize_v3(t->axis); copy_v3_v3(t->axis_orig, t->axis); } /* Constraint init from operator */ if ((prop = RNA_struct_find_property(op->ptr, "constraint_axis")) && RNA_property_is_set(op->ptr, prop)) { int constraint_axis[3]; RNA_property_boolean_get_array(op->ptr, prop, constraint_axis); if (constraint_axis[0] || constraint_axis[1] || constraint_axis[2]) { t->con.mode |= CON_APPLY; if (constraint_axis[0]) { t->con.mode |= CON_AXIS0; } if (constraint_axis[1]) { t->con.mode |= CON_AXIS1; } if (constraint_axis[2]) { t->con.mode |= CON_AXIS2; } setUserConstraint(t, t->current_orientation, t->con.mode, "%s"); } } t->context = NULL; return 1; } void transformApply(bContext *C, TransInfo *t) { t->context = C; if ((t->redraw & TREDRAW_HARD) || (t->draw_handle_apply == NULL && (t->redraw & TREDRAW_SOFT))) { if (t->modifiers & MOD_CONSTRAINT_SELECT) t->con.mode |= CON_SELECT; selectConstraint(t); if (t->transform) { t->transform(t, t->mval); // calls recalcData() viewRedrawForce(C, t); } t->redraw = TREDRAW_NOTHING; } else if (t->redraw & TREDRAW_SOFT) { viewRedrawForce(C, t); } /* If auto confirm is on, break after one pass */ if (t->options & CTX_AUTOCONFIRM) { t->state = TRANS_CONFIRM; } if (BKE_ptcache_get_continue_physics()) { // TRANSFORM_FIX_ME //do_screenhandlers(G.curscreen); t->redraw |= TREDRAW_HARD; } t->context = NULL; } static void drawTransformApply(const bContext *C, struct ARegion *UNUSED(ar), void *arg) { TransInfo *t = arg; if (t->redraw & TREDRAW_SOFT) { t->redraw |= TREDRAW_HARD; transformApply((bContext *)C, t); } } int transformEnd(bContext *C, TransInfo *t) { int exit_code = OPERATOR_RUNNING_MODAL; t->context = C; if (t->state != TRANS_STARTING && t->state != TRANS_RUNNING) { /* handle restoring objects */ if (t->state == TRANS_CANCEL) { /* exception, edge slide transformed UVs too */ if (t->mode==TFM_EDGE_SLIDE) doEdgeSlide(t, 0.0f); exit_code = OPERATOR_CANCELLED; restoreTransObjects(t); // calls recalcData() } else { exit_code = OPERATOR_FINISHED; } /* aftertrans does insert keyframes, and clears base flags, doesnt read transdata */ special_aftertrans_update(C, t); /* free data */ postTrans(C, t); /* send events out for redraws */ viewRedrawPost(C, t); /* Undo as last, certainly after special_trans_update! */ if (t->state == TRANS_CANCEL) { // if (t->undostr) ED_undo_push(C, t->undostr); } else { // if (t->undostr) ED_undo_push(C, t->undostr); // else ED_undo_push(C, transform_to_undostr(t)); } t->undostr= NULL; viewRedrawForce(C, t); } t->context = NULL; return exit_code; } /* ************************** TRANSFORM LOCKS **************************** */ static void protectedTransBits(short protectflag, float *vec) { if (protectflag & OB_LOCK_LOCX) vec[0]= 0.0f; if (protectflag & OB_LOCK_LOCY) vec[1]= 0.0f; if (protectflag & OB_LOCK_LOCZ) vec[2]= 0.0f; } static void protectedSizeBits(short protectflag, float *size) { if (protectflag & OB_LOCK_SCALEX) size[0]= 1.0f; if (protectflag & OB_LOCK_SCALEY) size[1]= 1.0f; if (protectflag & OB_LOCK_SCALEZ) size[2]= 1.0f; } static void protectedRotateBits(short protectflag, float *eul, float *oldeul) { if (protectflag & OB_LOCK_ROTX) eul[0]= oldeul[0]; if (protectflag & OB_LOCK_ROTY) eul[1]= oldeul[1]; if (protectflag & OB_LOCK_ROTZ) eul[2]= oldeul[2]; } /* this function only does the delta rotation */ /* axis-angle is usually internally stored as quats... */ static void protectedAxisAngleBits(short protectflag, float axis[3], float *angle, float oldAxis[3], float oldAngle) { /* check that protection flags are set */ if ((protectflag & (OB_LOCK_ROTX|OB_LOCK_ROTY|OB_LOCK_ROTZ|OB_LOCK_ROTW)) == 0) return; if (protectflag & OB_LOCK_ROT4D) { /* axis-angle getting limited as 4D entities that they are... */ if (protectflag & OB_LOCK_ROTW) *angle= oldAngle; if (protectflag & OB_LOCK_ROTX) axis[0]= oldAxis[0]; if (protectflag & OB_LOCK_ROTY) axis[1]= oldAxis[1]; if (protectflag & OB_LOCK_ROTZ) axis[2]= oldAxis[2]; } else { /* axis-angle get limited with euler... */ float eul[3], oldeul[3]; axis_angle_to_eulO( eul, EULER_ORDER_DEFAULT,axis, *angle); axis_angle_to_eulO( oldeul, EULER_ORDER_DEFAULT,oldAxis, oldAngle); if (protectflag & OB_LOCK_ROTX) eul[0]= oldeul[0]; if (protectflag & OB_LOCK_ROTY) eul[1]= oldeul[1]; if (protectflag & OB_LOCK_ROTZ) eul[2]= oldeul[2]; eulO_to_axis_angle( axis, angle,eul, EULER_ORDER_DEFAULT); /* when converting to axis-angle, we need a special exception for the case when there is no axis */ if (IS_EQF(axis[0], axis[1]) && IS_EQF(axis[1], axis[2])) { /* for now, rotate around y-axis then (so that it simply becomes the roll) */ axis[1]= 1.0f; } } } /* this function only does the delta rotation */ static void protectedQuaternionBits(short protectflag, float *quat, float *oldquat) { /* check that protection flags are set */ if ((protectflag & (OB_LOCK_ROTX|OB_LOCK_ROTY|OB_LOCK_ROTZ|OB_LOCK_ROTW)) == 0) return; if (protectflag & OB_LOCK_ROT4D) { /* quaternions getting limited as 4D entities that they are... */ if (protectflag & OB_LOCK_ROTW) quat[0]= oldquat[0]; if (protectflag & OB_LOCK_ROTX) quat[1]= oldquat[1]; if (protectflag & OB_LOCK_ROTY) quat[2]= oldquat[2]; if (protectflag & OB_LOCK_ROTZ) quat[3]= oldquat[3]; } else { /* quaternions get limited with euler... (compatibility mode) */ float eul[3], oldeul[3], nquat[4], noldquat[4]; float qlen; qlen= normalize_qt_qt(nquat, quat); normalize_qt_qt(noldquat, oldquat); quat_to_eul(eul, nquat); quat_to_eul(oldeul, noldquat); if (protectflag & OB_LOCK_ROTX) eul[0]= oldeul[0]; if (protectflag & OB_LOCK_ROTY) eul[1]= oldeul[1]; if (protectflag & OB_LOCK_ROTZ) eul[2]= oldeul[2]; eul_to_quat( quat,eul); /* restore original quat size */ mul_qt_fl(quat, qlen); /* quaternions flip w sign to accumulate rotations correctly */ if ( (nquat[0]<0.0f && quat[0]>0.0f) || (nquat[0]>0.0f && quat[0]<0.0f) ) { mul_qt_fl(quat, -1.0f); } } } /* ******************* TRANSFORM LIMITS ********************** */ static void constraintTransLim(TransInfo *t, TransData *td) { if (td->con) { bConstraintTypeInfo *ctiLoc= get_constraint_typeinfo(CONSTRAINT_TYPE_LOCLIMIT); bConstraintTypeInfo *ctiDist= get_constraint_typeinfo(CONSTRAINT_TYPE_DISTLIMIT); bConstraintOb cob= {NULL}; bConstraint *con; float ctime = (float)(t->scene->r.cfra); /* Make a temporary bConstraintOb for using these limit constraints * - they only care that cob->matrix is correctly set ;-) * - current space should be local */ unit_m4(cob.matrix); copy_v3_v3(cob.matrix[3], td->loc); /* Evaluate valid constraints */ for (con= td->con; con; con= con->next) { bConstraintTypeInfo *cti = NULL; ListBase targets = {NULL, NULL}; float tmat[4][4]; /* only consider constraint if enabled */ if (con->flag & CONSTRAINT_DISABLE) continue; if (con->enforce == 0.0f) continue; /* only use it if it's tagged for this purpose (and the right type) */ if (con->type == CONSTRAINT_TYPE_LOCLIMIT) { bLocLimitConstraint *data= con->data; if ((data->flag2 & LIMIT_TRANSFORM)==0) continue; cti = ctiLoc; } else if (con->type == CONSTRAINT_TYPE_DISTLIMIT) { bDistLimitConstraint *data= con->data; if ((data->flag & LIMITDIST_TRANSFORM)==0) continue; cti = ctiDist; } if (cti) { /* do space conversions */ if (con->ownspace == CONSTRAINT_SPACE_WORLD) { /* just multiply by td->mtx (this should be ok) */ copy_m4_m4(tmat, cob.matrix); mul_m4_m3m4(cob.matrix, td->mtx, tmat); } else if (con->ownspace != CONSTRAINT_SPACE_LOCAL) { /* skip... incompatable spacetype */ continue; } /* get constraint targets if needed */ get_constraint_targets_for_solving(con, &cob, &targets, ctime); /* do constraint */ cti->evaluate_constraint(con, &cob, &targets); /* convert spaces again */ if (con->ownspace == CONSTRAINT_SPACE_WORLD) { /* just multiply by td->mtx (this should be ok) */ copy_m4_m4(tmat, cob.matrix); mul_m4_m3m4(cob.matrix, td->smtx, tmat); } /* free targets list */ BLI_freelistN(&targets); } } /* copy results from cob->matrix */ copy_v3_v3(td->loc, cob.matrix[3]); } } static void constraintob_from_transdata(bConstraintOb *cob, TransData *td) { /* Make a temporary bConstraintOb for use by limit constraints * - they only care that cob->matrix is correctly set ;-) * - current space should be local */ memset(cob, 0, sizeof(bConstraintOb)); if (td->ext) { if (td->ext->rotOrder == ROT_MODE_QUAT) { /* quats */ /* objects and bones do normalization first too, otherwise * we don't necessarily end up with a rotation matrix, and * then conversion back to quat gives a different result */ float quat[4]; normalize_qt_qt(quat, td->ext->quat); quat_to_mat4(cob->matrix, quat); } else if (td->ext->rotOrder == ROT_MODE_AXISANGLE) { /* axis angle */ axis_angle_to_mat4(cob->matrix, &td->ext->quat[1], td->ext->quat[0]); } else { /* eulers */ eulO_to_mat4(cob->matrix, td->ext->rot, td->ext->rotOrder); } } } static void constraintRotLim(TransInfo *UNUSED(t), TransData *td) { if (td->con) { bConstraintTypeInfo *cti= get_constraint_typeinfo(CONSTRAINT_TYPE_ROTLIMIT); bConstraintOb cob; bConstraint *con; int dolimit = 0; /* Evaluate valid constraints */ for (con= td->con; con; con= con->next) { /* only consider constraint if enabled */ if (con->flag & CONSTRAINT_DISABLE) continue; if (con->enforce == 0.0f) continue; /* we're only interested in Limit-Rotation constraints */ if (con->type == CONSTRAINT_TYPE_ROTLIMIT) { bRotLimitConstraint *data= con->data; float tmat[4][4]; /* only use it if it's tagged for this purpose */ if ((data->flag2 & LIMIT_TRANSFORM)==0) continue; /* skip incompatable spacetypes */ if (!ELEM(con->ownspace, CONSTRAINT_SPACE_WORLD, CONSTRAINT_SPACE_LOCAL)) continue; /* only do conversion if necessary, to preserve quats and eulers */ if (!dolimit) { constraintob_from_transdata(&cob, td); dolimit= 1; } /* do space conversions */ if (con->ownspace == CONSTRAINT_SPACE_WORLD) { /* just multiply by td->mtx (this should be ok) */ copy_m4_m4(tmat, cob.matrix); mul_m4_m3m4(cob.matrix, td->mtx, tmat); } /* do constraint */ cti->evaluate_constraint(con, &cob, NULL); /* convert spaces again */ if (con->ownspace == CONSTRAINT_SPACE_WORLD) { /* just multiply by td->mtx (this should be ok) */ copy_m4_m4(tmat, cob.matrix); mul_m4_m3m4(cob.matrix, td->smtx, tmat); } } } if (dolimit) { /* copy results from cob->matrix */ if (td->ext->rotOrder == ROT_MODE_QUAT) { /* quats */ mat4_to_quat( td->ext->quat,cob.matrix); } else if (td->ext->rotOrder == ROT_MODE_AXISANGLE) { /* axis angle */ mat4_to_axis_angle( &td->ext->quat[1], &td->ext->quat[0],cob.matrix); } else { /* eulers */ mat4_to_eulO( td->ext->rot, td->ext->rotOrder,cob.matrix); } } } } static void constraintSizeLim(TransInfo *t, TransData *td) { if (td->con && td->ext) { bConstraintTypeInfo *cti= get_constraint_typeinfo(CONSTRAINT_TYPE_SIZELIMIT); bConstraintOb cob= {NULL}; bConstraint *con; /* Make a temporary bConstraintOb for using these limit constraints * - they only care that cob->matrix is correctly set ;-) * - current space should be local */ if ((td->flag & TD_SINGLESIZE) && !