/* SPDX-License-Identifier: GPL-2.0-or-later * Copyright 2001-2002 NaN Holding BV. All rights reserved. */ /** \file * \ingroup edtransform */ #include #include #include #include #include "DNA_object_types.h" #include "DNA_scene_types.h" #include "DNA_screen_types.h" #include "DNA_space_types.h" #include "DNA_view3d_types.h" #include "GPU_immediate.h" #include "GPU_matrix.h" #include "GPU_state.h" #include "BLI_math.h" #include "BLI_rect.h" #include "BLI_string.h" #include "BLI_utildefines.h" #include "BKE_context.h" #include "ED_view3d.h" #include "BLT_translation.h" #include "UI_resources.h" #include "transform.h" #include "transform_orientations.h" #include "transform_snap.h" /* Own include. */ #include "transform_constraints.h" static void drawObjectConstraint(TransInfo *t); /* -------------------------------------------------------------------- */ /** \name Internal Utilities * \{ */ static void projection_matrix_calc(const TransInfo *t, float r_pmtx[3][3]) { unit_m3(r_pmtx); if (!(t->con.mode & CON_AXIS0)) { zero_v3(r_pmtx[0]); } if (!(t->con.mode & CON_AXIS1)) { zero_v3(r_pmtx[1]); } if (!(t->con.mode & CON_AXIS2)) { zero_v3(r_pmtx[2]); } float mat[3][3]; mul_m3_m3m3(mat, r_pmtx, t->spacemtx_inv); mul_m3_m3m3(r_pmtx, t->spacemtx, mat); } static void view_vector_calc(const TransInfo *t, const float focus[3], float r_vec[3]) { if (t->persp != RV3D_ORTHO) { sub_v3_v3v3(r_vec, t->viewinv[3], focus); } else { copy_v3_v3(r_vec, t->viewinv[2]); } normalize_v3(r_vec); } /* ************************** CONSTRAINTS ************************* */ #define CONSTRAIN_EPSILON 0.0001f static void constraint_plane_calc(const TransInfo *t, float r_plane[4]) { const float *constraint_vector[2]; int n = 0; for (int i = 0; i < 3; i++) { if (t->con.mode & (CON_AXIS0 << i)) { constraint_vector[n++] = t->spacemtx[i]; if (n == 2) { break; } } } BLI_assert(n == 2); cross_v3_v3v3(r_plane, constraint_vector[0], constraint_vector[1]); normalize_v3(r_plane); r_plane[3] = -dot_v3v3(r_plane, t->center_global); } void constraintNumInput(TransInfo *t, float vec[3]) { int mode = t->con.mode; if (mode & CON_APPLY) { float nval = (t->flag & T_NULL_ONE) ? 1.0f : 0.0f; const int dims = getConstraintSpaceDimension(t); if (dims == 2) { int axis = mode & (CON_AXIS0 | CON_AXIS1 | CON_AXIS2); if (axis == (CON_AXIS0 | CON_AXIS1)) { /* vec[0] = vec[0]; */ /* same */ /* vec[1] = vec[1]; */ /* same */ vec[2] = nval; } else if (axis == (CON_AXIS1 | CON_AXIS2)) { vec[2] = vec[1]; vec[1] = vec[0]; vec[0] = nval; } else if (axis == (CON_AXIS0 | CON_AXIS2)) { /* vec[0] = vec[0]; */ /* same */ vec[2] = vec[1]; vec[1] = nval; } } else if (dims == 1) { if (mode & CON_AXIS0) { /* vec[0] = vec[0]; */ /* same */ vec[1] = nval; vec[2] = nval; } else if (mode & CON_AXIS1) { vec[1] = vec[0]; vec[0] = nval; vec[2] = nval; } else if (mode & CON_AXIS2) { vec[2] = vec[0]; vec[0] = nval; vec[1] = nval; } } } } static void viewAxisCorrectCenter(const TransInfo *t, float t_con_center[3]) { if (t->spacetype == SPACE_VIEW3D) { // View3D *v3d = t->area->spacedata.first; const float min_dist = 1.0f; /* v3d->clip_start; */ float dir[3]; float l; sub_v3_v3v3(dir, t_con_center, t->viewinv[3]); if (dot_v3v3(dir, t->viewinv[2]) < 0.0f) { negate_v3(dir); } project_v3_v3v3(dir, dir, t->viewinv[2]); l = len_v3(dir); if (l < min_dist) { float diff[3]; normalize_v3_v3_length(diff, t->viewinv[2], min_dist - l); sub_v3_v3(t_con_center, diff); } } } /** * Axis calculation taking the view into account, correcting view-aligned axis. */ static void axisProjection(const TransInfo *t, const float