/* * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): none yet. * * ***** END GPL LICENSE BLOCK ***** */ /** \file blender/editors/transform/transform_constraints.c * \ingroup edtransform */ #include #include #include #include #ifndef WIN32 #include #else #include #endif #include "DNA_object_types.h" #include "DNA_scene_types.h" #include "DNA_screen_types.h" #include "DNA_space_types.h" #include "DNA_view3d_types.h" #include "BIF_gl.h" #include "BIF_glutil.h" #include "BKE_context.h" #include "ED_image.h" #include "ED_view3d.h" #include "BLI_math.h" #include "BLI_utildefines.h" #include "BLI_string.h" //#include "blendef.h" // //#include "mydevice.h" #include "UI_resources.h" #include "transform.h" static void drawObjectConstraint(TransInfo *t); /* ************************** CONSTRAINTS ************************* */ static void constraintAutoValues(TransInfo *t, float vec[3]) { int mode = t->con.mode; if (mode & CON_APPLY) { float nval = (t->flag & T_NULL_ONE)?1.0f:0.0f; if ((mode & CON_AXIS0) == 0) { vec[0] = nval; } if ((mode & CON_AXIS1) == 0) { vec[1] = nval; } if ((mode & CON_AXIS2) == 0) { vec[2] = nval; } } } void constraintNumInput(TransInfo *t, float vec[3]) { int mode = t->con.mode; if (mode & CON_APPLY) { float nval = (t->flag & T_NULL_ONE)?1.0f:0.0f; if (getConstraintSpaceDimension(t) == 2) { int axis = mode & (CON_AXIS0|CON_AXIS1|CON_AXIS2); if (axis == (CON_AXIS0|CON_AXIS1)) { /* vec[0] = vec[0]; */ /* same */ /* vec[1] = vec[1]; */ /* same */ vec[2] = nval; } else if (axis == (CON_AXIS1|CON_AXIS2)) { vec[2] = vec[1]; vec[1] = vec[0]; vec[0] = nval; } else if (axis == (CON_AXIS0|CON_AXIS2)) { /* vec[0] = vec[0]; */ /* same */ vec[2] = vec[1]; vec[1] = nval; } } else if (getConstraintSpaceDimension(t) == 1) { if (mode & CON_AXIS0) { /* vec[0] = vec[0]; */ /* same */ vec[1] = nval; vec[2] = nval; } else if (mode & CON_AXIS1) { vec[1] = vec[0]; vec[0] = nval; vec[2] = nval; } else if (mode & CON_AXIS2) { vec[2] = vec[0]; vec[0] = nval; vec[1] = nval; } } } } static void postConstraintChecks(TransInfo *t, float vec[3], float pvec[3]) { int i = 0; mul_m3_v3(t->con.imtx, vec); snapGrid(t, vec); if (t->num.flag & T_NULL_ONE) { if (!(t->con.mode & CON_AXIS0)) vec[0] = 1.0f; if (!(t->con.mode & CON_AXIS1)) vec[1] = 1.0f; if (!(t->con.mode & CON_AXIS2)) vec[2] = 1.0f; } if (hasNumInput(&t->num)) { applyNumInput(&t->num, vec); removeAspectRatio(t, vec); constraintNumInput(t, vec); } /* autovalues is operator param, use that directly but not if snapping is forced */ if (t->flag & T_AUTOVALUES && (t->tsnap.status & SNAP_FORCED) == 0) { mul_v3_m3v3(vec, t->con.imtx, t->auto_values); constraintAutoValues(t, vec); /* inverse transformation at the end */ } if (t->con.mode & CON_AXIS0) { pvec[i++] = vec[0]; } if (t->con.mode & CON_AXIS1) { pvec[i++] = vec[1]; } if (t->con.mode & CON_AXIS2) { pvec[i++] = vec[2]; } mul_m3_v3(t->con.mtx, vec); } static void viewAxisCorrectCenter(TransInfo *t, float t_con_center[3]) { if (t->spacetype == SPACE_VIEW3D) { // View3D *v3d = t->sa->spacedata.first; const float min_dist= 1.0f; // v3d->near; float dir[3]; float l; sub_v3_v3v3(dir, t_con_center, t->viewinv[3]); if (dot_v3v3(dir, t->viewinv[2]) < 0.0f) { negate_v3(dir); } project_v3_v3v3(dir, dir, t->viewinv[2]); l= len_v3(dir); if (l < min_dist) { float diff[3]; normalize_v3_v3(diff, t->viewinv[2]); mul_v3_fl(diff, min_dist - l); sub_v3_v3(t_con_center, diff); } } } static void axisProjection(TransInfo *t, float