(t->con.mode & CON_APPLY)) { /* scale val and reset size */ return; // TODO: fix this case } else { /* Reset val if SINGLESIZE but using a constraint */ if (td->flag & TD_SINGLESIZE) return; size_to_mat4( cob.matrix,td->ext->size); } /* Evaluate valid constraints */ for (con= td->con; con; con= con->next) { /* only consider constraint if enabled */ if (con->flag & CONSTRAINT_DISABLE) continue; if (con->enforce == 0.0f) continue; /* we're only interested in Limit-Scale constraints */ if (con->type == CONSTRAINT_TYPE_SIZELIMIT) { bSizeLimitConstraint *data= con->data; float tmat[4][4]; /* only use it if it's tagged for this purpose */ if ((data->flag2 & LIMIT_TRANSFORM)==0) continue; /* do space conversions */ if (con->ownspace == CONSTRAINT_SPACE_WORLD) { /* just multiply by td->mtx (this should be ok) */ copy_m4_m4(tmat, cob.matrix); mul_m4_m3m4(cob.matrix, td->mtx, tmat); } else if (con->ownspace != CONSTRAINT_SPACE_LOCAL) { /* skip... incompatable spacetype */ continue; } /* do constraint */ cti->evaluate_constraint(con, &cob, NULL); /* convert spaces again */ if (con->ownspace == CONSTRAINT_SPACE_WORLD) { /* just multiply by td->mtx (this should be ok) */ copy_m4_m4(tmat, cob.matrix); mul_m4_m3m4(cob.matrix, td->smtx, tmat); } } } /* copy results from cob->matrix */ if ((td->flag & TD_SINGLESIZE) && !(t->con.mode & CON_APPLY)) { /* scale val and reset size */ return; // TODO: fix this case } else { /* Reset val if SINGLESIZE but using a constraint */ if (td->flag & TD_SINGLESIZE) return; mat4_to_size( td->ext->size,cob.matrix); } } } /* ************************** WARP *************************** */ static void postInputWarp(TransInfo *t, float values[3]) { mul_v3_fl(values, (float)(M_PI * 2)); if (t->customData) { /* non-null value indicates reversed input */ negate_v3(values); } } void initWarp(TransInfo *t) { float max[3], min[3]; int i; t->mode = TFM_WARP; t->transform = Warp; t->handleEvent = handleEventWarp; setInputPostFct(&t->mouse, postInputWarp); initMouseInputMode(t, &t->mouse, INPUT_HORIZONTAL_RATIO); t->idx_max = 0; t->num.idx_max = 0; t->snap[0] = 0.0f; t->snap[1] = 5.0f / 180.0f * (float)M_PI; t->snap[2] = 1.0f / 180.0f * (float)M_PI; t->num.increment = 1.0f; t->flag |= T_NO_CONSTRAINT; /* we need min/max in view space */ for (i = 0; i < t->total; i++) { float center[3]; copy_v3_v3(center, t->data[i].center); mul_m3_v3(t->data[i].mtx, center); mul_m4_v3(t->viewmat, center); sub_v3_v3(center, t->viewmat[3]); if (i) minmax_v3v3_v3(min, max, center); else { copy_v3_v3(max, center); copy_v3_v3(min, center); } } mid_v3_v3v3(t->center, min, max); if (max[0] == min[0]) max[0] += 0.1f; /* not optimal, but flipping is better than invalid garbage (i.e. division by zero!) */ t->val= (max[0]-min[0])/2.0f; /* t->val is X dimension projected boundbox */ } int handleEventWarp(TransInfo *t, wmEvent *event) { int status = 0; if (event->type == MIDDLEMOUSE && event->val == KM_PRESS) { // Use customData pointer to signal warp direction if (t->customData == NULL) t->customData = (void*)1; else t->customData = NULL; status = 1; } return status; } int Warp(TransInfo *t, const int UNUSED(mval[2])) { TransData *td = t->data; float vec[3], circumfac, dist, phi0, co, si, *curs, cursor[3], gcursor[3]; int i; char str[50]; curs= give_cursor(t->scene, t->view); /* * gcursor is the one used for helpline. * It has to be in the same space as the drawing loop * (that means it needs to be in the object's space when in edit mode and * in global space in object mode) * * cursor is used for calculations. * It needs to be in view space, but we need to take object's offset * into account if in Edit mode. */ copy_v3_v3(cursor, curs); copy_v3_v3(gcursor, cursor); if (t->flag & T_EDIT) { sub_v3_v3(cursor, t->obedit->obmat[3]); sub_v3_v3(gcursor, t->obedit->obmat[3]); mul_m3_v3(t->data->smtx, gcursor); } mul_m4_v3(t->viewmat, cursor); sub_v3_v3(cursor, t->viewmat[3]); /* amount of radians for warp */ circumfac = t->values[0]; snapGrid(t, &circumfac); applyNumInput(&t->num, &circumfac); /* header print for NumInput */ if (hasNumInput(&t->num)) { char c[20]; outputNumInput(&(t->num), c); sprintf(str, "Warp: %s", c); circumfac = DEG2RADF(circumfac); } else { /* default header print */ sprintf(str, "Warp: %.3f", RAD2DEGF(circumfac)); } t->values[0] = circumfac; circumfac /= 2; /* only need 180 on each side to make 360 */ for (i = 0; i < t->total; i++, td++) { float loc[3]; if (td->flag & TD_NOACTION) break; if (td->flag & TD_SKIP) continue; /* translate point to center, rotate in such a way that outline==distance */ copy_v3_v3(vec, td->iloc); mul_m3_v3(td->mtx, vec); mul_m4_v3(t->viewmat, vec); sub_v3_v3(vec, t->viewmat[3]); dist= vec[0]-cursor[0]; /* t->val is X dimension projected boundbox */ phi0= (circumfac*dist/t->val); vec[1]= (vec[1]-cursor[1]); co= (float)cos(phi0); si= (float)sin(phi0); loc[0]= -si*vec[1]+cursor[0]; loc[1]= co*vec[1]+cursor[1]; loc[2]= vec[2]; mul_m4_v3(t->viewinv, loc); sub_v3_v3(loc, t->viewinv[3]); mul_m3_v3(td->smtx, loc); sub_v3_v3(loc, td->iloc); mul_v3_fl(loc, td->factor); add_v3_v3v3(td->loc, td->iloc, loc); } recalcData(t); ED_area_headerprint(t->sa, str); return 1; } /* ************************** SHEAR *************************** */ static void postInputShear(TransInfo *UNUSED(t), float values[3]) { mul_v3_fl(values, 0.05f); } void initShear(TransInfo *t) { t->mode = TFM_SHEAR; t->transform = Shear; t->handleEvent = handleEventShear; setInputPostFct(&t->mouse, postInputShear); initMouseInputMode(t, &t->mouse, INPUT_HORIZONTAL_ABSOLUTE); t->idx_max = 0; t->num.idx_max = 0; t->snap[0] = 0.0f; t->snap[1] = 0.1f; t->snap[2] = t->snap[1] * 0.1f; t->num.increment = 0.1f; t->flag |= T_NO_CONSTRAINT; } int handleEventShear(TransInfo *t, wmEvent *event) { int status = 0; if (event->type == MIDDLEMOUSE && event->val == KM_PRESS) { // Use customData pointer to signal Shear direction if (t->customData == NULL) { initMouseInputMode(t, &t->mouse, INPUT_VERTICAL_ABSOLUTE); t->customData = (void*)1; } else { initMouseInputMode(t, &t->mouse, INPUT_HORIZONTAL_ABSOLUTE); t->customData = NULL; } status = 1; } return status; } int Shear(TransInfo *t, const int UNUSED(mval[2])) { TransData *td = t->data; float vec[3]; float smat[3][3], tmat[3][3], totmat[3][3], persmat[3][3], persinv[3][3]; float value; int i; char str[50]; copy_m3_m4(persmat, t->viewmat); invert_m3_m3(persinv, persmat); value = t->values[0]; snapGrid(t, &value); applyNumInput(&t->num, &value); /* header print for NumInput */ if (hasNumInput(&t->num)) { char c[20]; outputNumInput(&(t->num), c); sprintf(str, "Shear: %s %s", c, t->proptext); } else { /* default header print */ sprintf(str, "Shear: %.3f %s", value, t->proptext); } t->values[0] = value; unit_m3(smat); // Custom data signals shear direction if (t->customData == NULL) smat[1][0] = value; else smat[0][1] = value; mul_m3_m3m3(tmat, smat, persmat); mul_m3_m3m3(totmat, persinv, tmat); for (i = 0 ; i < t->total; i++, td++) { if (td->flag & TD_NOACTION) break; if (td->flag & TD_SKIP) continue; if (t->obedit) { float mat3[3][3]; mul_m3_m3m3(mat3, totmat, td->mtx); mul_m3_m3m3(tmat, td->smtx, mat3); } else { copy_m3_m3(tmat, totmat); } sub_v3_v3v3(vec, td->center, t->center); mul_m3_v3(tmat, vec); add_v3_v3(vec, t->center); sub_v3_v3(vec, td->center); mul_v3_fl(vec, td->factor); add_v3_v3v3(td->loc, td->iloc, vec); } recalcData(t); ED_area_headerprint(t->sa, str); return 1; } /* ************************** RESIZE *************************** */ void initResize(TransInfo *t) { t->mode = TFM_RESIZE; t->transform = Resize; initMouseInputMode(t, &t->mouse, INPUT_SPRING_FLIP); t->flag |= T_NULL_ONE; t->num.flag |= NUM_NULL_ONE; t->num.flag |= NUM_AFFECT_ALL; if (!t->obedit) { t->flag |= T_NO_ZERO; t->num.flag |= NUM_NO_ZERO; } t->idx_max = 2; t->num.idx_max = 2; t->snap[0] = 0.0f; t->snap[1] = 0.1f; t->snap[2] = t->snap[1] * 0.1f; t->num.increment = t->snap[1]; } static void headerResize(TransInfo *t, float vec[3], char *str) { char tvec[60]; char *spos= str; if (hasNumInput(&t->num)) { outputNumInput(&(t->num), tvec); } else { BLI_snprintf(&tvec[0], 20, "%.4f", vec[0]); BLI_snprintf(&tvec[20], 20, "%.4f", vec[1]); BLI_snprintf(&tvec[40], 20, "%.4f", vec[2]); } if (t->con.mode & CON_APPLY) { switch (t->num.idx_max) { case 0: spos += sprintf(spos, "Scale: %s%s %s", &tvec[0], t->con.text, t->proptext); break; case 1: spos += sprintf(spos, "Scale: %s : %s%s %s", &tvec[0], &tvec[20], t->con.text, t->proptext); break; case 2: spos += sprintf(spos, "Scale: %s : %s : %s%s %s", &tvec[0], &tvec[20], &tvec[40], t->con.text, t->proptext); } } else { if (t->flag & T_2D_EDIT) spos += sprintf(spos, "Scale X: %s Y: %s%s %s", &tvec[0], &tvec[20], t->con.text, t->proptext); else spos += sprintf(spos, "Scale X: %s Y: %s Z: %s%s %s", &tvec[0], &tvec[20], &tvec[40], t->con.text, t->proptext); } if (t->flag & (T_PROP_EDIT|T_PROP_CONNECTED)) { spos += sprintf(spos, " Proportional size: %.2f", t->prop_size); } (void)spos; } #define SIGN(a) (a<-FLT_EPSILON?1:a>FLT_EPSILON?2:3) #define VECSIGNFLIP(a, b) ((SIGN(a[0]) & SIGN(b[0]))==0 || (SIGN(a[1]) & SIGN(b[1]))==0 || (SIGN(a[2]) & SIGN(b[2]))==0) /* smat is reference matrix, only scaled */ static void TransMat3ToSize( float mat[][3], float smat[][3], float *size) { float vec[3]; copy_v3_v3(vec, mat[0]); size[0]= normalize_v3(vec); copy_v3_v3(vec, mat[1]); size[1]= normalize_v3(vec); copy_v3_v3(vec, mat[2]); size[2]= normalize_v3(vec); /* first tried with dotproduct... but the sign flip is crucial */ if ( VECSIGNFLIP(mat[0], smat[0]) ) size[0]= -size[0]; if ( VECSIGNFLIP(mat[1], smat[1]) ) size[1]= -size[1]; if ( VECSIGNFLIP(mat[2], smat[2]) ) size[2]= -size[2]; } static void ElementResize(TransInfo *t, TransData *td, float mat[3][3]) { float tmat[3][3], smat[3][3], center[3]; float vec[3]; if (t->flag & T_EDIT) { mul_m3_m3m3(smat, mat, td->mtx); mul_m3_m3m3(tmat, td->smtx, smat); } else { copy_m3_m3(tmat, mat); } if (t->con.applySize) { t->con.applySize(t, td, tmat); } /* local constraint shouldn't alter center */ if ((t->around == V3D_LOCAL) && ( (t->flag & (T_OBJECT|T_POSE)) || ((t->flag & T_EDIT) && (t->settings->selectmode & (SCE_SELECT_EDGE|SCE_SELECT_FACE))) || (t->obedit && t->obedit->type == OB_ARMATURE)) ) { copy_v3_v3(center, td->center); } else { copy_v3_v3(center, t->center); } if (td->ext) { float fsize[3]; if (t->flag & (T_OBJECT|T_TEXTURE|T_POSE)) { float obsizemat[3][3]; // Reorient the size mat to fit the oriented object. mul_m3_m3m3(obsizemat, tmat, td->axismtx); //print_m3("obsizemat", obsizemat); TransMat3ToSize(obsizemat, td->axismtx, fsize); //print_v3("fsize", fsize); } else { mat3_to_size( fsize,tmat); } protectedSizeBits(td->protectflag, fsize); if ((t->flag & T_V3D_ALIGN)==0) { // align mode doesn't resize objects itself if ((td->flag & TD_SINGLESIZE) && !