axis[3], const float in[3], float out[3]) { float norm[3], vec[3], factor, angle; float t_con_center[3]; if (is_zero_v3(in)) { return; } copy_v3_v3(t_con_center, t->center_global); /* checks for center being too close to the view center */ viewAxisCorrectCenter(t, t_con_center); angle = fabsf(angle_v3v3(axis, t->viewinv[2])); if (angle > (float)M_PI_2) { angle = (float)M_PI - angle; } /* For when view is parallel to constraint... will cause NaNs otherwise * So we take vertical motion in 3D space and apply it to the * constraint axis. Nice for camera grab + MMB */ if (angle < DEG2RADF(5.0f)) { project_v3_v3v3(vec, in, t->viewinv[1]); factor = dot_v3v3(t->viewinv[1], vec) * 2.0f; /* Since camera distance is quite relative, use quadratic relationship. * holding shift can compensate. */ if (factor < 0.0f) { factor *= -factor; } else { factor *= factor; } /* -factor makes move down going backwards */ normalize_v3_v3_length(out, axis, -factor); } else { float v[3]; float norm_center[3]; float plane[3]; view_vector_calc(t, t_con_center, norm_center); cross_v3_v3v3(plane, norm_center, axis); project_v3_v3v3(vec, in, plane); sub_v3_v3v3(vec, in, vec); add_v3_v3v3(v, vec, t_con_center); view_vector_calc(t, v, norm); /* give arbitrary large value if projection is impossible */ factor = dot_v3v3(axis, norm); if (1.0f - fabsf(factor) < 0.0002f) { copy_v3_v3(out, axis); if (factor > 0) { mul_v3_fl(out, 1000000000.0f); } else { mul_v3_fl(out, -1000000000.0f); } } else { /* Use ray-ray intersection instead of line-line because this gave * precision issues adding small values to large numbers. */ float mul; if (isect_ray_ray_v3(t_con_center, axis, v, norm, &mul, NULL)) { mul_v3_v3fl(out, axis, mul); } else { /* In practice this should never fail. */ BLI_assert(0); } /* possible some values become nan when * viewpoint and object are both zero */ if (!isfinite(out[0])) { out[0] = 0.0f; } if (!isfinite(out[1])) { out[1] = 0.0f; } if (!isfinite(out[2])) { out[2] = 0.0f; } } } } /** * Snap to the intersection between the edge direction and the constraint plane. */ static void constraint_snap_plane_to_edge(const TransInfo *t, const float plane[4], float r_out[3]) { float lambda; const float *edge_snap_point = t->tsnap.snapPoint; const float *edge_dir = t->tsnap.snapNormal; bool is_aligned = fabsf(dot_v3v3(edge_dir, plane)) < CONSTRAIN_EPSILON; if (!is_aligned && isect_ray_plane_v3(edge_snap_point, edge_dir, plane, &lambda, false)) { madd_v3_v3v3fl(r_out, edge_snap_point, edge_dir, lambda); sub_v3_v3(r_out, t->tsnap.snapTarget); } } static void UNUSED_FUNCTION(constraint_snap_plane_to_face(const TransInfo *t, const float plane[4], float r_out[3])) { float face_plane[4], isect_orig[3], isect_dir[3]; const float *face_snap_point = t->tsnap.snapPoint; const float *face_normal = t->tsnap.snapNormal; plane_from_point_normal_v3(face_plane, face_snap_point, face_normal); bool is_aligned = fabsf(dot_v3v3(plane, face_plane)) > (1.0f - CONSTRAIN_EPSILON); if (!is_aligned && isect_plane_plane_v3(plane, face_plane, isect_orig, isect_dir)) { closest_to_ray_v3(r_out, face_snap_point, isect_orig, isect_dir); sub_v3_v3(r_out, t->tsnap.snapTarget); } } void transform_constraint_snap_axis_to_edge(const TransInfo *t, const float axis[3], float r_out[3]) { float lambda; const float *edge_snap_point = t->tsnap.snapPoint; const float *edge_dir = t->tsnap.snapNormal; bool is_aligned = fabsf(dot_v3v3(axis, edge_dir)) > (1.0f - CONSTRAIN_EPSILON); if (!is_aligned && isect_ray_ray_v3(t->tsnap.snapTarget, axis, edge_snap_point, edge_dir, &lambda, NULL)) { mul_v3_v3fl(r_out, axis, lambda); } } void