axis[3], float in[3], float out[3]) { float norm[3], vec[3], factor, angle; float t_con_center[3]; if (in[0]==0.0f && in[1]==0.0f && in[2]==0.0f) return; copy_v3_v3(t_con_center, t->con.center); /* checks for center being too close to the view center */ viewAxisCorrectCenter(t, t_con_center); angle = fabsf(angle_v3v3(axis, t->viewinv[2])); if (angle > (float)M_PI / 2.0f) { angle = (float)M_PI - angle; } angle = RAD2DEGF(angle); /* For when view is parallel to constraint... will cause NaNs otherwise * So we take vertical motion in 3D space and apply it to the * constraint axis. Nice for camera grab + MMB */ if (angle < 5.0f) { project_v3_v3v3(vec, in, t->viewinv[1]); factor = dot_v3v3(t->viewinv[1], vec) * 2.0f; /* since camera distance is quite relative, use quadratic relationship. holding shift can compensate */ if (factor<0.0f) factor*= -factor; else factor*= factor; copy_v3_v3(out, axis); normalize_v3(out); mul_v3_fl(out, -factor); /* -factor makes move down going backwards */ } else { float v[3], i1[3], i2[3]; float v2[3], v4[3]; float norm_center[3]; float plane[3]; getViewVector(t, t_con_center, norm_center); cross_v3_v3v3(plane, norm_center, axis); project_v3_v3v3(vec, in, plane); sub_v3_v3v3(vec, in, vec); add_v3_v3v3(v, vec, t_con_center); getViewVector(t, v, norm); /* give arbitrary large value if projection is impossible */ factor = dot_v3v3(axis, norm); if (1.0f - fabsf(factor) < 0.0002f) { copy_v3_v3(out, axis); if (factor > 0) { mul_v3_fl(out, 1000000000.0f); } else { mul_v3_fl(out, -1000000000.0f); } } else { add_v3_v3v3(v2, t_con_center, axis); add_v3_v3v3(v4, v, norm); isect_line_line_v3(t_con_center, v2, v, v4, i1, i2); sub_v3_v3v3(v, i2, v); sub_v3_v3v3(out, i1, t_con_center); /* possible some values become nan when * viewpoint and object are both zero */ if (!finite(out[0])) out[0]= 0.0f; if (!finite(out[1])) out[1]= 0.0f; if (!finite(out[2])) out[2]= 0.0f; } } } static void planeProjection(TransInfo *t, float in[3], float out[3]) { float vec[3], factor, norm[3]; add_v3_v3v3(vec, in, t->con.center); getViewVector(t, vec, norm); sub_v3_v3v3(vec, out, in); factor = dot_v3v3(vec, norm); if (fabs(factor) <= 0.001) { return; /* prevent divide by zero */ } factor = dot_v3v3(vec, vec) / factor; copy_v3_v3(vec, norm); mul_v3_fl(vec, factor); add_v3_v3v3(out, in, vec); } /* * Generic callback for constant spacial constraints applied to linear motion * * The IN vector in projected into the constrained space and then further * projected along the view vector. * (in perspective mode, the view vector is relative to the position on screen) * */ static void applyAxisConstraintVec(TransInfo *t, TransData *td, float in[3], float out[3], float pvec[3]) { copy_v3_v3(out, in); if (!td && t->con.mode & CON_APPLY) { mul_m3_v3(t->con.pmtx, out); // With snap, a projection is alright, no need to correct for view alignment if (!(t->tsnap.mode != SCE_SNAP_MODE_INCREMENT && activeSnap(t))) { if (getConstraintSpaceDimension(t) == 2) { if (out[0] != 0.0f || out[1] != 0.0f || out[2] != 0.0f) { planeProjection(t, in, out); } } else if (getConstraintSpaceDimension(t) == 1) { float c[3]; if (t->con.mode & CON_AXIS0) { copy_v3_v3(c, t->con.mtx[0]); } else if (t->con.mode & CON_AXIS1) { copy_v3_v3(c, t->con.mtx[1]); } else if (t->con.mode & CON_AXIS2) { copy_v3_v3(c, t->con.mtx[2]); } axisProjection(t, c, in, out); } } postConstraintChecks(t, out, pvec); } } /* * Generic callback for object based spatial constraints applied