(t->con.mode & CON_APPLY)) { /* scale val and reset size */ *td->val = td->ival * (1 + (fsize[0] - 1) * td->factor); td->ext->size[0] = td->ext->isize[0]; td->ext->size[1] = td->ext->isize[1]; td->ext->size[2] = td->ext->isize[2]; } else { /* Reset val if SINGLESIZE but using a constraint */ if (td->flag & TD_SINGLESIZE) *td->val = td->ival; td->ext->size[0] = td->ext->isize[0] * (1 + (fsize[0] - 1) * td->factor); td->ext->size[1] = td->ext->isize[1] * (1 + (fsize[1] - 1) * td->factor); td->ext->size[2] = td->ext->isize[2] * (1 + (fsize[2] - 1) * td->factor); } } constraintSizeLim(t, td); } /* For individual element center, Editmode need to use iloc */ if (t->flag & T_POINTS) sub_v3_v3v3(vec, td->iloc, center); else sub_v3_v3v3(vec, td->center, center); mul_m3_v3(tmat, vec); add_v3_v3(vec, center); if (t->flag & T_POINTS) sub_v3_v3(vec, td->iloc); else sub_v3_v3(vec, td->center); mul_v3_fl(vec, td->factor); if (t->flag & (T_OBJECT|T_POSE)) { mul_m3_v3(td->smtx, vec); } protectedTransBits(td->protectflag, vec); add_v3_v3v3(td->loc, td->iloc, vec); constraintTransLim(t, td); } int Resize(TransInfo *t, const int mval[2]) { TransData *td; float size[3], mat[3][3]; float ratio; int i; char str[200]; /* for manipulator, center handle, the scaling can't be done relative to center */ if ( (t->flag & T_USES_MANIPULATOR) && t->con.mode==0) { ratio = 1.0f - ((t->imval[0] - mval[0]) + (t->imval[1] - mval[1]))/100.0f; } else { ratio = t->values[0]; } size[0] = size[1] = size[2] = ratio; snapGrid(t, size); if (hasNumInput(&t->num)) { applyNumInput(&t->num, size); constraintNumInput(t, size); } applySnapping(t, size); if (t->flag & T_AUTOVALUES) { copy_v3_v3(size, t->auto_values); } copy_v3_v3(t->values, size); size_to_mat3( mat,size); if (t->con.applySize) { t->con.applySize(t, NULL, mat); } copy_m3_m3(t->mat, mat); // used in manipulator headerResize(t, size, str); for (i = 0, td=t->data; i < t->total; i++, td++) { if (td->flag & TD_NOACTION) break; if (td->flag & TD_SKIP) continue; ElementResize(t, td, mat); } /* evil hack - redo resize if cliping needed */ if (t->flag & T_CLIP_UV && clipUVTransform(t, size, 1)) { size_to_mat3( mat,size); if (t->con.applySize) t->con.applySize(t, NULL, mat); for (i = 0, td=t->data; i < t->total; i++, td++) ElementResize(t, td, mat); } recalcData(t); ED_area_headerprint(t->sa, str); return 1; } /* ************************** TOSPHERE *************************** */ void initToSphere(TransInfo *t) { TransData *td = t->data; int i; t->mode = TFM_TOSPHERE; t->transform = ToSphere; initMouseInputMode(t, &t->mouse, INPUT_HORIZONTAL_RATIO); t->idx_max = 0; t->num.idx_max = 0; t->snap[0] = 0.0f; t->snap[1] = 0.1f; t->snap[2] = t->snap[1] * 0.1f; t->num.increment = t->snap[1]; t->num.flag |= NUM_NULL_ONE | NUM_NO_NEGATIVE; t->flag |= T_NO_CONSTRAINT; // Calculate average radius for (i = 0 ; i < t->total; i++, td++) { t->val += len_v3v3(t->center, td->iloc); } t->val /= (float)t->total; } int ToSphere(TransInfo *t, const int UNUSED(mval[2])) { float vec[3]; float ratio, radius; int i; char str[64]; TransData *td = t->data; ratio = t->values[0]; snapGrid(t, &ratio); applyNumInput(&t->num, &ratio); if (ratio < 0) ratio = 0.0f; else if (ratio > 1) ratio = 1.0f; t->values[0] = ratio; /* header print for NumInput */ if (hasNumInput(&t->num)) { char c[20]; outputNumInput(&(t->num), c); sprintf(str, "To Sphere: %s %s", c, t->proptext); } else { /* default header print */ sprintf(str, "To Sphere: %.4f %s", ratio, t->proptext); } for (i = 0 ; i < t->total; i++, td++) { float tratio; if (td->flag & TD_NOACTION) break; if (td->flag & TD_SKIP) continue; sub_v3_v3v3(vec, td->iloc, t->center); radius = normalize_v3(vec); tratio = ratio * td->factor; mul_v3_fl(vec, radius * (1.0f - tratio) + t->val * tratio); add_v3_v3v3(td->loc, t->center, vec); } recalcData(t); ED_area_headerprint(t->sa, str); return 1; } /* ************************** ROTATION *************************** */ static void postInputRotation(TransInfo *t, float values[3]) { if ((t->con.mode & CON_APPLY) && t->con.applyRot) { t->con.applyRot(t, NULL, t->axis, values); } } void initRotation(TransInfo *t) { t->mode = TFM_ROTATION; t->transform = Rotation; setInputPostFct(&t->mouse, postInputRotation); initMouseInputMode(t, &t->mouse, INPUT_ANGLE); t->idx_max = 0; t->num.idx_max = 0; t->snap[0] = 0.0f; t->snap[1] = (float)((5.0/180)*M_PI); t->snap[2] = t->snap[1] * 0.2f; t->num.increment = 1.0f; if (t->flag & T_2D_EDIT) t->flag |= T_NO_CONSTRAINT; negate_v3_v3(t->axis, t->viewinv[2]); normalize_v3(t->axis); copy_v3_v3(t->axis_orig, t->axis); } static void ElementRotation(TransInfo *t, TransData *td, float mat[3][3], short around) { float vec[3], totmat[3][3], smat[3][3]; float eul[3], fmat[3][3], quat[4]; float *center = t->center; /* local constraint shouldn't alter center */ if (around == V3D_LOCAL) { if ( (t->flag & (T_OBJECT|T_POSE)) || (t->settings->selectmode & (SCE_SELECT_EDGE|SCE_SELECT_FACE)) || (t->obedit && t->obedit->type == OB_ARMATURE)) { center = td->center; } } if (t->flag & T_POINTS) { mul_m3_m3m3(totmat, mat, td->mtx); mul_m3_m3m3(smat, td->smtx, totmat); sub_v3_v3v3(vec, td->iloc, center); mul_m3_v3(smat, vec); add_v3_v3v3(td->loc, vec, center); sub_v3_v3v3(vec,td->loc,td->iloc); protectedTransBits(td->protectflag, vec); add_v3_v3v3(td->loc, td->iloc, vec); if (td->flag & TD_USEQUAT) { mul_serie_m3(fmat, td->mtx, mat, td->smtx, NULL, NULL, NULL, NULL, NULL); mat3_to_quat( quat,fmat); // Actual transform if (td->ext->quat) { mul_qt_qtqt(td->ext->quat, quat, td->ext->iquat); /* is there a reason not to have this here? -jahka */ protectedQuaternionBits(td->protectflag, td->ext->quat, td->ext->iquat); } } } /** * HACK WARNING * * This is some VERY ugly special case to deal with pose mode. * * The problem is that mtx and smtx include each bone orientation. * * That is needed to rotate each bone properly, HOWEVER, to calculate * the translation component, we only need the actual armature object's * matrix (and inverse). That is not all though. Once the proper translation * has been computed, it has to be converted back into the bone's space. */ else if (t->flag & T_POSE) { float pmtx[3][3], imtx[3][3]; // Extract and invert armature object matrix copy_m3_m4(pmtx, t->poseobj->obmat); invert_m3_m3(imtx, pmtx); if ((td->flag & TD_NO_LOC) == 0) { sub_v3_v3v3(vec, td->center, center); mul_m3_v3(pmtx, vec); // To Global space mul_m3_v3(mat, vec); // Applying rotation mul_m3_v3(imtx, vec); // To Local space add_v3_v3(vec, center); /* vec now is the location where the object has to be */ sub_v3_v3v3(vec, vec, td->center); // Translation needed from the initial location /* special exception, see TD_PBONE_LOCAL_MTX definition comments */ if (td->flag & TD_PBONE_LOCAL_MTX_P) { /* do nothing */ } else if (td->flag & TD_PBONE_LOCAL_MTX_C) { mul_m3_v3(pmtx, vec); // To Global space mul_m3_v3(td->ext->l_smtx, vec);// To Pose space (Local Location) } else { mul_m3_v3(pmtx, vec); // To Global space mul_m3_v3(td->smtx, vec);// To Pose space } protectedTransBits(td->protectflag, vec); add_v3_v3v3(td->loc, td->iloc, vec); constraintTransLim(t, td); } /* rotation */ if ((t->flag & T_V3D_ALIGN)==0) { // align mode doesn't rotate objects itself /* euler or quaternion/axis-angle? */ if (td->ext->rotOrder == ROT_MODE_QUAT) { mul_serie_m3(fmat, td->mtx, mat, td->smtx, NULL, NULL, NULL, NULL, NULL); mat3_to_quat( quat,fmat); // Actual transform mul_qt_qtqt(td->ext->quat, quat, td->ext->iquat); /* this function works on end result */ protectedQuaternionBits(td->protectflag, td->ext->quat, td->ext->iquat); } else if (td->ext->rotOrder == ROT_MODE_AXISANGLE) { /* calculate effect based on quats */ float iquat[4], tquat[4]; axis_angle_to_quat(iquat, td->ext->irotAxis, td->ext->irotAngle); mul_serie_m3(fmat, td->mtx, mat, td->smtx, NULL, NULL, NULL, NULL, NULL); mat3_to_quat( quat,fmat); // Actual transform mul_qt_qtqt(tquat, quat, iquat); quat_to_axis_angle( td->ext->rotAxis, td->ext->rotAngle,tquat); /* this function works on end result */ protectedAxisAngleBits(td->protectflag, td->ext->rotAxis, td->ext->rotAngle, td->ext->irotAxis, td->ext->irotAngle); } else { float eulmat[3][3]; mul_m3_m3m3(totmat, mat, td->mtx); mul_m3_m3m3(smat, td->smtx, totmat); /* calculate the total rotatation in eulers */ copy_v3_v3(eul, td->ext->irot); eulO_to_mat3( eulmat,eul, td->ext->rotOrder); /* mat = transform, obmat = bone rotation */ mul_m3_m3m3(fmat, smat, eulmat); mat3_to_compatible_eulO( eul, td->ext->rot, td->ext->rotOrder,fmat); /* and apply (to end result only) */ protectedRotateBits(td->protectflag, eul, td->ext->irot); copy_v3_v3(td->ext->rot, eul); } constraintRotLim(t, td); } } else { if ((td->flag & TD_NO_LOC) == 0) { /* translation */ sub_v3_v3v3(vec, td->center, center); mul_m3_v3(mat, vec); add_v3_v3(vec, center); /* vec now is the location where the object has to be */ sub_v3_v3(vec, td->center); mul_m3_v3(td->smtx, vec); protectedTransBits(td->protectflag, vec); add_v3_v3v3(td->loc, td->iloc, vec); } constraintTransLim(t, td); /* rotation */ if ((t->flag & T_V3D_ALIGN)==0) { // align mode doesn't rotate objects itself /* euler or quaternion? */ if ((td->ext->rotOrder == ROT_MODE_QUAT) || (td->flag & TD_USEQUAT)) { mul_serie_m3(fmat, td->mtx, mat, td->smtx, NULL, NULL, NULL, NULL, NULL); mat3_to_quat( quat,fmat); // Actual transform mul_qt_qtqt(td->ext->quat, quat, td->ext->iquat); /* this function works on end result */ protectedQuaternionBits(td->protectflag, td->ext->quat, td->ext->iquat); } else if (td->ext->rotOrder == ROT_MODE_AXISANGLE) { /* calculate effect based on quats */ float iquat[4], tquat[4]; axis_angle_to_quat(iquat, td->ext->irotAxis, td->ext->irotAngle); mul_serie_m3(fmat, td->mtx, mat, td->smtx, NULL, NULL, NULL, NULL, NULL); mat3_to_quat( quat,fmat); // Actual transform mul_qt_qtqt(tquat, quat, iquat); quat_to_axis_angle( td->ext->rotAxis, td->ext->rotAngle,tquat); /* this function works on end result */ protectedAxisAngleBits(td->protectflag, td->ext->rotAxis, td->ext->rotAngle, td->ext->irotAxis, td->ext->irotAngle); } else { float obmat[3][3]; mul_m3_m3m3(totmat, mat, td->mtx); mul_m3_m3m3(smat, td->smtx, totmat); /* calculate the total rotatation in eulers */ add_v3_v3v3(eul, td->ext->irot, td->ext->drot); /* we have to correct for delta rot */ eulO_to_mat3( obmat,eul, td->ext->rotOrder); /* mat = transform, obmat = object rotation */ mul_m3_m3m3(fmat, smat, obmat); mat3_to_compatible_eulO( eul, td->ext->rot, td->ext->rotOrder,fmat); /* correct back for delta rot */ sub_v3_v3v3(eul, eul, td->ext->drot); /* and apply */ protectedRotateBits(td->protectflag, eul, td->ext->irot); copy_v3_v3(td->ext->rot, eul); } constraintRotLim(t, td); } } } static void applyRotation(TransInfo *t, float angle, float axis[3]) { TransData *td = t->data; float mat[3][3]; int i; vec_rot_to_mat3( mat,axis, angle); for (i = 0 ; i < t->total; i++, td++) { if (td->flag & TD_NOACTION) break; if (td->flag & TD_SKIP) continue; if (t->con.applyRot) { t->con.applyRot(t, td, axis, NULL); vec_rot_to_mat3( mat,axis, angle * td->factor); } else if (t->flag & T_PROP_EDIT) { vec_rot_to_mat3( mat,axis, angle * td->factor); } ElementRotation(t, td, mat, t->around); } } int Rotation(TransInfo *t, const int UNUSED(mval[2])) { char str[128], *spos= str; float final; final = t->values[0]; snapGrid(t, &final); if ((t->con.mode & CON_APPLY) && t->con.applyRot) { t->con.applyRot(t, NULL, t->axis, NULL); } else { /* reset axis if constraint is not set */ copy_v3_v3(t->axis, t->axis_orig); } applySnapping(t, &final); if (hasNumInput(&t->num)) { char c[20]; applyNumInput(&t->num, &final); outputNumInput(&(t->num), c); spos+= sprintf(spos, "Rot: %s %s %s", &c[0], t->con.text, t->proptext); /* Clamp between -180 and 180 */ final= angle_wrap_rad(DEG2RADF(final)); } else { spos += sprintf(spos, "Rot: %.2f%s %s", RAD2DEGF(final), t->con.text, t->proptext); } if (t->flag & (T_PROP_EDIT|T_PROP_CONNECTED)) { spos += sprintf(spos, " Proportional size: %.2f", t->prop_size); } (void)spos; t->values[0] = final; applyRotation(t, final, t->axis); recalcData(t); ED_area_headerprint(t->sa, str); return 1; } /* ************************** TRACKBALL *************************** */ void initTrackball(TransInfo *t) { t->mode = TFM_TRACKBALL; t->transform = Trackball; initMouseInputMode(t, &t->mouse, INPUT_TRACKBALL); t->idx_max = 1; t->num.idx_max = 1; t->snap[0] = 0.0f; t->snap[1] = (float)((5.0/180)*M_PI); t->snap[2] = t->snap[1] * 0.2f; t->num.increment = 1.0f; t->flag |= T_NO_CONSTRAINT; } static void applyTrackball(TransInfo *t, float axis1[3], float axis2[3], float angles[2]) { TransData *td = t->data; float mat[3][3], smat[3][3], totmat[3][3]; int i; vec_rot_to_mat3( smat,axis1, angles[0]); vec_rot_to_mat3( totmat,axis2, angles[1]); mul_m3_m3m3(mat, smat, totmat); for (i = 0 ; i < t->total; i++, td++) { if (td->flag & TD_NOACTION) break; if (td->flag & TD_SKIP) continue; if (t->flag & T_PROP_EDIT) { vec_rot_to_mat3( smat,axis1, td->factor * angles[0]); vec_rot_to_mat3( totmat,axis2, td->factor * angles[1]); mul_m3_m3m3(mat, smat, totmat); } ElementRotation(t, td, mat, t->around); } } int Trackball(TransInfo *t, const int UNUSED(mval[2])) { char str[128], *spos= str; float axis1[3], axis2[3]; float mat[3][3], totmat[3][3], smat[3][3]; float phi[2]; copy_v3_v3(axis1, t->persinv[0]); copy_v3_v3(axis2, t->persinv[1]); normalize_v3(axis1); normalize_v3(axis2); phi[0] = t->values[0]; phi[1] = t->values[1]; snapGrid(t, phi); if (hasNumInput(&t->num)) { char c[40]; applyNumInput(&t->num, phi); outputNumInput(&(t->num), c); spos += sprintf(spos, "Trackball: %s %s %s", &c[0], &c[20], t->proptext); phi[0] = DEG2RADF(phi[0]); phi[1] = DEG2RADF(phi[1]); } else { spos += sprintf(spos, "Trackball: %.2f %.2f %s", RAD2DEGF(phi[0]), RAD2DEGF(phi[1]), t->proptext); } if (t->flag & (T_PROP_EDIT|T_PROP_CONNECTED)) { spos += sprintf(spos, " Proportional size: %.2f", t->prop_size); } (void)spos; vec_rot_to_mat3( smat,axis1, phi[0]); vec_rot_to_mat3( totmat,axis2, phi[1]); mul_m3_m3m3(mat, smat, totmat); // TRANSFORM_FIX_ME //copy_m3_m3(t->mat, mat); // used in manipulator applyTrackball(t, axis1, axis2, phi); recalcData(t); ED_area_headerprint(t->sa, str); return 1; } /* ************************** TRANSLATION *************************** */ void initTranslation(TransInfo *t) { if (t->spacetype == SPACE_ACTION) { /* this space uses time translate */ t->state = TRANS_CANCEL; } t->mode = TFM_TRANSLATION; t->transform = Translation; initMouseInputMode(t, &t->mouse, INPUT_VECTOR); t->idx_max = (t->flag & T_2D_EDIT)? 1: 2; t->num.flag = 0; t->num.idx_max = t->idx_max; if (t->spacetype == SPACE_VIEW3D) { RegionView3D *rv3d = t->ar->regiondata; if (rv3d) { t->snap[0] = 0.0f; t->snap[1] = rv3d->gridview * 1.0f; t->snap[2] = t->snap[1] * 0.1f; } } else if (ELEM(t->spacetype, SPACE_IMAGE, SPACE_CLIP)) { t->snap[0] = 0.0f; t->snap[1] = 0.125f; t->snap[2] = 0.0625f; } else { t->snap[0] = 0.0f; t->snap[1] = t->snap[2] = 1.0f; } t->num.increment = t->snap[1]; } static void headerTranslation(TransInfo *t, float vec[3], char *str) { char *spos= str; char tvec[60]; char distvec[20]; char autoik[20]; float dist; if (hasNumInput(&t->num)) { outputNumInput(&(t->num), tvec); dist = len_v3(t->num.val); } else { float dvec[3]; copy_v3_v3(dvec, vec); applyAspectRatio(t, dvec); dist = len_v3(vec); if (!(t->flag & T_2D_EDIT) && t->scene->unit.system) { int i, do_split= t->scene->unit.flag & USER_UNIT_OPT_SPLIT ? 1:0; for (i=0; i<3; i++) bUnit_AsString(&tvec[i*20], 20, dvec[i]*t->scene->unit.scale_length, 4, t->scene->unit.system, B_UNIT_LENGTH, do_split, 1); } else { sprintf(&tvec[0], "%.4f", dvec[0]); sprintf(&tvec[20], "%.4f", dvec[1]); sprintf(&tvec[40], "%.4f", dvec[2]); } } if (!(t->flag & T_2D_EDIT) && t->scene->unit.system) bUnit_AsString(distvec, sizeof(distvec), dist*t->scene->unit.scale_length, 4, t->scene->unit.system, B_UNIT_LENGTH, t->scene->unit.flag & USER_UNIT_OPT_SPLIT, 0); else if ( dist > 1e10f || dist < -1e10f ) /* prevent string buffer overflow */ sprintf(distvec, "%.4e", dist); else sprintf(distvec, "%.4f", dist); if (t->flag & T_AUTOIK) { short chainlen= t->settings->autoik_chainlen; if (chainlen) sprintf(autoik, "AutoIK-Len: %d", chainlen); else autoik[0]= '\0'; } else autoik[0]= '\0'; if (t->con.mode & CON_APPLY) { switch (t->num.idx_max) { case 0: spos += sprintf(spos, "D: %s (%s)%s %s %s", &tvec[0], distvec, t->con.text, t->proptext, &autoik[0]); break; case 1: spos += sprintf(spos, "D: %s D: %s (%s)%s %s %s", &tvec[0], &tvec[20], distvec, t->con.text, t->proptext, &autoik[0]); break; case 2: spos += sprintf(spos, "D: %s D: %s D: %s (%s)%s %s %s", &tvec[0], &tvec[20], &tvec[40], distvec, t->con.text, t->proptext, &autoik[0]); } } else { if (t->flag & T_2D_EDIT) spos += sprintf(spos, "Dx: %s Dy: %s (%s)%s %s", &tvec[0], &tvec[20], distvec, t->con.text, t->proptext); else spos += sprintf(spos, "Dx: %s Dy: %s Dz: %s (%s)%s %s %s", &tvec[0], &tvec[20], &tvec[40], distvec, t->con.text, t->proptext, &autoik[0]); } if (t->flag & (T_PROP_EDIT|T_PROP_CONNECTED)) { spos += sprintf(spos, " Proportional size: %.2f", t->prop_size); } (void)spos; } static void applyTranslation(TransInfo *t, float vec[3]) { TransData *td = t->data; float tvec[3]; int i; for (i = 0 ; i < t->total; i++, td++) { if (td->flag & TD_NOACTION) break; if (td->flag & TD_SKIP) continue; /* handle snapping rotation before doing the translation */ if (usingSnappingNormal(t)) { if (validSnappingNormal(t)) { float *original_normal = td->axismtx[2]; float axis[3]; float quat[4]; float mat[3][3]; float angle; cross_v3_v3v3(axis, original_normal, t->tsnap.snapNormal); angle = saacos(dot_v3v3(original_normal, t->tsnap.snapNormal)); axis_angle_to_quat(quat, axis, angle); quat_to_mat3( mat,quat); ElementRotation(t, td, mat, V3D_LOCAL); } else { float mat[3][3]; unit_m3(mat); ElementRotation(t, td, mat, V3D_LOCAL); } } if (t->con.applyVec) { float pvec[3]; t->con.applyVec(t, td, vec, tvec, pvec); } else { copy_v3_v3(tvec, vec); } mul_m3_v3(td->smtx, tvec); mul_v3_fl(tvec, td->factor); protectedTransBits(td->protectflag, tvec); if (td->loc) add_v3_v3v3(td->loc, td->iloc, tvec); constraintTransLim(t, td); } } /* uses t->vec to store actual translation in */ int Translation(TransInfo *t, const int UNUSED(mval[2])) { char str[250]; if (t->con.mode & CON_APPLY) { float pvec[3] = {0.0f, 0.0f, 0.0f}; float tvec[3]; if (hasNumInput(&t->num)) { removeAspectRatio(t, t->values); } applySnapping(t, t->values); t->con.applyVec(t, NULL, t->values, tvec, pvec); copy_v3_v3(t->values, tvec); headerTranslation(t, pvec, str); } else { snapGrid(t, t->values); applyNumInput(&t->num, t->values); if (hasNumInput(&t->num)) { removeAspectRatio(t, t->values); } applySnapping(t, t->values); headerTranslation(t, t->values, str); } applyTranslation(t, t->values); /* evil hack - redo translation if clipping needed */ if (t->flag & T_CLIP_UV && clipUVTransform(t, t->values, 0)) applyTranslation(t, t->values); recalcData(t); ED_area_headerprint(t->sa, str); return 1; } /* ************************** SHRINK/FATTEN *************************** */ void initShrinkFatten(TransInfo *t) { // If not in mesh edit mode, fallback to Resize if (t->obedit==NULL || t->obedit->type != OB_MESH) { initResize(t); } else { t->mode = TFM_SHRINKFATTEN; t->transform = ShrinkFatten; initMouseInputMode(t, &t->mouse, INPUT_VERTICAL_ABSOLUTE); t->idx_max = 0; t->num.idx_max = 0; t->snap[0] = 0.0f; t->snap[1] = 1.0f; t->snap[2] = t->snap[1] * 0.1f; t->num.increment = t->snap[1]; t->flag |= T_NO_CONSTRAINT; } } int ShrinkFatten(TransInfo *t, const int UNUSED(mval[2])) { float vec[3]; float distance; int i; char str[64]; TransData *td = t->data; distance = -t->values[0]; snapGrid(t, &distance); applyNumInput(&t->num, &distance); /* header print for NumInput */ if (hasNumInput(&t->num)) { char c[20]; outputNumInput(&(t->num), c); sprintf(str, "Shrink/Fatten: %s %s", c, t->proptext); } else { /* default header print */ sprintf(str, "Shrink/Fatten: %.4f %s", distance, t->proptext); } t->values[0] = distance; for (i = 0 ; i < t->total; i++, td++) { if (td->flag & TD_NOACTION) break; if (td->flag & TD_SKIP) continue; copy_v3_v3(vec, td->axismtx[2]); mul_v3_fl(vec, distance); mul_v3_fl(vec, td->factor); add_v3_v3v3(td->loc, td->iloc, vec); } recalcData(t); ED_area_headerprint(t->sa, str); return 1; } /* ************************** TILT *************************** */ void initTilt(TransInfo *t) { t->mode = TFM_TILT; t->transform = Tilt; initMouseInputMode(t, &t->mouse, INPUT_ANGLE); t->idx_max = 0; t->num.idx_max = 0; t->snap[0] = 0.0f; t->snap[1] = (float)((5.0/180)*M_PI); t->snap[2] = t->snap[1] * 0.2f; t->num.increment = t->snap[1]; t->flag |= T_NO_CONSTRAINT|T_NO_PROJECT; } int Tilt(TransInfo *t, const int UNUSED(mval[2])) { TransData *td = t->data; int i; char str[50]; float final; final = t->values[0]; snapGrid(t, &final); if (hasNumInput(&t->num)) { char c[20]; applyNumInput(&t->num, &final); outputNumInput(&(t->num), c); sprintf(str, "Tilt: %s %s", &c[0], t->proptext); final = DEG2RADF(final); } else { sprintf(str, "Tilt: %.2f %s", RAD2DEGF(final), t->proptext); } for (i = 0 ; i < t->total; i++, td++) { if (td->flag & TD_NOACTION) break; if (td->flag & TD_SKIP) continue; if (td->val) { *td->val = td->ival + final * td->factor; } } recalcData(t); ED_area_headerprint(t->sa, str); return 1; } /* ******************** Curve Shrink/Fatten *************** */ void initCurveShrinkFatten(TransInfo *t) { t->mode = TFM_CURVE_SHRINKFATTEN; t->transform = CurveShrinkFatten; initMouseInputMode(t, &t->mouse, INPUT_SPRING); t->idx_max = 0; t->num.idx_max = 0; t->snap[0] = 0.0f; t->snap[1] = 0.1f; t->snap[2] = t->snap[1] * 0.1f; t->num.increment = t->snap[1]; t->flag |= T_NO_ZERO; t->num.flag |= NUM_NO_ZERO; t->flag |= T_NO_CONSTRAINT; } int CurveShrinkFatten(TransInfo *t, const int UNUSED(mval[2])) { TransData *td = t->data; float ratio; int i; char str[50]; ratio = t->values[0]; snapGrid(t, &ratio); applyNumInput(&t->num, &ratio); /* header print for NumInput */ if (hasNumInput(&t->num)) { char c[20]; outputNumInput(&(t->num), c); sprintf(str, "Shrink/Fatten: %s", c); } else { sprintf(str, "Shrink/Fatten: %3f", ratio); } for (i = 0 ; i < t->total; i++, td++) { if (td->flag & TD_NOACTION) break; if (td->flag & TD_SKIP) continue; if (td->val) { // *td->val= ratio; *td->val= td->ival*ratio; if (*td->val <= 0.0f) *td->val = 0.001f; } } recalcData(t); ED_area_headerprint(t->sa, str); return 1; } /* ************************** PUSH/PULL *************************** */ void initPushPull(TransInfo *t) { t->mode = TFM_PUSHPULL; t->transform = PushPull; initMouseInputMode(t, &t->mouse, INPUT_VERTICAL_ABSOLUTE); t->idx_max = 0; t->num.idx_max = 0; t->snap[0] = 0.0f; t->snap[1] = 1.0f; t->snap[2] = t->snap[1] * 0.1f; t->num.increment = t->snap[1]; } int PushPull(TransInfo *t, const int UNUSED(mval[2])) { float vec[3], axis[3]; float distance; int i; char str[128]; TransData *td = t->data; distance = t->values[0]; snapGrid(t, &distance); applyNumInput(&t->num, &distance); /* header print for NumInput */ if (hasNumInput(&t->num)) { char c[20]; outputNumInput(&(t->num), c); sprintf(str, "Push/Pull: %s%s %s", c, t->con.text, t->proptext); } else { /* default header print */ sprintf(str, "Push/Pull: %.4f%s %s", distance, t->con.text, t->proptext); } t->values[0] = distance; if (t->con.applyRot && t->con.mode & CON_APPLY) { t->con.applyRot(t, NULL, axis, NULL); } for (i = 0 ; i < t->total; i++, td++) { if (td->flag & TD_NOACTION) break; if (td->flag & TD_SKIP) continue; sub_v3_v3v3(vec, t->center, td->center); if (t->con.applyRot && t->con.mode & CON_APPLY) { t->con.applyRot(t, td, axis, NULL); if (isLockConstraint(t)) { float dvec[3]; project_v3_v3v3(dvec, vec, axis); sub_v3_v3(vec, dvec); } else { project_v3_v3v3(vec, vec, axis); } } normalize_v3(vec); mul_v3_fl(vec, distance); mul_v3_fl(vec, td->factor); add_v3_v3v3(td->loc, td->iloc, vec); } recalcData(t); ED_area_headerprint(t->sa, str); return 1; } /* ************************** BEVEL **************************** */ void initBevel(TransInfo *t) { t->transform = Bevel; t->handleEvent = handleEventBevel; initMouseInputMode(t, &t->mouse, INPUT_HORIZONTAL_ABSOLUTE); t->mode = TFM_BEVEL; t->flag |= T_NO_CONSTRAINT; t->num.flag |= NUM_NO_NEGATIVE; t->idx_max = 0; t->num.idx_max = 0; t->snap[0] = 0.0f; t->snap[1] = 0.1f; t->snap[2] = t->snap[1] * 0.1f; t->num.increment = t->snap[1]; /* DON'T KNOW WHY THIS IS NEEDED */ if (G.editBMesh->imval[0] == 0 && G.editBMesh->imval[1] == 0) { /* save the initial mouse co */ G.editBMesh->imval[0] = t->imval[0]; G.editBMesh->imval[1] = t->imval[1]; } else { /* restore the mouse co from a previous call to initTransform() */ t->imval[0] = G.editBMesh->imval[0]; t->imval[1] = G.editBMesh->imval[1]; } } int handleEventBevel(TransInfo *t, wmEvent *event) { if (event->val == KM_PRESS) { if (!G.editBMesh) return 0; switch (event->type) { case MIDDLEMOUSE: G.editBMesh->options ^= BME_BEVEL_VERT; t->state = TRANS_CANCEL; return 1; //case PADPLUSKEY: // G.editBMesh->options ^= BME_BEVEL_RES; // G.editBMesh->res += 1; // if (G.editBMesh->res > 4) { // G.editBMesh->res = 4; // } // t->state = TRANS_CANCEL; // return 1; //case PADMINUS: // G.editBMesh->options ^= BME_BEVEL_RES; // G.editBMesh->res -= 1; // if (G.editBMesh->res < 0) { // G.editBMesh->res = 0; // } // t->state = TRANS_CANCEL; // return 1; default: return 0; } } return 0; } int Bevel(TransInfo *t, const int UNUSED(mval[2])) { float distance,d; int i; char str[128]; const char *mode; TransData *td = t->data; mode = (G.editBMesh->options & BME_BEVEL_VERT) ? "verts only" : "normal"; distance = t->values[0] / 4; /* 4 just seemed a nice value to me, nothing special */ distance = fabs(distance); snapGrid(t, &distance); applyNumInput(&t->num, &distance); /* header print for NumInput */ if (hasNumInput(&t->num)) { char c[20]; outputNumInput(&(t->num), c); sprintf(str, "Bevel - Dist: %s, Mode: %s (MMB to toggle))", c, mode); } else { /* default header print */ sprintf(str, "Bevel - Dist: %.4f, Mode: %s (MMB to toggle))", distance, mode); } if (distance < 0) distance = -distance; for (i = 0 ; i < t->total; i++, td++) { if (td->axismtx[1][0] > 0 && distance > td->axismtx[1][0]) { d = td->axismtx[1][0]; } else { d = distance; } madd_v3_v3v3fl(td->loc, td->center, td->axismtx[0], (*td->val) * d); } recalcData(t); ED_area_headerprint(t->sa, str); return 1; } /* ************************** BEVEL WEIGHT *************************** */ void initBevelWeight(TransInfo *t) { t->mode = TFM_BWEIGHT; t->transform = BevelWeight; initMouseInputMode(t, &t->mouse, INPUT_SPRING); t->idx_max = 0; t->num.idx_max = 0; t->snap[0] = 0.0f; t->snap[1] = 0.1f; t->snap[2] = t->snap[1] * 0.1f; t->num.increment = t->snap[1]; t->flag |= T_NO_CONSTRAINT|T_NO_PROJECT; } int BevelWeight(TransInfo *t, const int UNUSED(mval[2])) { TransData *td = t->data; float weight; int i; char str[50]; weight = t->values[0]; weight -= 1.0f; if (weight > 1.0f) weight = 1.0f; snapGrid(t, &weight); applyNumInput(&t->num, &weight); /* header print for NumInput */ if (hasNumInput(&t->num)) { char c[20]; outputNumInput(&(t->num), c); if (weight >= 0.0f) sprintf(str, "Bevel Weight: +%s %s", c, t->proptext); else sprintf(str, "Bevel Weight: %s %s", c, t->proptext); } else { /* default header print */ if (weight >= 0.0f) sprintf(str, "Bevel Weight: +%.3f %s", weight, t->proptext); else sprintf(str, "Bevel Weight: %.3f %s", weight, t->proptext); } for (i = 0 ; i < t->total; i++, td++) { if (td->flag & TD_NOACTION) break; if (td->val) { *td->val = td->ival + weight * td->factor; if (*td->val < 0.0f) *td->val = 0.0f; if (*td->val > 1.0f) *td->val = 1.0f; } } recalcData(t); ED_area_headerprint(t->sa, str); return 1; } /* ************************** CREASE *************************** */ void initCrease(TransInfo *t) { t->mode = TFM_CREASE; t->transform = Crease; initMouseInputMode(t, &t->mouse, INPUT_SPRING); t->idx_max = 0; t->num.idx_max = 0; t->snap[0] = 0.0f; t->snap[1] = 0.1f; t->snap[2] = t->snap[1] * 0.1f; t->num.increment = t->snap[1]; t->flag |= T_NO_CONSTRAINT|T_NO_PROJECT; } int Crease(TransInfo *t, const int UNUSED(mval[2])) { TransData *td = t->data; float crease; int i; char str[50]; crease = t->values[0]; crease -= 1.0f; if (crease > 1.0f) crease = 1.0f; snapGrid(t, &crease); applyNumInput(&t->num, &crease); /* header print for NumInput */ if (hasNumInput(&t->num)) { char c[20]; outputNumInput(&(t->num), c); if (crease >= 0.0f) sprintf(str, "Crease: +%s %s", c, t->proptext); else sprintf(str, "Crease: %s %s", c, t->proptext); } else { /* default header print */ if (crease >= 0.0f) sprintf(str, "Crease: +%.3f %s", crease, t->proptext); else sprintf(str, "Crease: %.3f %s", crease, t->proptext); } for (i = 0 ; i < t->total; i++, td++) { if (td->flag & TD_NOACTION) break; if (td->flag & TD_SKIP) continue; if (td->val) { *td->val = td->ival + crease * td->factor; if (*td->val < 0.0f) *td->val = 0.0f; if (*td->val > 1.0f) *td->val = 1.0f; } } recalcData(t); ED_area_headerprint(t->sa, str); return 1; } /* ******************** EditBone (B-bone) width scaling *************** */ void initBoneSize(TransInfo *t) { t->mode = TFM_BONESIZE; t->transform = BoneSize; initMouseInputMode(t, &t->mouse, INPUT_SPRING_FLIP); t->idx_max = 2; t->num.idx_max = 2; t->num.flag |= NUM_NULL_ONE; t->num.flag |= NUM_AFFECT_ALL; t->snap[0] = 0.0f; t->snap[1] = 0.1f; t->snap[2] = t->snap[1] * 0.1f; t->num.increment = t->snap[1]; } static void headerBoneSize(TransInfo *t, float vec[3], char *str) { char tvec[60]; if (hasNumInput(&t->num)) { outputNumInput(&(t->num), tvec); } else { sprintf(&tvec[0], "%.4f", vec[0]); sprintf(&tvec[20], "%.4f", vec[1]); sprintf(&tvec[40], "%.4f", vec[2]); } /* hmm... perhaps the y-axis values don't need to be shown? */ if (t->con.mode & CON_APPLY) { if (t->num.idx_max == 0) sprintf(str, "ScaleB: %s%s %s", &tvec[0], t->con.text, t->proptext); else sprintf(str, "ScaleB: %s : %s : %s%s %s", &tvec[0], &tvec[20], &tvec[40], t->con.text, t->proptext); } else { sprintf(str, "ScaleB X: %s Y: %s Z: %s%s %s", &tvec[0], &tvec[20], &tvec[40], t->con.text, t->proptext); } } static void ElementBoneSize(TransInfo *t, TransData *td, float mat[3][3]) { float tmat[3][3], smat[3][3], oldy; float sizemat[3][3]; mul_m3_m3m3(smat, mat, td->mtx); mul_m3_m3m3(tmat, td->smtx, smat); if (t->con.applySize) { t->con.applySize(t, td, tmat); } /* we've tucked the scale in loc */ oldy= td->iloc[1]; size_to_mat3( sizemat,td->iloc); mul_m3_m3m3(tmat, tmat, sizemat); mat3_to_size( td->loc,tmat); td->loc[1]= oldy; } int BoneSize(TransInfo *t, const int mval[2]) { TransData *td = t->data; float size[3], mat[3][3]; float ratio; int i; char str[60]; // TRANSFORM_FIX_ME MOVE TO MOUSE INPUT /* for manipulator, center handle, the scaling can't be done relative to center */ if ((t->flag & T_USES_MANIPULATOR) && t->con.mode==0) { ratio = 1.0f - ((t->imval[0] - mval[0]) + (t->imval[1] - mval[1]))/100.0f; } else { ratio = t->values[0]; } size[0] = size[1] = size[2] = ratio; snapGrid(t, size); if (hasNumInput(&t->num)) { applyNumInput(&t->num, size); constraintNumInput(t, size); } size_to_mat3( mat,size); if (t->con.applySize) { t->con.applySize(t, NULL, mat); } copy_m3_m3(t->mat, mat); // used in manipulator headerBoneSize(t, size, str); for (i = 0 ; i < t->total; i++, td++) { if (td->flag & TD_NOACTION) break; if (td->flag & TD_SKIP) continue; ElementBoneSize(t, td, mat); } recalcData(t); ED_area_headerprint(t->sa, str); return 1; } /* ******************** EditBone envelope *************** */ void initBoneEnvelope(TransInfo *t) { t->mode = TFM_BONE_ENVELOPE; t->transform = BoneEnvelope; initMouseInputMode(t, &t->mouse, INPUT_SPRING); t->idx_max = 0; t->num.idx_max = 0; t->snap[0] = 0.0f; t->snap[1] = 0.1f; t->snap[2] = t->snap[1] * 0.1f; t->num.increment = t->snap[1]; t->flag |= T_NO_CONSTRAINT|T_NO_PROJECT; } int BoneEnvelope(TransInfo *t, const int UNUSED(mval[2])) { TransData *td = t->data; float ratio; int i; char str[50]; ratio = t->values[0]; snapGrid(t, &ratio); applyNumInput(&t->num, &ratio); /* header print for NumInput */ if (hasNumInput(&t->num)) { char c[20]; outputNumInput(&(t->num), c); sprintf(str, "Envelope: %s", c); } else { sprintf(str, "Envelope: %3f", ratio); } for (i = 0 ; i < t->total; i++, td++) { if (td->flag & TD_NOACTION) break; if (td->flag & TD_SKIP) continue; if (td->val) { /* if the old/original value was 0.0f, then just use ratio */ if (td->ival) *td->val= td->ival*ratio; else *td->val= ratio; } } recalcData(t); ED_area_headerprint(t->sa, str); return 1; } /* ******************** Edge Slide *************** */ static BMEdge *get_other_edge(BMVert *v, BMEdge *e) { BMIter iter; BMEdge *e2; BM_ITER_ELEM (e2, &iter, v, BM_EDGES_OF_VERT) { if (BM_elem_flag_test(e2, BM_ELEM_SELECT) && e2 != e) return e2; } return NULL; } static BMLoop *get_next_loop(BMVert *v, BMLoop *l, BMEdge *olde, BMEdge *nexte, float vec[3]) { BMLoop *firstl; float a[3] = {0.0f, 0.0f, 0.0f}, n[3] = {0.0f, 0.0f, 0.0f}; int i=0; firstl = l; do { l = BM_face_other_edge_loop(l->f, l->e, v); if (l->radial_next == l) return NULL; if (l->e == nexte) { if (i) { mul_v3_fl(a, 1.0f / (float)i); } else { float f1[3], f2[3], f3[3]; sub_v3_v3v3(f1, BM_edge_other_vert(olde, v)->co, v->co); sub_v3_v3v3(f2, BM_edge_other_vert(nexte, v)->co, v->co); cross_v3_v3v3(f3, f1, l->f->no); cross_v3_v3v3(a, f2, l->f->no); mul_v3_fl(a, -1.0f); add_v3_v3(a, f3); mul_v3_fl(a, 0.5f); } copy_v3_v3(vec, a); return l; } else { sub_v3_v3v3(n, BM_edge_other_vert(l->e, v)->co, v->co); add_v3_v3v3(a, a, n); i += 1; } if (BM_face_other_edge_loop(l->f, l->e, v)->e == nexte) { if (i) mul_v3_fl(a, 1.0f / (float)i); copy_v3_v3(vec, a); return BM_face_other_edge_loop(l->f, l->e, v); } l = l->radial_next; } while (l != firstl); if (i) mul_v3_fl(a, 1.0f / (float)i); copy_v3_v3(vec, a); return NULL; } static int createSlideVerts(TransInfo *t) { Mesh *me = t->obedit->data; BMEditMesh *em = me->edit_btmesh; BMesh *bm = em->bm; BMIter iter, iter2; BMEdge *e, *e1 /*, *ee, *le */ /* UNUSED */; BMVert *v, *v2, *first; BMLoop *l, *l1, *l2; TransDataSlideVert *sv_array; BMBVHTree *btree = BMBVH_NewBVH(em, 0, NULL, NULL); SmallHash table; SlideData *sld = MEM_callocN(sizeof(*sld), "sld"); View3D *v3d = t->sa ? t->sa->spacedata.first : NULL; RegionView3D *rv3d = t->ar ? t->ar->regiondata : NULL; /* background mode support */ ARegion *ar = t->ar; float projectMat[4][4]; float start[3] = {0.0f, 0.0f, 0.0f}, dir[3], end[3] = {0.0f, 0.0f, 0.0f}; float vec[3], vec2[3], lastvec[3] /*, size, dis=0.0, z */ /* UNUSED */; int numsel, i, j; if (!v3d) { /* ok, let's try to survive this */ unit_m4(projectMat); } else { ED_view3d_ob_project_mat_get(rv3d, t->obedit, projectMat); } BLI_smallhash_init(&sld->vhash); BLI_smallhash_init(&sld->origfaces); BLI_smallhash_init(&table); /*ensure valid selection*/ BM_ITER_MESH (v, &iter, bm, BM_VERTS_OF_MESH) { if (BM_elem_flag_test(v, BM_ELEM_SELECT)) { numsel = 0; BM_ITER_ELEM (e, &iter2, v, BM_EDGES_OF_VERT) { if (BM_elem_flag_test(e, BM_ELEM_SELECT)) { /* BMESH_TODO: this is probably very evil, * set v->e to a selected edge*/ v->e = e; numsel++; } } if (numsel == 0 || numsel > 2) { MEM_freeN(sld); BMBVH_FreeBVH(btree); return 0; /* invalid edge selection */ } } } BM_ITER_MESH (e, &iter, bm, BM_EDGES_OF_MESH) { if (BM_elem_flag_test(e, BM_ELEM_SELECT)) { if (!BM_edge_is_manifold(e)) { MEM_freeN(sld); BMBVH_FreeBVH(btree); return 0; /* can only handle exactly 2 faces around each edge */ } } } j = 0; BM_ITER_MESH (v, &iter, bm, BM_VERTS_OF_MESH) { if (BM_elem_flag_test(v, BM_ELEM_SELECT)) { BM_elem_flag_enable(v, BM_ELEM_TAG); BLI_smallhash_insert(&table, (uintptr_t)v, SET_INT_IN_POINTER(j)); j += 1; } else { BM_elem_flag_disable(v, BM_ELEM_TAG); } } if (!j) { MEM_freeN(sld); BMBVH_FreeBVH(btree); return 0; } sv_array = MEM_callocN(sizeof(TransDataSlideVert) * j, "sv_array"); j = 0; while (1) { v = NULL; BM_ITER_MESH (v, &iter, bm, BM_VERTS_OF_MESH) { if (BM_elem_flag_test(v, BM_ELEM_TAG)) break; } if (!v) break; if (!v->e) continue; first = v; /*walk along the edge loop*/ e = v->e; /*first, rewind*/ numsel = 0; do { e = get_other_edge(v, e); if (!e) { e = v->e; break; } numsel += 1; if (!BM_elem_flag_test(BM_edge_other_vert(e, v), BM_ELEM_TAG)) break; v = BM_edge_other_vert(e, v); } while (e != first->e); BM_elem_flag_disable(v, BM_ELEM_TAG); l1 = l2 = l = NULL; l1 = e->l; l2 = e->l->radial_next; l = BM_face_other_edge_loop(l1->f, l1->e, v); sub_v3_v3v3(vec, BM_edge_other_vert(l->e, v)->co, v->co); if (l2 != l1) { l = BM_face_other_edge_loop(l2->f, l2->e, v); sub_v3_v3v3(vec2, BM_edge_other_vert(l->e, v)->co, v->co); } else { l2 = NULL; } /*iterate over the loop*/ first = v; do { TransDataSlideVert *sv = sv_array + j; sv->v = v; sv->origvert = *v; copy_v3_v3(sv->upvec, vec); if (l2) copy_v3_v3(sv->downvec, vec2); l = BM_face_other_edge_loop(l1->f, l1->e, v); sv->up = BM_edge_other_vert(l->e, v); if (l2) { l = BM_face_other_edge_loop(l2->f, l2->e, v); sv->down = BM_edge_other_vert(l->e, v); } v2=v, v = BM_edge_other_vert(e, v); e1 = e; e = get_other_edge(v, e); if (!e) { //v2=v, v = BM_edge_other_vert(l1->e, v); sv = sv_array + j + 1; sv->v = v; sv->origvert = *v; l = BM_face_other_edge_loop(l1->f, l1->e, v); sv->up = BM_edge_other_vert(l->e, v); sub_v3_v3v3(sv->upvec, BM_edge_other_vert(l->e, v)->co, v->co); if (l2) { l = BM_face_other_edge_loop(l2->f, l2->e, v); sv->down = BM_edge_other_vert(l->e, v); sub_v3_v3v3(sv->downvec, BM_edge_other_vert(l->e, v)->co, v->co); } BM_elem_flag_disable(v, BM_ELEM_TAG); BM_elem_flag_disable(v2, BM_ELEM_TAG); j += 2; break; } l1 = get_next_loop(v, l1, e1, e, vec); l2 = l2 ? get_next_loop(v, l2, e1, e, vec2) : NULL; j += 1; BM_elem_flag_disable(v, BM_ELEM_TAG); BM_elem_flag_disable(v2, BM_ELEM_TAG); } while (e != first->e && l1); } //EDBM_flag_disable_all(em, BM_ELEM_SELECT); sld->sv = sv_array; sld->totsv = j; /*find mouse vector*/ /* dis = z = -1.0f; */ /* UNUSED */ /* size = 50.0; */ /* UNUSED */ zero_v3(lastvec); zero_v3(dir); /* ee = le = NULL; */ /* UNUSED */ BM_ITER_MESH (e, &iter, bm, BM_EDGES_OF_MESH) { if (BM_elem_flag_test(e, BM_ELEM_SELECT)) { BMIter iter2; BMEdge *e2; float vec1[3], dis2, mval[2] = {t->mval[0], t->mval[1]}, d; /* search cross edges for visible edge to the mouse cursor, * then use the shared vertex to calculate screen vector*/ dis2 = -1.0f; for (i=0; i<2; i++) { v = i?e->v1:e->v2; BM_ITER_ELEM (e2, &iter2, v, BM_EDGES_OF_VERT) { if (BM_elem_flag_test(e2, BM_ELEM_SELECT)) continue; if (!BMBVH_EdgeVisible(btree, e2, ar, v3d, t->obedit)) continue; j = GET_INT_FROM_POINTER(BLI_smallhash_lookup(&table, (uintptr_t)v)); if (sv_array[j].down) { ED_view3d_project_float_v3(ar, sv_array[j].down->co, vec1, projectMat); } else { add_v3_v3v3(vec1, v->co, sv_array[j].downvec); ED_view3d_project_float_v3(ar, vec1, vec1, projectMat); } if (sv_array[j].up) { ED_view3d_project_float_v3(ar, sv_array[j].up->co, vec2, projectMat); } else { add_v3_v3v3(vec1, v->co, sv_array[j].upvec); ED_view3d_project_float_v3(ar, vec2, vec2, projectMat); } d = dist_to_line_segment_v2(mval, vec1, vec2); if (dis2 == -1.0f || d < dis2) { dis2 = d; /* ee = e2; */ /* UNUSED */ /* size = len_v3v3(vec1, vec2); */ /* UNUSED */ sub_v3_v3v3(dir, vec1, vec2); } } } } } bmesh_edit_begin(bm, BMO_OP_FLAG_UNTAN_MULTIRES); /*create copies of faces for customdata projection*/ sv_array = sld->sv; for (i=0; itotsv; i++, sv_array++) { BMIter fiter, liter; BMFace *f; BMLoop *l; BM_ITER_ELEM (f, &fiter, sv_array->v, BM_FACES_OF_VERT) { if (!BLI_smallhash_haskey(&sld->origfaces, (uintptr_t)f)) { BMFace *copyf = BM_face_copy(bm, f, TRUE, TRUE); BM_face_select_set(bm, copyf, FALSE); BM_elem_flag_enable(copyf, BM_ELEM_HIDDEN); BM_ITER_ELEM (l, &liter, copyf, BM_LOOPS_OF_FACE) { BM_vert_select_set(bm, l->v, FALSE); BM_elem_flag_enable(l->v, BM_ELEM_HIDDEN); BM_edge_select_set(bm, l->e, FALSE); BM_elem_flag_enable(l->e, BM_ELEM_HIDDEN); } BLI_smallhash_insert(&sld->origfaces, (uintptr_t)f, copyf); } } BLI_smallhash_insert(&sld->vhash, (uintptr_t)sv_array->v, sv_array); } sld->origfaces_init = TRUE; sld->em = em; /*zero out start*/ zero_v3(start); /*dir holds a vector along edge loop*/ copy_v3_v3(end, dir); mul_v3_fl(end, 0.5); sld->start[0] = t->mval[0] + start[0]; sld->start[1] = t->mval[1] + start[1]; sld->end[0] = t->mval[0] + end[0]; sld->end[1] = t->mval[1] + end[1]; sld->perc = 0.0f; t->customData = sld; BLI_smallhash_release(&table); BMBVH_FreeBVH(btree); return 1; } void projectSVData(TransInfo *t, int final) { SlideData *sld = t->customData; TransDataSlideVert *sv; BMEditMesh *em = sld->em; SmallHash visit; int i; if (!em) return; if (!(t->settings->uvcalc_flag & UVCALC_TRANSFORM_CORRECT)) return; /* don't do this at all for non-basis shape keys, too easy to * accidentally break uv maps or vertex colors then */ if (em->bm->shapenr > 1) return; BLI_smallhash_init(&visit); for (i=0, sv = sld->sv; i < sld->totsv; sv++, i++) { BMIter fiter; BMFace *f; /* BMESH_TODO, this interpolates between vertex/loops which are not moved * (are only apart of a face attached to a slide vert), couldn't we iterate BM_LOOPS_OF_VERT * here and only iterpolate those? */ BM_ITER_ELEM (f, &fiter, sv->v, BM_FACES_OF_VERT) { BMIter liter; BMLoop *l; BMFace *f_copy; /* the copy of 'f' */ BMFace *f_copy_flip; /* the copy of 'f' or detect if we need to flip to the shorter side. */ char is_sel, is_hide; if (BLI_smallhash_haskey(&visit, (uintptr_t)f)) continue; BLI_smallhash_insert(&visit, (uintptr_t)f, NULL); /* the face attributes of the copied face will get * copied over, so its necessary to save the selection * and hidden state*/ is_sel = BM_elem_flag_test(f, BM_ELEM_SELECT); is_hide = BM_elem_flag_test(f, BM_ELEM_HIDDEN); f_copy = BLI_smallhash_lookup(&sld->origfaces, (uintptr_t)f); /* project onto copied projection face */ BM_ITER_ELEM (l, &liter, f, BM_LOOPS_OF_FACE) { f_copy_flip = f_copy; if (BM_elem_flag_test(l->e, BM_ELEM_SELECT) || BM_elem_flag_test(l->prev->e, BM_ELEM_SELECT)) { /* the loop is attached of the selected edges that are sliding */ BMLoop *l_ed_sel = l; if (!BM_elem_flag_test(l->e, BM_ELEM_SELECT)) l_ed_sel = l_ed_sel->prev; if (sld->perc < 0.0f) { if (BM_vert_in_face(l_ed_sel->radial_next->f, sv->down)) { f_copy_flip = BLI_smallhash_lookup(&sld->origfaces, (uintptr_t)l_ed_sel->radial_next->f); } } else if (sld->perc > 0.0f) { if (BM_vert_in_face(l_ed_sel->radial_next->f, sv->up)) { f_copy_flip = BLI_smallhash_lookup(&sld->origfaces, (uintptr_t)l_ed_sel->radial_next->f); } } BLI_assert(f_copy_flip != NULL); if (!f_copy_flip) { continue; /* shouldn't happen, but protection */ } } else { /* the loop is attached to only one vertex and not a selected edge, * this means we have to find a selected edges face going in the right direction * to copy from else we get bad distortion see: [#31080] */ BMIter eiter; BMEdge *e_sel; BM_ITER_ELEM (e_sel, &eiter, l->v, BM_EDGES_OF_VERT) { if (BM_elem_flag_test(e_sel, BM_ELEM_SELECT)) {; break; } } if (e_sel) { /* warning if the UV's are not contiguous, this will copy from the _wrong_ UVs * in fact whenever the face being copied is not 'f_copy' this can happen, * we could be a lot smarter about this but would need to deal with every UV channel or * add a way to mask out lauers when calling #BM_loop_interp_from_face() */ if (sld->perc < 0.0f) { if (BM_vert_in_face(e_sel->l->f, sv->down)) { f_copy_flip = BLI_smallhash_lookup(&sld->origfaces, (uintptr_t)e_sel->l->f); } else if (BM_vert_in_face(e_sel->l->radial_next->f, sv->down)) { f_copy_flip = BLI_smallhash_lookup(&sld->origfaces, (uintptr_t)e_sel->l->radial_next->f); } } else if (sld->perc > 0.0f) { if (BM_vert_in_face(e_sel->l->f, sv->up)) { f_copy_flip = BLI_smallhash_lookup(&sld->origfaces, (uintptr_t)e_sel->l->f); } else if (BM_vert_in_face(e_sel->l->radial_next->f, sv->up)) { f_copy_flip = BLI_smallhash_lookup(&sld->origfaces, (uintptr_t)e_sel->l->radial_next->f); } } } } /* only loop data, no vertex data since that contains shape keys, * and we do not want to mess up other shape keys */ BM_loop_interp_from_face(em->bm, l, f_copy_flip, FALSE, FALSE); if (final) { BM_loop_interp_multires(em->bm, l, f_copy_flip); if (f_copy != f_copy_flip) { BM_loop_interp_multires(em->bm, l, f_copy); } } } /* make sure face-attributes are correct (e.g. MTexPoly) */ BM_elem_attrs_copy(em->bm, em->bm, f_copy, f); /* restore selection and hidden flags */ BM_face_select_set(em->bm, f, is_sel); if (!is_hide) { /* this check is a workaround for bug, see note - [#30735], * without this edge can be hidden and selected */ BM_elem_hide_set(em->bm, f, is_hide); } } } BLI_smallhash_release(&visit); } void