transform_constraint_snap_axis_to_face(const TransInfo *t, const float axis[3], float r_out[3]) { float lambda; float face_plane[4]; const float *face_snap_point = t->tsnap.snapPoint; const float *face_normal = t->tsnap.snapNormal; plane_from_point_normal_v3(face_plane, face_snap_point, face_normal); bool is_aligned = fabsf(dot_v3v3(axis, face_plane)) < CONSTRAIN_EPSILON; if (!is_aligned && isect_ray_plane_v3(t->tsnap.snapTarget, axis, face_plane, &lambda, false)) { mul_v3_v3fl(r_out, axis, lambda); } } /** * Return true if the 2x axis are both aligned when projected into the view. * In this case, we can't usefully project the cursor onto the plane. */ static bool isPlaneProjectionViewAligned(const TransInfo *t, const float plane[4]) { const float eps = 0.001f; float view_to_plane[3]; view_vector_calc(t, t->center_global, view_to_plane); float factor = dot_v3v3(plane, view_to_plane); return fabsf(factor) < eps; } static void planeProjection(const TransInfo *t, const float in[3], float out[3]) { float vec[3], factor, norm[3]; add_v3_v3v3(vec, in, t->center_global); view_vector_calc(t, vec, norm); sub_v3_v3v3(vec, out, in); factor = dot_v3v3(vec, norm); if (factor == 0.0f) { return; /* prevent divide by zero */ } factor = dot_v3v3(vec, vec) / factor; copy_v3_v3(vec, norm); mul_v3_fl(vec, factor); add_v3_v3v3(out, in, vec); } static short transform_orientation_or_default(const TransInfo *t) { short orientation = t->orient[t->orient_curr].type; if (orientation == V3D_ORIENT_CUSTOM_MATRIX) { /* Use the real value of the "orient_type". */ orientation = t->orient[O_DEFAULT].type; } return orientation; } static const float (*transform_object_axismtx_get(const TransInfo *t, const TransDataContainer *UNUSED(tc), const TransData *td))[3] { if (transform_orientation_or_default(t) == V3D_ORIENT_GIMBAL) { BLI_assert(t->orient_type_mask & (1 << V3D_ORIENT_GIMBAL)); if (t->options & (CTX_POSE_BONE | CTX_OBJECT)) { return td->ext->axismtx_gimbal; } } return td->axismtx; } /** * Generic callback for constant spatial constraints applied to linear motion * * The `in` vector in projected into the constrained space and then further * projected along the view vector. * (in perspective mode, the view vector is relative to the position on screen) */ static void applyAxisConstraintVec(const TransInfo *t, const TransDataContainer *UNUSED(tc), const TransData *td, const float in[3], float out[3]) { copy_v3_v3(out, in); if (!td && t->con.mode & CON_APPLY) { bool is_snap_to_point = false, is_snap_to_edge = false, is_snap_to_face = false; mul_m3_v3(t->con.pmtx, out); if (activeSnap(t)) { if (validSnap(t)) { is_snap_to_edge = (t->tsnap.snapElem & SCE_SNAP_MODE_EDGE) != 0; is_snap_to_face = (t->tsnap.snapElem & SCE_SNAP_MODE_FACE) != 0; is_snap_to_point = !is_snap_to_edge && !is_snap_to_face; } else if (t->tsnap.snapElem & SCE_SNAP_MODE_GRID) { is_snap_to_point = true; } } /* With snap points, a projection is alright, no adjustments needed. */ if (!is_snap_to_point || is_snap_to_edge || is_snap_to_face) { const int dims = getConstraintSpaceDimension(t); if (dims == 2) { if (!is_zero_v3(out)) { float plane[4]; constraint_plane_calc(t, plane); if (is_snap_to_edge) { constraint_snap_plane_to_edge(t, plane, out); } else if (is_snap_to_face) { /* Disabled, as it has not proven to be really useful. (See T82386). */ // constraint_snap_plane_to_face(t, plane, out); } else { /* View alignment correction. */ if (!isPlaneProjectionViewAligned(t, plane)) { planeProjection(t, in, out); } } } } else if (dims == 1) { float c[3]; if (t->con.mode & CON_AXIS0) { copy_v3_v3(c, t->spacemtx[0]); } else if (t->con.mode & CON_AXIS1) { copy_v3_v3(c, t->spacemtx[1]); } else { BLI_assert(t->con.mode & CON_AXIS2); copy_v3_v3(c, t->spacemtx[2]); } if (is_snap_to_edge) { transform_constraint_snap_axis_to_edge(t, c, out); } else if (is_snap_to_face) { transform_constraint_snap_axis_to_face(t, c, out); } else { /* View alignment correction. */ axisProjection(t, c, in, out); } } } } } /** * Generic callback for object based spatial constraints applied to linear motion * * At first, the following is applied without orientation * The IN vector in projected into the constrained space and then further * projected along the view vector. * (in perspective mode, the view vector is relative to the position on screen). * * Further down, that vector is mapped to each data's space. */ static void applyObjectConstraintVec(const TransInfo *t, const TransDataContainer *tc, const TransData *td, const float in[3], float out[3]) { if (!td) { applyAxisConstraintVec(t, tc, td, in, out); } else { /* Specific TransData's space. */ copy_v3_v3(out, in); if (t->con.mode & CON_APPLY) { mul_m3_v3(t->spacemtx_inv, out); const float(*axismtx)[3] = transform_object_axismtx_get(t, tc, td); mul_m3_v3(axismtx, out); if (t->flag & T_EDIT) { mul_m3_v3(tc->mat3_unit, out); } } } } /** * Generic callback for constant spatial constraints applied to resize motion. */ static void applyAxisConstraintSize(const TransInfo *t, const TransDataContainer *UNUSED(tc), const TransData *td, float r_smat[3][3]) { if (!td && t->con.mode & CON_APPLY) { float tmat[3][3]; if (!(t->con.mode & CON_AXIS0)) { r_smat[0][0] = 1.0f; } if (!(t->con.mode & CON_AXIS1)) { r_smat[1][1] = 1.0f; } if (!(t->con.mode & CON_AXIS2)) { r_smat[2][2] = 1.0f; } mul_m3_m3m3(tmat, r_smat, t->spacemtx_inv); mul_m3_m3m3(r_smat, t->spacemtx, tmat); } } /** * Callback for object based spatial constraints applied to resize motion. */ static void applyObjectConstraintSize(const TransInfo *t, const TransDataContainer *tc, const TransData *td, float r_smat[3][3]) { if (td && t->con.mode & CON_APPLY) { float tmat[3][3]; float imat[3][3]; const float(*axismtx)[3] = transform_object_axismtx_get(t, tc, td); invert_m3_m3(imat, axismtx); if (!(t->con.mode & CON_AXIS0)) { r_smat[0][0] = 1.0f; } if (!(t->con.mode & CON_AXIS1)) { r_smat[1][1] = 1.0f; } if (!(t->con.mode & CON_AXIS2)) { r_smat[2][2] = 1.0f; } mul_m3_m3m3(tmat, r_smat, imat); if (t->flag & T_EDIT) { mul_m3_m3m3(r_smat, tc->mat3_unit, r_smat); } mul_m3_m3m3(r_smat, axismtx, tmat); } } static void constraints_rotation_impl(const TransInfo *t, const float axismtx[3][3], float r_axis[3], float *r_angle) { BLI_assert(t->con.mode & CON_APPLY); int mode = t->con.mode & (CON_AXIS0 | CON_AXIS1 | CON_AXIS2); switch (mode) { case CON_AXIS0: case (CON_AXIS1 | CON_AXIS2): copy_v3_v3(r_axis, axismtx[0]); break; case CON_AXIS1: case (CON_AXIS0 | CON_AXIS2): copy_v3_v3(r_axis, axismtx[1]); break; case CON_AXIS2: case (CON_AXIS0 | CON_AXIS1): copy_v3_v3(r_axis, axismtx[2]); break; } /* don't flip axis if asked to or if num input */ if (r_angle && !