to linear motion * * At first, the following is applied to the first data in the array * The IN vector in projected into the constrained space and then further * projected along the view vector. * (in perspective mode, the view vector is relative to the position on screen) * * Further down, that vector is mapped to each data's space. */ static void applyObjectConstraintVec(TransInfo *t, TransData *td, float in[3], float out[3], float pvec[3]) { copy_v3_v3(out, in); if (t->con.mode & CON_APPLY) { if (!td) { mul_m3_v3(t->con.pmtx, out); if (getConstraintSpaceDimension(t) == 2) { if (out[0] != 0.0f || out[1] != 0.0f || out[2] != 0.0f) { planeProjection(t, in, out); } } else if (getConstraintSpaceDimension(t) == 1) { float c[3]; if (t->con.mode & CON_AXIS0) { copy_v3_v3(c, t->con.mtx[0]); } else if (t->con.mode & CON_AXIS1) { copy_v3_v3(c, t->con.mtx[1]); } else if (t->con.mode & CON_AXIS2) { copy_v3_v3(c, t->con.mtx[2]); } axisProjection(t, c, in, out); } postConstraintChecks(t, out, pvec); copy_v3_v3(out, pvec); } else { int i=0; out[0] = out[1] = out[2] = 0.0f; if (t->con.mode & CON_AXIS0) { out[0] = in[i++]; } if (t->con.mode & CON_AXIS1) { out[1] = in[i++]; } if (t->con.mode & CON_AXIS2) { out[2] = in[i++]; } mul_m3_v3(td->axismtx, out); } } } /* * Generic callback for constant spacial constraints applied to resize motion * * */ static void applyAxisConstraintSize(TransInfo *t, TransData *td, float smat[3][3]) { if (!td && t->con.mode & CON_APPLY) { float tmat[3][3]; if (!(t->con.mode & CON_AXIS0)) { smat[0][0] = 1.0f; } if (!(t->con.mode & CON_AXIS1)) { smat[1][1] = 1.0f; } if (!(t->con.mode & CON_AXIS2)) { smat[2][2] = 1.0f; } mul_m3_m3m3(tmat, smat, t->con.imtx); mul_m3_m3m3(smat, t->con.mtx, tmat); } } /* * Callback for object based spacial constraints applied to resize motion * * */ static void applyObjectConstraintSize(TransInfo *t, TransData *td, float smat[3][3]) { if (td && t->con.mode & CON_APPLY) { float tmat[3][3]; float imat[3][3]; invert_m3_m3(imat, td->axismtx); if (!(t->con.mode & CON_AXIS0)) { smat[0][0] = 1.0f; } if (!(t->con.mode & CON_AXIS1)) { smat[1][1] = 1.0f; } if (!(t->con.mode & CON_AXIS2)) { smat[2][2] = 1.0f; } mul_m3_m3m3(tmat, smat, imat); mul_m3_m3m3(smat, td->axismtx, tmat); } } /* * Generic callback for constant spacial constraints applied to rotations * * The rotation axis is copied into VEC. * * In the case of single axis constraints, the rotation axis is directly the one constrained to. * For planar constraints (2 axis), the rotation axis is the normal of the plane. * * The following only applies when CON_NOFLIP is not set. * The vector is then modified to always point away from the screen (in global space) * This insures that the rotation is always logically following the mouse. * (ie: not doing counterclockwise rotations when the mouse moves clockwise). */ static void applyAxisConstraintRot(TransInfo *t, TransData *td, float vec[3], float *angle) { if (!td && t->con.mode & CON_APPLY) { int mode = t->con.mode & (CON_AXIS0|CON_AXIS1|CON_AXIS2); switch (mode) { case CON_AXIS0: case (CON_AXIS1|CON_AXIS2): copy_v3_v3(vec, t->con.mtx[0]); break; case CON_AXIS1: case (CON_AXIS0|CON_AXIS2): copy_v3_v3(vec, t->con.mtx[1]); break; case CON_AXIS2: case (CON_AXIS0|CON_AXIS1): copy_v3_v3(vec, t->con.mtx[2]); break; } /* don't flip axis if asked to or if num input */ if (angle && (mode & CON_NOFLIP) == 0 && hasNumInput(&t->num) == 0) { if (dot_v3v3(vec, t->viewinv[2]) > 