freeSlideTempFaces(SlideData *sld) { if (sld->origfaces_init) { SmallHashIter hiter; BMFace *copyf; copyf = BLI_smallhash_iternew(&sld->origfaces, &hiter, NULL); for (; copyf; copyf=BLI_smallhash_iternext(&hiter, NULL)) { BM_face_verts_kill(sld->em->bm, copyf); } BLI_smallhash_release(&sld->origfaces); sld->origfaces_init = FALSE; } } void freeSlideVerts(TransInfo *t) { SlideData *sld = t->customData; #if 0 /*BMESH_TODO*/ if (me->drawflag & ME_DRAWEXTRA_EDGELEN) { TransDataSlideVert *sv; LinkNode *look = sld->vertlist; GHash *vertgh = sld->vhash; while (look) { sv = BLI_ghash_lookup(vertgh,(EditVert*)look->link); if (sv != NULL) { sv->up->f &= !SELECT; sv->down->f &= !SELECT; } look = look->next; } } #endif if (!sld) return; freeSlideTempFaces(sld); bmesh_edit_end(sld->em->bm, BMO_OP_FLAG_UNTAN_MULTIRES); BLI_smallhash_release(&sld->vhash); MEM_freeN(sld->sv); MEM_freeN(sld); t->customData = NULL; recalcData(t); } void initEdgeSlide(TransInfo *t) { SlideData *sld; t->mode = TFM_EDGE_SLIDE; t->transform = EdgeSlide; if (!createSlideVerts(t)) { t->state= TRANS_CANCEL; return; } sld = t->customData; if (!sld) return; t->customFree = freeSlideVerts; /* set custom point first if you want value to be initialized by init */ setCustomPoints(t, &t->mouse, sld->end, sld->start); initMouseInputMode(t, &t->mouse, INPUT_CUSTOM_RATIO); t->idx_max = 0; t->num.idx_max = 0; t->snap[0] = 0.0f; t->snap[1] = 0.1f; t->snap[2] = t->snap[1] * 0.1f; t->num.increment = t->snap[1]; t->flag |= T_NO_CONSTRAINT|T_NO_PROJECT; } static int doEdgeSlide(TransInfo *t, float perc) { SlideData *sld = t->customData; TransDataSlideVert *svlist = sld->sv, *sv; float vec[3]; int i; sld->perc = perc; sv = svlist; for (i=0; itotsv; i++, sv++) { if (perc > 0.0f) { copy_v3_v3(vec, sv->upvec); mul_v3_fl(vec, perc); add_v3_v3v3(sv->v->co, sv->origvert.co, vec); } else { copy_v3_v3(vec, sv->downvec); mul_v3_fl(vec, -perc); add_v3_v3v3(sv->v->co, sv->origvert.co, vec); } } projectSVData(t, 0); return 1; } int EdgeSlide(TransInfo *t, const int UNUSED(mval[2])) { char str[50]; float final; final = t->values[0]; snapGrid(t, &final); /* only do this so out of range values are not displayed */ CLAMP(final, -1.0f, 1.0f); if (hasNumInput(&t->num)) { char c[20]; applyNumInput(&t->num, &final); outputNumInput(&(t->num), c); sprintf(str, "Edge Slide: %s", &c[0]); } else { sprintf(str, "Edge Slide: %.2f", final); } CLAMP(final, -1.0f, 1.0f); t->values[0] = final; /*do stuff here*/ if (t->customData) doEdgeSlide(t, final); else { strcpy(str, "Invalid Edge Selection"); t->state = TRANS_CANCEL; } recalcData(t); ED_area_headerprint(t->sa, str); return 1; } /* ******************** EditBone roll *************** */ void initBoneRoll(TransInfo *t) { t->mode = TFM_BONE_ROLL; t->transform = BoneRoll; initMouseInputMode(t, &t->mouse, INPUT_ANGLE); t->idx_max = 0; t->num.idx_max = 0; t->snap[0] = 0.0f; t->snap[1] = (float)((5.0/180)*M_PI); t->snap[2] = t->snap[1] * 0.2f; t->num.increment = 1.0f; t->flag |= T_NO_CONSTRAINT|T_NO_PROJECT; } int BoneRoll(TransInfo *t, const int UNUSED(mval[2])) { TransData *td = t->data; int i; char str[50]; float final; final = t->values[0]; snapGrid(t, &final); if (hasNumInput(&t->num)) { char c[20]; applyNumInput(&t->num, &final); outputNumInput(&(t->num), c); sprintf(str, "Roll: %s", &c[0]); final = DEG2RADF(final); } else { sprintf(str, "Roll: %.2f", RAD2DEGF(final)); } /* set roll values */ for (i = 0; i < t->total; i++, td++) { if (td->flag & TD_NOACTION) break; if (td->flag & TD_SKIP) continue; *(td->val) = td->ival - final; } recalcData(t); ED_area_headerprint(t->sa, str); return 1; } /* ************************** BAKE TIME ******************* */ void initBakeTime(TransInfo *t) { t->transform = BakeTime; initMouseInputMode(t, &t->mouse, INPUT_NONE); t->idx_max = 0; t->num.idx_max = 0; t->snap[0] = 0.0f; t->snap[1] = 1.0f; t->snap[2] = t->snap[1] * 0.1f; t->num.increment = t->snap[1]; } int BakeTime(TransInfo *t, const int mval[2]) { TransData *td = t->data; float time; int i; char str[50]; float fac = 0.1f; if (t->mouse.precision) { /* calculate ratio for shiftkey pos, and for total, and blend these for precision */ time= (float)(t->center2d[0] - t->mouse.precision_mval[0]) * fac; time+= 0.1f*((float)(t->center2d[0]*fac - mval[0]) -time); } else { time = (float)(t->center2d[0] - mval[0])*fac; } snapGrid(t, &time); applyNumInput(&t->num, &time); /* header print for NumInput */ if (hasNumInput(&t->num)) { char c[20]; outputNumInput(&(t->num), c); if (time >= 0.0f) sprintf(str, "Time: +%s %s", c, t->proptext); else sprintf(str, "Time: %s %s", c, t->proptext); } else { /* default header print */ if (time >= 0.0f) sprintf(str, "Time: +%.3f %s", time, t->proptext); else sprintf(str, "Time: %.3f %s", time, t->proptext); } for (i = 0 ; i < t->total; i++, td++) { if (td->flag & TD_NOACTION) break; if (td->flag & TD_SKIP) continue; if (td->val) { *td->val = td->ival + time * td->factor; if (td->ext->size && *td->val < *td->ext->size) *td->val = *td->ext->size; if (td->ext->quat && *td->val > *td->ext->quat) *td->val = *td->ext->quat; } } recalcData(t); ED_area_headerprint(t->sa, str); return 1; } /* ************************** MIRROR *************************** */ void initMirror(TransInfo *t) { t->transform = Mirror; initMouseInputMode(t, &t->mouse, INPUT_NONE); t->flag |= T_NULL_ONE; if (!t->obedit) { t->flag |= T_NO_ZERO; } } int Mirror(TransInfo *t, const int UNUSED(mval[2])) { TransData *td; float size[3], mat[3][3]; int i; char str[200]; /* * OPTIMIZATION: * This still recalcs transformation on mouse move * while it should only recalc on constraint change * */ /* if an axis has been selected */ if (t->con.mode & CON_APPLY) { size[0] = size[1] = size[2] = -1; size_to_mat3( mat,size); if (t->con.applySize) { t->con.applySize(t, NULL, mat); } sprintf(str, "Mirror%s", t->con.text); for (i = 0, td=t->data; i < t->total; i++, td++) { if (td->flag & TD_NOACTION) break; if (td->flag & TD_SKIP) continue; ElementResize(t, td, mat); } recalcData(t); ED_area_headerprint(t->sa, str); } else { size[0] = size[1] = size[2] = 1; size_to_mat3( mat,size); for (i = 0, td=t->data; i < t->total; i++, td++) { if (td->flag & TD_NOACTION) break; if (td->flag & TD_SKIP) continue; ElementResize(t, td, mat); } recalcData(t); if (t->flag & T_2D_EDIT) ED_area_headerprint(t->sa, "Select a mirror axis (X, Y)"); else ED_area_headerprint(t->sa, "Select a mirror axis (X, Y, Z)"); } return 1; } /* ************************** ALIGN *************************** */ void initAlign(TransInfo *t) { t->flag |= T_NO_CONSTRAINT; t->transform = Align; initMouseInputMode(t, &t->mouse, INPUT_NONE); } int Align(TransInfo *t, const int UNUSED(mval[2])) { TransData *td = t->data; float center[3]; int i; /* saving original center */ copy_v3_v3(center, t->center); for (i = 0 ; i < t->total; i++, td++) { float mat[3][3], invmat[3][3]; if (td->flag & TD_NOACTION) break; if (td->flag & TD_SKIP) continue; /* around local centers */ if (t->flag & (T_OBJECT|T_POSE)) { copy_v3_v3(t->center, td->center); } else { if (t->settings->selectmode & SCE_SELECT_FACE) { copy_v3_v3(t->center, td->center); } } invert_m3_m3(invmat, td->axismtx); mul_m3_m3m3(mat, t->spacemtx, invmat); ElementRotation(t, td, mat, t->around); } /* restoring original center */ copy_v3_v3(t->center, center); recalcData(t); ED_area_headerprint(t->sa, "Align"); return 1; } /* ************************** SEQ SLIDE *************************** */ void initSeqSlide(TransInfo *t) { t->transform = SeqSlide; initMouseInputMode(t, &t->mouse, INPUT_VECTOR); t->idx_max = 1; t->num.flag = 0; t->num.idx_max = t->idx_max; t->snap[0] = 0.0f; t->snap[1] = floor(t->scene->r.frs_sec / t->scene->r.frs_sec_base); t->snap[2] = 10.0f; t->num.increment = t->snap[1]; } static void headerSeqSlide(TransInfo *t, float val[2], char *str) { char tvec[60]; if (hasNumInput(&t->num)) { outputNumInput(&(t->num), tvec); } else { sprintf(&tvec[0], "%.0f, %.0f", val[0], val[1]); } sprintf(str, "Sequence Slide: %s%s", &tvec[0], t->con.text); } static void applySeqSlide(TransInfo *t, float val[2]) { TransData *td = t->data; int i; for (i = 0 ; i < t->total; i++, td++) { float tvec[2]; if (td->flag & TD_NOACTION) break; if (td->flag & TD_SKIP) continue; copy_v2_v2(tvec, val); mul_v2_fl(tvec, td->factor); td->loc[0] = td->iloc[0] + tvec[0]; td->loc[1] = td->iloc[1] + tvec[1]; } } int SeqSlide(TransInfo *t, const int UNUSED(mval[2])) { char str[200]; if (t->con.mode & CON_APPLY) { float pvec[3] = {0.0f, 0.0f, 0.0f}; float tvec[3]; t->con.applyVec(t, NULL, t->values, tvec, pvec); copy_v3_v3(t->values, tvec); } else { snapGrid(t, t->values); applyNumInput(&t->num, t->values); } t->values[0] = floor(t->values[0] + 0.5f); t->values[1] = floor(t->values[1] + 0.5f); headerSeqSlide(t, t->values, str); applySeqSlide(t, t->values); recalcData(t); ED_area_headerprint(t->sa, str); return 1; } /* ************************** ANIM EDITORS - TRANSFORM TOOLS *************************** */ /* ---------------- Special Helpers for Various Settings ------------- */ /* This function returns the snapping 'mode' for Animation Editors only * We cannot use the standard snapping due to NLA-strip scaling complexities. */ // XXX these modifier checks should be keymappable static short getAnimEdit_SnapMode(TransInfo *t) { short autosnap= SACTSNAP_OFF; if (t->spacetype == SPACE_ACTION) { SpaceAction *saction= (SpaceAction *)t->sa->spacedata.first; if (saction) autosnap= saction->autosnap; } else if (t->spacetype == SPACE_IPO) { SpaceIpo *sipo= (SpaceIpo *)t->sa->spacedata.first; if (sipo) autosnap= sipo->autosnap; } else if (t->spacetype == SPACE_NLA) { SpaceNla *snla= (SpaceNla *)t->sa->spacedata.first; if (snla) autosnap= snla->autosnap; } else { autosnap= SACTSNAP_OFF; } /* toggle autosnap on/off * - when toggling on, prefer nearest frame over 1.0 frame increments */ if (t->modifiers & MOD_SNAP_INVERT) { if (autosnap) autosnap= SACTSNAP_OFF; else autosnap= SACTSNAP_FRAME; } return autosnap; } /* This function is used for testing if an Animation Editor is displaying * its data in frames or seconds (and the data needing to be edited as such). * Returns 1 if in seconds, 0 if in frames */ static short getAnimEdit_DrawTime(TransInfo *t) { short drawtime; if (t->spacetype == SPACE_ACTION) { SpaceAction *saction= (SpaceAction *)t->sa->spacedata.first; drawtime = (saction->flag & SACTION_DRAWTIME)? 1 : 0; } else if (t->spacetype == SPACE_NLA) { SpaceNla *snla= (SpaceNla *)t->sa->spacedata.first; drawtime = (snla->flag & SNLA_DRAWTIME)? 1 : 0; } else if (t->spacetype == SPACE_IPO) { SpaceIpo *sipo= (SpaceIpo *)t->sa->spacedata.first; drawtime = (sipo->flag & SIPO_DRAWTIME)? 