((mode & CON_NOFLIP) || hasNumInput(&t->num) || (t->flag & T_INPUT_IS_VALUES_FINAL))) { float view_vector[3]; view_vector_calc(t, t->center_global, view_vector); if (dot_v3v3(r_axis, view_vector) > 0.0f) { *r_angle = -(*r_angle); } } } /** * Generic callback for constant spatial constraints applied to rotations * * The rotation axis is copied into `vec`. * * In the case of single axis constraints, the rotation axis is directly the one constrained to. * For planar constraints (2 axis), the rotation axis is the normal of the plane. * * The following only applies when #CON_NOFLIP is not set. * The vector is then modified to always point away from the screen (in global space) * This insures that the rotation is always logically following the mouse. * (ie: not doing counterclockwise rotations when the mouse moves clockwise). */ static void applyAxisConstraintRot(const TransInfo *t, const TransDataContainer *UNUSED(tc), const TransData *td, float r_axis[3], float *r_angle) { if (!td && t->con.mode & CON_APPLY) { constraints_rotation_impl(t, t->spacemtx, r_axis, r_angle); } } /** * Callback for object based spatial constraints applied to rotations * * The rotation axis is copied into `vec`. * * In the case of single axis constraints, the rotation axis is directly the one constrained to. * For planar constraints (2 axis), the rotation axis is the normal of the plane. * * The following only applies when #CON_NOFLIP is not set. * The vector is then modified to always point away from the screen (in global space) * This insures that the rotation is always logically following the mouse. * (ie: not doing counterclockwise rotations when the mouse moves clockwise). */ static void applyObjectConstraintRot(const TransInfo *t, const TransDataContainer *tc, const TransData *td, float r_axis[3], float *r_angle) { if (t->con.mode & CON_APPLY) { float tmp_axismtx[3][3]; const float(*axismtx)[3]; /* on setup call, use first object */ if (td == NULL) { BLI_assert(tc == NULL); tc = TRANS_DATA_CONTAINER_FIRST_OK(t); td = tc->data; } if (t->flag & T_EDIT) { mul_m3_m3m3(tmp_axismtx, tc->mat3_unit, td->axismtx); axismtx = tmp_axismtx; } else { axismtx = transform_object_axismtx_get(t, tc, td); } constraints_rotation_impl(t, axismtx, r_axis, r_angle); } } /** \} */ /* -------------------------------------------------------------------- */ /** \name Internal Setup Calls * \{ */ void setConstraint(TransInfo *t, int mode, const char text[]) { BLI_strncpy(t->con.text + 1, text, sizeof(t->con.text) - 1); t->con.mode = mode; projection_matrix_calc(t, t->con.pmtx); startConstraint(t); t->con.drawExtra = NULL; t->con.applyVec = applyAxisConstraintVec; t->con.applySize = applyAxisConstraintSize; t->con.applyRot = applyAxisConstraintRot; t->redraw = TREDRAW_HARD; } void setAxisMatrixConstraint(TransInfo *t, int mode, const char text[]) { BLI_strncpy(t->con.text + 1, text, sizeof(t->con.text) - 1); t->con.mode = mode; projection_matrix_calc(t, t->con.pmtx); startConstraint(t); t->con.drawExtra = drawObjectConstraint; t->con.applyVec = applyObjectConstraintVec; t->con.applySize = applyObjectConstraintSize; t->con.applyRot = applyObjectConstraintRot; t->redraw = TREDRAW_HARD; } void setLocalConstraint(TransInfo *t, int mode, const char text[]) { if ((t->flag & T_EDIT) || t->data_len_all == 1) { /* Although in edit-mode each object has its local space, use the * orientation of the active object. */ setConstraint(t, mode, text); } else { setAxisMatrixConstraint(t, mode, text); } } void setUserConstraint(TransInfo *t, int mode, const char ftext[]) { char text[256]; const short orientation = transform_orientation_or_default(t); const char *spacename = transform_orientations_spacename_get(t, orientation); BLI_snprintf(text, sizeof(text), ftext, spacename); switch (orientation) { case V3D_ORIENT_LOCAL: case V3D_ORIENT_GIMBAL: setLocalConstraint(t, mode, text); break; case V3D_ORIENT_NORMAL: if (checkUseAxisMatrix(t)) { setAxisMatrixConstraint(t, mode, text); break; } ATTR_FALLTHROUGH; case V3D_ORIENT_GLOBAL: case V3D_ORIENT_VIEW: case V3D_ORIENT_CURSOR: case V3D_ORIENT_CUSTOM_MATRIX: case V3D_ORIENT_CUSTOM: default: { setConstraint(t, mode, text); break; } } t->con.mode |= CON_USER; } /** \} */ /* -------------------------------------------------------------------- */ /** \name Drawing Constraints * \{ */ void drawConstraint(TransInfo *t) { TransCon *tc = &(t->con); if (!ELEM(t->spacetype, SPACE_VIEW3D, SPACE_IMAGE, SPACE_NODE, SPACE_SEQ)) { return; } if (!