0.0f) { *angle = -(*angle); } } } } /* * Callback for object based spacial constraints applied to rotations * * The rotation axis is copied into VEC. * * In the case of single axis constraints, the rotation axis is directly the one constrained to. * For planar constraints (2 axis), the rotation axis is the normal of the plane. * * The following only applies when CON_NOFLIP is not set. * The vector is then modified to always point away from the screen (in global space) * This insures that the rotation is always logically following the mouse. * (ie: not doing counterclockwise rotations when the mouse moves clockwise). */ static void applyObjectConstraintRot(TransInfo *t, TransData *td, float vec[3], float *angle) { if (t->con.mode & CON_APPLY) { int mode = t->con.mode & (CON_AXIS0|CON_AXIS1|CON_AXIS2); /* on setup call, use first object */ if (td == NULL) { td= t->data; } switch (mode) { case CON_AXIS0: case (CON_AXIS1|CON_AXIS2): copy_v3_v3(vec, td->axismtx[0]); break; case CON_AXIS1: case (CON_AXIS0|CON_AXIS2): copy_v3_v3(vec, td->axismtx[1]); break; case CON_AXIS2: case (CON_AXIS0|CON_AXIS1): copy_v3_v3(vec, td->axismtx[2]); break; } if (angle && (mode & CON_NOFLIP) == 0 && hasNumInput(&t->num) == 0) { if (dot_v3v3(vec, t->viewinv[2]) > 0.0f) { *angle = -(*angle); } } } } /*--------------------- INTERNAL SETUP CALLS ------------------*/ void setConstraint(TransInfo *t, float space[3][3], int mode, const char text[]) { BLI_strncpy(t->con.text + 1, text, sizeof(t->con.text) - 1); copy_m3_m3(t->con.mtx, space); t->con.mode = mode; getConstraintMatrix(t); startConstraint(t); t->con.drawExtra = NULL; t->con.applyVec = applyAxisConstraintVec; t->con.applySize = applyAxisConstraintSize; t->con.applyRot = applyAxisConstraintRot; t->redraw = 1; } void setLocalConstraint(TransInfo *t, int mode, const char text[]) { if (t->flag & T_EDIT) { float obmat[3][3]; copy_m3_m4(obmat, t->scene->obedit->obmat); normalize_m3(obmat); setConstraint(t, obmat, mode, text); } else { if (t->total == 1) { setConstraint(t, t->data->axismtx, mode, text); } else { BLI_strncpy(t->con.text + 1, text, sizeof(t->con.text) - 1); copy_m3_m3(t->con.mtx, t->data->axismtx); t->con.mode = mode; getConstraintMatrix(t); startConstraint(t); t->con.drawExtra = drawObjectConstraint; t->con.applyVec = applyObjectConstraintVec; t->con.applySize = applyObjectConstraintSize; t->con.applyRot = applyObjectConstraintRot; t->redraw = 1; } } } /* * Set the constraint according to the user defined orientation * * ftext is a format string passed to BLI_snprintf. It will add the name of * the orientation where %s is (logically). */ void setUserConstraint(TransInfo *t, short orientation, int mode, const char ftext[]) { char text[40]; switch (orientation) { case V3D_MANIP_GLOBAL: { float mtx[3][3]= MAT3_UNITY; BLI_snprintf(text, sizeof(text), ftext, "global"); setConstraint(t, mtx, mode, text); } break; case V3D_MANIP_LOCAL: BLI_snprintf(text, sizeof(text), ftext, "local"); setLocalConstraint(t, mode, text); break; case V3D_MANIP_NORMAL: BLI_snprintf(text, sizeof(text), ftext, "normal"); setConstraint(t, t->spacemtx, mode, text); break; case V3D_MANIP_VIEW: BLI_snprintf(text, sizeof(text), ftext, "view"); setConstraint(t, t->spacemtx, mode, text); break; case V3D_MANIP_GIMBAL: BLI_snprintf(text, sizeof(text), ftext, "gimbal"); setConstraint(t, t->spacemtx, mode, text); break; default: /* V3D_MANIP_CUSTOM */ BLI_snprintf(text, sizeof(text), ftext, t->spacename); setConstraint(t, t->spacemtx, mode, text); break; } t->con.orientation = orientation; t->con.mode |= CON_USER; } /*----------------- DRAWING CONSTRAINTS -------------------*/ void drawConstraint(TransInfo *t) { TransCon *tc = &(t->con); if (!ELEM(t->spacetype, SPACE_VIEW3D, SPACE_IMAGE)) return; if (!