1 : 0; } else { drawtime = 0; } return drawtime; } /* This function is used by Animation Editor specific transform functions to do * the Snap Keyframe to Nearest Frame/Marker */ static void doAnimEdit_SnapFrame(TransInfo *t, TransData *td, TransData2D *td2d, AnimData *adt, short autosnap) { /* snap key to nearest frame? */ if (autosnap == SACTSNAP_FRAME) { #if 0 /* 'doTime' disabled for now */ const Scene *scene= t->scene; const short doTime= 0; //getAnimEdit_DrawTime(t); // NOTE: this works, but may be confusing behavior given the option's label, hence disabled const double secf= FPS; #endif double val; /* convert frame to nla-action time (if needed) */ if (adt) val= BKE_nla_tweakedit_remap(adt, *(td->val), NLATIME_CONVERT_MAP); else val= *(td->val); #if 0 /* 'doTime' disabled for now */ /* do the snapping to nearest frame/second */ if (doTime) { val= (float)( floor((val/secf) + 0.5f) * secf ); } else #endif { val= floorf(val+0.5f); } /* convert frame out of nla-action time */ if (adt) *(td->val)= BKE_nla_tweakedit_remap(adt, val, NLATIME_CONVERT_UNMAP); else *(td->val)= val; } /* snap key to nearest marker? */ else if (autosnap == SACTSNAP_MARKER) { float val; /* convert frame to nla-action time (if needed) */ if (adt) val= BKE_nla_tweakedit_remap(adt, *(td->val), NLATIME_CONVERT_MAP); else val= *(td->val); /* snap to nearest marker */ // TODO: need some more careful checks for where data comes from val= (float)ED_markers_find_nearest_marker_time(&t->scene->markers, val); /* convert frame out of nla-action time */ if (adt) *(td->val)= BKE_nla_tweakedit_remap(adt, val, NLATIME_CONVERT_UNMAP); else *(td->val)= val; } /* if the handles are to be moved too (as side-effect of keyframes moving, to keep the general effect) * offset them by the same amount so that the general angles are maintained (i.e. won't change while * handles are free-to-roam and keyframes are snap-locked) */ if ((td->flag & TD_MOVEHANDLE1) && td2d->h1) { td2d->h1[0] = td2d->ih1[0] + *td->val - td->ival; } if ((td->flag & TD_MOVEHANDLE2) && td2d->h2) { td2d->h2[0] = td2d->ih2[0] + *td->val - td->ival; } } /* ----------------- Translation ----------------------- */ void initTimeTranslate(TransInfo *t) { /* this tool is only really available in the Action Editor... */ if (!ELEM(t->spacetype, SPACE_ACTION, SPACE_SEQ)) { t->state = TRANS_CANCEL; } t->mode = TFM_TIME_TRANSLATE; t->transform = TimeTranslate; initMouseInputMode(t, &t->mouse, INPUT_NONE); /* num-input has max of (n-1) */ t->idx_max = 0; t->num.flag = 0; t->num.idx_max = t->idx_max; /* initialize snap like for everything else */ t->snap[0] = 0.0f; t->snap[1] = t->snap[2] = 1.0f; t->num.increment = t->snap[1]; } static void headerTimeTranslate(TransInfo *t, char *str) { char tvec[60]; /* if numeric input is active, use results from that, otherwise apply snapping to result */ if (hasNumInput(&t->num)) { outputNumInput(&(t->num), tvec); } else { const Scene *scene = t->scene; const short autosnap= getAnimEdit_SnapMode(t); const short doTime = getAnimEdit_DrawTime(t); const double secf= FPS; float val = t->values[0]; /* apply snapping + frame->seconds conversions */ if (autosnap == SACTSNAP_STEP) { if (doTime) val= floorf((double)val/secf + 0.5f); else val= floorf(val + 0.5f); } else { if (doTime) val= (float)((double)val / secf); } if (autosnap == SACTSNAP_FRAME) sprintf(&tvec[0], "%d.00 (%.4f)", (int)val, val); else sprintf(&tvec[0], "%.4f", val); } sprintf(str, "DeltaX: %s", &tvec[0]); } static void applyTimeTranslate(TransInfo *t, float UNUSED(sval)) { TransData *td = t->data; TransData2D *td2d = t->data2d; Scene *scene = t->scene; int i; const short doTime= getAnimEdit_DrawTime(t); const double secf= FPS; const short autosnap= getAnimEdit_SnapMode(t); float deltax, val /* , valprev */; /* it doesn't matter whether we apply to t->data or t->data2d, but t->data2d is more convenient */ for (i = 0 ; i < t->total; i++, td++, td2d++) { /* it is assumed that td->extra is a pointer to the AnimData, * whose active action is where this keyframe comes from * (this is only valid when not in NLA) */ AnimData *adt= (t->spacetype != SPACE_NLA) ? td->extra : NULL; /* valprev = *td->val; */ /* UNUSED */ /* check if any need to apply nla-mapping */ if (adt && t->spacetype != SPACE_SEQ) { deltax = t->values[0]; if (autosnap == SACTSNAP_STEP) { if (doTime) deltax= (float)( floor((deltax/secf) + 0.5f) * secf ); else deltax= (float)( floor(deltax + 0.5f) ); } val = BKE_nla_tweakedit_remap(adt, td->ival, NLATIME_CONVERT_MAP); val += deltax; *(td->val) = BKE_nla_tweakedit_remap(adt, val, NLATIME_CONVERT_UNMAP); } else { deltax = val = t->values[0]; if (autosnap == SACTSNAP_STEP) { if (doTime) val= (float)( floor((deltax/secf) + 0.5f) * secf ); else val= (float)( floor(val + 0.5f) ); } *(td->val) = td->ival + val; } /* apply nearest snapping */ doAnimEdit_SnapFrame(t, td, td2d, adt, autosnap); } } int TimeTranslate(TransInfo *t, const int mval[2]) { View2D *v2d = (View2D *)t->view; float cval[2], sval[2]; char str[200]; /* calculate translation amount from mouse movement - in 'time-grid space' */ UI_view2d_region_to_view(v2d, mval[0], mval[0], &cval[0], &cval[1]); UI_view2d_region_to_view(v2d, t->imval[0], t->imval[0], &sval[0], &sval[1]); /* we only need to calculate effect for time (applyTimeTranslate only needs that) */ t->values[0] = cval[0] - sval[0]; /* handle numeric-input stuff */ t->vec[0] = t->values[0]; applyNumInput(&t->num, &t->vec[0]); t->values[0] = t->vec[0]; headerTimeTranslate(t, str); applyTimeTranslate(t, sval[0]); recalcData(t); ED_area_headerprint(t->sa, str); return 1; } /* ----------------- Time Slide ----------------------- */ void initTimeSlide(TransInfo *t) { /* this tool is only really available in the Action Editor... */ if (t->spacetype == SPACE_ACTION) { SpaceAction *saction= (SpaceAction *)t->sa->spacedata.first; /* set flag for drawing stuff */ saction->flag |= SACTION_MOVING; } else { t->state = TRANS_CANCEL; } t->mode = TFM_TIME_SLIDE; t->transform = TimeSlide; t->flag |= T_FREE_CUSTOMDATA; initMouseInputMode(t, &t->mouse, INPUT_NONE); /* num-input has max of (n-1) */ t->idx_max = 0; t->num.flag = 0; t->num.idx_max = t->idx_max; /* initialize snap like for everything else */ t->snap[0] = 0.0f; t->snap[1] = t->snap[2] = 1.0f; t->num.increment = t->snap[1]; } static void headerTimeSlide(TransInfo *t, float sval, char *str) { char tvec[60]; if (hasNumInput(&t->num)) { outputNumInput(&(t->num), tvec); } else { float minx= *((float *)(t->customData)); float maxx= *((float *)(t->customData) + 1); float cval= t->values[0]; float val; val= 2.0f*(cval-sval) / (maxx-minx); CLAMP(val, -1.0f, 1.0f); sprintf(&tvec[0], "%.4f", val); } sprintf(str, "TimeSlide: %s", &tvec[0]); } static void applyTimeSlide(TransInfo *t, float sval) { TransData *td = t->data; int i; float minx= *((float *)(t->customData)); float maxx= *((float *)(t->customData) + 1); /* set value for drawing black line */ if (t->spacetype == SPACE_ACTION) { SpaceAction *saction= (SpaceAction *)t->sa->spacedata.first; float cvalf = t->values[0]; saction->timeslide= cvalf; } /* it doesn't matter whether we apply to t->data or t->data2d, but t->data2d is more convenient */ for (i = 0 ; i < t->total; i++, td++) { /* it is assumed that td->extra is a pointer to the AnimData, * whose active action is where this keyframe comes from * (this is only valid when not in NLA) */ AnimData *adt= (t->spacetype != SPACE_NLA) ? td->extra : NULL; float cval = t->values[0]; /* apply NLA-mapping to necessary values */ if (adt) cval= BKE_nla_tweakedit_remap(adt, cval, NLATIME_CONVERT_UNMAP); /* only apply to data if in range */ if ((sval > minx) && (sval < maxx)) { float cvalc= CLAMPIS(cval, minx, maxx); float timefac; /* left half? */ if (td->ival < sval) { timefac= (sval - td->ival) / (sval - minx); *(td->val)= cvalc - timefac * (cvalc - minx); } else { timefac= (td->ival - sval) / (maxx - sval); *(td->val)= cvalc + timefac * (maxx - cvalc); } } } } int TimeSlide(TransInfo *t, const int mval[2]) { View2D *v2d = (View2D *)t->view; float cval[2], sval[2]; float minx= *((float *)(t->customData)); float maxx= *((float *)(t->customData) + 1); char str[200]; /* calculate mouse co-ordinates */ UI_view2d_region_to_view(v2d, mval[0], mval[1], &cval[0], &cval[1]); UI_view2d_region_to_view(v2d, t->imval[0], t->imval[1], &sval[0], &sval[1]); /* t->values[0] stores cval[0], which is the current mouse-pointer location (in frames) */ // XXX Need to be able to repeat this t->values[0] = cval[0]; /* handle numeric-input stuff */ t->vec[0] = 2.0f*(cval[0]-sval[0]) / (maxx-minx); applyNumInput(&t->num, &t->vec[0]); t->values[0] = (maxx-minx) * t->vec[0] / 2.0f + sval[0]; headerTimeSlide(t, sval[0], str); applyTimeSlide(t, sval[0]); recalcData(t); ED_area_headerprint(t->sa, str); return 1; } /* ----------------- Scaling ----------------------- */ void initTimeScale(TransInfo *t) { int center[2]; /* this tool is only really available in the Action Editor * AND NLA Editor (for strip scaling) */ if (ELEM(t->spacetype, SPACE_ACTION, SPACE_NLA) == 0) { t->state = TRANS_CANCEL; } t->mode = TFM_TIME_SCALE; t->transform = TimeScale; /* recalculate center2d to use CFRA and mouse Y, since that's * what is used in time scale */ t->center[0] = t->scene->r.cfra; projectIntView(t, t->center, center); center[1] = t->imval[1]; /* force a reinit with the center2d used here */ initMouseInput(t, &t->mouse, center, t->imval); initMouseInputMode(t, &t->mouse, INPUT_SPRING_FLIP); t->flag |= T_NULL_ONE; t->num.flag |= NUM_NULL_ONE; /* num-input has max of (n-1) */ t->idx_max = 0; t->num.flag = 0; t->num.idx_max = t->idx_max; /* initialize snap like for everything else */ t->snap[0] = 0.0f; t->snap[1] = t->snap[2] = 1.0f; t->num.increment = t->snap[1]; } static void headerTimeScale(TransInfo *t, char *str) { char tvec[60]; if (hasNumInput(&t->num)) outputNumInput(&(t->num), tvec); else sprintf(&tvec[0], "%.4f", t->values[0]); sprintf(str, "ScaleX: %s", &tvec[0]); } static void applyTimeScale(TransInfo *t) { Scene *scene = t->scene; TransData *td = t->data; TransData2D *td2d = t->data2d; int i; const short autosnap= getAnimEdit_SnapMode(t); const short doTime= getAnimEdit_DrawTime(t); const double secf= FPS; for (i = 0 ; i < t->total; i++, td++, td2d++) { /* it is assumed that td->extra is a pointer to the AnimData, * whose active action is where this keyframe comes from * (this is only valid when not in NLA) */ AnimData *adt= (t->spacetype != SPACE_NLA) ? td->extra : NULL; float startx= CFRA; float fac= t->values[0]; if (autosnap == SACTSNAP_STEP) { if (doTime) fac= (float)( floor(fac/secf + 0.5f) * secf ); else fac= (float)( floor(fac + 0.5f) ); } /* check if any need to apply nla-mapping */ if (adt) startx= BKE_nla_tweakedit_remap(adt, startx, NLATIME_CONVERT_UNMAP); /* now, calculate the new value */ *(td->val) = td->ival - startx; *(td->val) *= fac; *(td->val) += startx; /* apply nearest snapping */ doAnimEdit_SnapFrame(t, td, td2d, adt, autosnap); } } int TimeScale(TransInfo *t, const int UNUSED(mval[2])) { char str[200]; /* handle numeric-input stuff */ t->vec[0] = t->values[0]; applyNumInput(&t->num, &t->vec[0]); t->values[0] = t->vec[0]; headerTimeScale(t, str); applyTimeScale(t); recalcData(t); ED_area_headerprint(t->sa, str); return 1; } /* ************************************ */ void BIF_TransformSetUndo(const char *UNUSED(str)) { // TRANSFORM_FIX_ME //Trans.undostr= str; }