(tc->mode & CON_APPLY)) { return; } if (t->flag & T_NO_CONSTRAINT) { return; } if (tc->drawExtra) { tc->drawExtra(t); } else { if (tc->mode & CON_SELECT) { float vec[3]; convertViewVec(t, vec, (t->mval[0] - t->con.imval[0]), (t->mval[1] - t->con.imval[1])); add_v3_v3(vec, t->center_global); drawLine(t, t->center_global, t->spacemtx[0], 'X', 0); drawLine(t, t->center_global, t->spacemtx[1], 'Y', 0); drawLine(t, t->center_global, t->spacemtx[2], 'Z', 0); eGPUDepthTest depth_test_enabled = GPU_depth_test_get(); if (depth_test_enabled) { GPU_depth_test(GPU_DEPTH_NONE); } const uint shdr_pos = GPU_vertformat_attr_add( immVertexFormat(), "pos", GPU_COMP_F32, 3, GPU_FETCH_FLOAT); immBindBuiltinProgram(GPU_SHADER_3D_LINE_DASHED_UNIFORM_COLOR); float viewport_size[4]; GPU_viewport_size_get_f(viewport_size); immUniform2f("viewport_size", viewport_size[2], viewport_size[3]); immUniform1i("colors_len", 0); /* "simple" mode */ immUniformColor4f(1.0f, 1.0f, 1.0f, 1.0f); immUniform1f("dash_width", 2.0f); immUniform1f("dash_factor", 0.5f); immBegin(GPU_PRIM_LINES, 2); immVertex3fv(shdr_pos, t->center_global); immVertex3fv(shdr_pos, vec); immEnd(); immUnbindProgram(); if (depth_test_enabled) { GPU_depth_test(GPU_DEPTH_LESS_EQUAL); } } if (tc->mode & CON_AXIS0) { drawLine(t, t->center_global, t->spacemtx[0], 'X', DRAWLIGHT); } if (tc->mode & CON_AXIS1) { drawLine(t, t->center_global, t->spacemtx[1], 'Y', DRAWLIGHT); } if (tc->mode & CON_AXIS2) { drawLine(t, t->center_global, t->spacemtx[2], 'Z', DRAWLIGHT); } } } void drawPropCircle(const struct bContext *C, TransInfo *t) { if (t->flag & T_PROP_EDIT) { RegionView3D *rv3d = CTX_wm_region_view3d(C); float tmat[4][4], imat[4][4]; if (t->spacetype == SPACE_VIEW3D && rv3d != NULL) { copy_m4_m4(tmat, rv3d->viewmat); invert_m4_m4(imat, tmat); } else { unit_m4(tmat); unit_m4(imat); } GPU_matrix_push(); if (t->spacetype == SPACE_VIEW3D) { /* pass */ } else if (t->spacetype == SPACE_IMAGE) { GPU_matrix_scale_2f(1.0f / t->aspect[0], 1.0f / t->aspect[1]); } else if (ELEM(t->spacetype, SPACE_GRAPH, SPACE_ACTION)) { /* only scale y */ rcti *mask = &t->region->v2d.mask; rctf *datamask = &t->region->v2d.cur; float xsize = BLI_rctf_size_x(datamask); float ysize = BLI_rctf_size_y(datamask); float xmask = BLI_rcti_size_x(mask); float ymask = BLI_rcti_size_y(mask); GPU_matrix_scale_2f(1.0f, (ysize / xsize) * (xmask / ymask)); } eGPUDepthTest depth_test_enabled = GPU_depth_test_get(); if (depth_test_enabled) { GPU_depth_test(GPU_DEPTH_NONE); } uint pos = GPU_vertformat_attr_add(immVertexFormat(), "pos", GPU_COMP_F32, 3, GPU_FETCH_FLOAT); immBindBuiltinProgram(GPU_SHADER_3D_POLYLINE_UNIFORM_COLOR); float viewport[4]; GPU_viewport_size_get_f(viewport); GPU_blend(GPU_BLEND_ALPHA); immUniform2fv("viewportSize", &viewport[2]); immUniform1f("lineWidth", 3.0f * U.pixelsize); immUniformThemeColorShadeAlpha(TH_GRID, -20, 255); imm_drawcircball(t->center_global, t->prop_size, imat, pos); immUniform1f("lineWidth", 1.0f * U.pixelsize); immUniformThemeColorShadeAlpha(TH_GRID, 20, 255); imm_drawcircball(t->center_global, t->prop_size, imat, pos); immUnbindProgram(); if (depth_test_enabled) { GPU_depth_test(GPU_DEPTH_LESS_EQUAL); } GPU_matrix_pop(); } } static void drawObjectConstraint(TransInfo *t) { /* Draw the first one lighter because that's the one who controls the others. * Meaning the transformation is projected on that one and just copied on the others * constraint space. * In a nutshell, the object with light axis is controlled by the user and the others follow. * Without drawing the first light, users have little clue what they are doing. */ short options = DRAWLIGHT; float tmp_axismtx[3][3]; FOREACH_TRANS_DATA_CONTAINER (t, tc) { TransData *td = tc->data; for (int i = 0; i < tc->data_len; i++, td++) { float co[3]; const float(*axismtx)[3]; if (t->flag & T_PROP_EDIT) { /* we're sorted, so skip the rest */ if (td->factor == 0.0f) { break; } } if (t->options & CTX_GPENCIL_STROKES) { /* only draw a constraint line for one point, otherwise we can't see anything */ if ((options & DRAWLIGHT) == 0) { break; } } if (t->options & CTX_SEQUENCER_IMAGE) { /* Because we construct an "L" shape to deform the sequence, we should skip * all points except the first vertex. Otherwise we will draw the same axis constraint line * 3 times for each strip. */ if (i % 3 != 0) { continue; } } if (t->flag & T_EDIT) { mul_v3_m4v3(co, tc->mat, td->center); mul_m3_m3m3(tmp_axismtx, tc->mat3_unit, td->axismtx); axismtx = tmp_axismtx; } else { if (t->options & CTX_POSE_BONE) { mul_v3_m4v3(co, tc->mat, td->center); } else { copy_v3_v3(co, td->center); } axismtx = transform_object_axismtx_get(t, tc, td); } if (t->con.mode & CON_AXIS0) { drawLine(t, co, axismtx[0], 'X', options); } if (t->con.mode & CON_AXIS1) { drawLine(t, co, axismtx[1], 'Y', options); } if (t->con.mode & CON_AXIS2) { drawLine(t, co, axismtx[2], 'Z', options); } options &= ~DRAWLIGHT; } } } /** \} */ /* -------------------------------------------------------------------- */ /** \name Start / Stop Constraints * \{ */ void startConstraint(TransInfo *t) { t->con.mode |= CON_APPLY; *t->con.text = ' '; t->num.idx_max = min_ii(getConstraintSpaceDimension(t) - 1, t->idx_max); } void stopConstraint(TransInfo *t) { if (t->orient_curr != O_DEFAULT) { transform_orientations_current_set(t, O_DEFAULT); } t->con.mode &= ~(CON_APPLY | CON_SELECT); *t->con.text = '\0'; t->num.idx_max = t->idx_max; } /** \} */ /* -------------------------------------------------------------------- */ /** \name Middle Mouse Button Select * \{ */ void initSelectConstraint(TransInfo *t) { if (t->orient_curr == O_DEFAULT) { transform_orientations_current_set(t, O_SCENE); } setUserConstraint(t, CON_APPLY | CON_SELECT, "%s"); } void selectConstraint(TransInfo *t) { if (t->con.mode & CON_SELECT) { setNearestAxis(t); startConstraint(t); } } void postSelectConstraint(TransInfo *t) { t->con.mode &= ~CON_SELECT; if (!(t->con.mode & (CON_AXIS0 | CON_AXIS1 | CON_AXIS2))) { t->con.mode &= ~CON_APPLY; } } static void setNearestAxis2d(TransInfo *t) { /* no correction needed... just use whichever one is lower */ if (abs(t->mval[0] - t->con.imval[0]) < abs(t->mval[1] - t->con.imval[1])) { t->con.mode |= CON_AXIS1; BLI_strncpy(t->con.text, TIP_(" along Y axis"), sizeof(t->con.text)); } else { t->con.mode |= CON_AXIS0; BLI_strncpy(t->con.text, TIP_(" along X axis"), sizeof(t->con.text)); } } static void setNearestAxis3d(TransInfo *t) { float zfac; float mvec[3], proj[3]; float len[3]; int i; /* calculate mouse movement */ mvec[0] = (float)(t->mval[0] - t->con.imval[0]); mvec[1] = (float)(t->mval[1] - t->con.imval[1]); mvec[2] = 0.0f; /* We need to correct axis length for the current zoom-level of view, * this to prevent projected values to be clipped behind the camera * and to overflow the short integers. * The formula used is a bit stupid, just a simplification of the subtraction * of two 2D points 30 pixels apart (that's the last factor in the formula) after * projecting them with #ED_view3d_win_to_delta and then get the length of that vector. */ zfac = mul_project_m4_v3_zfac(t->persmat, t->center_global); zfac = len_v3(t->persinv[0]) * 2.0f / t->region->winx * zfac * 30.0f; for (i = 0; i < 3; i++) { float axis[3], axis_2d[2]; copy_v3_v3(axis, t->spacemtx[i]); mul_v3_fl(axis, zfac); /* now we can project to get window coordinate */ add_v3_v3(axis, t->center_global); projectFloatView(t, axis, axis_2d); sub_v2_v2v2(axis, axis_2d, t->center2d); axis[2] = 0.0f; if (normalize_v3(axis) > 1e-3f) { project_v3_v3v3(proj, mvec, axis); sub_v3_v3v3(axis, mvec, proj); len[i] = normalize_v3(axis); } else { len[i] = 1e10f; } } if (len[0] <= len[1] && len[0] <= len[2]) { if (t->modifiers & MOD_CONSTRAINT_SELECT_PLANE) { t->con.mode |= (CON_AXIS1 | CON_AXIS2); BLI_snprintf(t->con.text, sizeof(t->con.text), TIP_(" locking %s X axis"), t->spacename); } else { t->con.mode |= CON_AXIS0; BLI_snprintf(t->con.text, sizeof(t->con.text), TIP_(" along %s X axis"), t->spacename); } } else if (len[1] <= len[0] && len[1] <= len[2]) { if (t->modifiers & MOD_CONSTRAINT_SELECT_PLANE) { t->con.mode |= (CON_AXIS0 | CON_AXIS2); BLI_snprintf(t->con.text, sizeof(t->con.text), TIP_(" locking %s Y axis"), t->spacename); } else { t->con.mode |= CON_AXIS1; BLI_snprintf(t->con.text, sizeof(t->con.text), TIP_(" along %s Y axis"), t->spacename); } } else if (len[2] <= len[1] && len[2] <= len[0]) { if (t->modifiers & MOD_CONSTRAINT_SELECT_PLANE) { t->con.mode |= (CON_AXIS0 | CON_AXIS1); BLI_snprintf(t->con.text, sizeof(t->con.text), TIP_(" locking %s Z axis"), t->spacename); } else { t->con.mode |= CON_AXIS2; BLI_snprintf(t->con.text, sizeof(t->con.text), TIP_(" along %s Z axis"), t->spacename); } } } void setNearestAxis(TransInfo *t) { /* clear any prior constraint flags */ t->con.mode &= ~CON_AXIS0; t->con.mode &= ~CON_AXIS1; t->con.mode &= ~CON_AXIS2; /* constraint setting - depends on spacetype */ if (t->spacetype == SPACE_VIEW3D) { /* 3d-view */ setNearestAxis3d(t); } else { /* assume that this means a 2D-Editor */ setNearestAxis2d(t); } projection_matrix_calc(t, t->con.pmtx); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Helper Functions * \{ */ int constraintModeToIndex(const TransInfo *t) { if ((t->con.mode & CON_APPLY) == 0) { return -1; } switch (t->con.mode & (CON_AXIS0 | CON_AXIS1 | CON_AXIS2)) { case (CON_AXIS0): case (CON_AXIS1 | CON_AXIS2): return 0; case (CON_AXIS1): case (CON_AXIS0 | CON_AXIS2): return 1; case (CON_AXIS2): case (CON_AXIS0 | CON_AXIS1): return 2; default: return -1; } } bool isLockConstraint(const TransInfo *t) { int mode = t->con.mode; if ((mode & (CON_AXIS0 | CON_AXIS1)) == (CON_AXIS0 | CON_AXIS1)) { return true; } if ((mode & (CON_AXIS1 | CON_AXIS2)) == (CON_AXIS1 | CON_AXIS2)) { return true; } if ((mode & (CON_AXIS0 | CON_AXIS2)) == (CON_AXIS0 | CON_AXIS2)) { return true; } return false; } int getConstraintSpaceDimension(const TransInfo *t) { int n = 0; if (t->con.mode & CON_AXIS0) { n++; } if (t->con.mode & CON_AXIS1) { n++; } if (t->con.mode & CON_AXIS2) { n++; } return n; /* Someone willing to do it cryptically could do the following instead: * * `return t->con & (CON_AXIS0|CON_AXIS1|CON_AXIS2);` * * Based on the assumptions that the axis flags are one after the other and start at 1 */ } /** \} */