(tc->mode & CON_APPLY)) return; if (t->flag & T_USES_MANIPULATOR) return; if (t->flag & T_NO_CONSTRAINT) return; /* nasty exception for Z constraint in camera view */ // TRANSFORM_FIX_ME // if ((t->flag & T_OBJECT) && G.vd->camera==OBACT && G.vd->persp==V3D_CAMOB) // return; if (tc->drawExtra) { tc->drawExtra(t); } else { if (tc->mode & CON_SELECT) { float vec[3]; char col2[3] = {255,255,255}; int depth_test_enabled; convertViewVec(t, vec, (t->mval[0] - t->con.imval[0]), (t->mval[1] - t->con.imval[1])); add_v3_v3(vec, tc->center); drawLine(t, tc->center, tc->mtx[0], 'X', 0); drawLine(t, tc->center, tc->mtx[1], 'Y', 0); drawLine(t, tc->center, tc->mtx[2], 'Z', 0); glColor3ubv((GLubyte *)col2); depth_test_enabled = glIsEnabled(GL_DEPTH_TEST); if (depth_test_enabled) glDisable(GL_DEPTH_TEST); setlinestyle(1); glBegin(GL_LINE_STRIP); glVertex3fv(tc->center); glVertex3fv(vec); glEnd(); setlinestyle(0); if (depth_test_enabled) glEnable(GL_DEPTH_TEST); } if (tc->mode & CON_AXIS0) { drawLine(t, tc->center, tc->mtx[0], 'X', DRAWLIGHT); } if (tc->mode & CON_AXIS1) { drawLine(t, tc->center, tc->mtx[1], 'Y', DRAWLIGHT); } if (tc->mode & CON_AXIS2) { drawLine(t, tc->center, tc->mtx[2], 'Z', DRAWLIGHT); } } } /* called from drawview.c, as an extra per-window draw option */ void drawPropCircle(const struct bContext *C, TransInfo *t) { if (t->flag & T_PROP_EDIT) { RegionView3D *rv3d = CTX_wm_region_view3d(C); float tmat[4][4], imat[4][4]; float center[3]; UI_ThemeColor(TH_GRID); if (t->spacetype == SPACE_VIEW3D && rv3d != NULL) { copy_m4_m4(tmat, rv3d->viewmat); invert_m4_m4(imat, tmat); } else { unit_m4(tmat); unit_m4(imat); } glPushMatrix(); copy_v3_v3(center, t->center); if ((t->spacetype == SPACE_VIEW3D) && t->obedit) { mul_m4_v3(t->obedit->obmat, center); /* because t->center is in local space */ } else if (t->spacetype == SPACE_IMAGE) { float aspx, aspy; ED_space_image_uv_aspect(t->sa->spacedata.first, &aspx, &aspy); glScalef(1.0f/aspx, 1.0f/aspy, 1.0); } set_inverted_drawing(1); drawcircball(GL_LINE_LOOP, center, t->prop_size, imat); set_inverted_drawing(0); glPopMatrix(); } } static void drawObjectConstraint(TransInfo *t) { int i; TransData * td = t->data; /* Draw the first one lighter because that's the one who controls the others. * Meaning the transformation is projected on that one and just copied on the others * constraint space. * In a nutshell, the object with light axis is controlled by the user and the others follow. * Without drawing the first light, users have little clue what they are doing. */ if (t->con.mode & CON_AXIS0) { drawLine(t, td->ob->obmat[3], td->axismtx[0], 'X', DRAWLIGHT); } if (t->con.mode & CON_AXIS1) { drawLine(t, td->ob->obmat[3], td->axismtx[1], 'Y', DRAWLIGHT); } if (t->con.mode & CON_AXIS2) { drawLine(t, td->ob->obmat[3], td->axismtx[2], 'Z', DRAWLIGHT); } td++; for (i=1;itotal;i++,td++) { if (t->con.mode & CON_AXIS0) { drawLine(t, td->ob->obmat[3], td->axismtx[0], 'X', 0); } if (t->con.mode & CON_AXIS1) { drawLine(t, td->ob->obmat[3], td->axismtx[1], 'Y', 0); } if (t->con.mode & CON_AXIS2) { drawLine(t, td->ob->obmat[3], td->axismtx[2], 'Z', 0); } } } /*--------------------- START / STOP CONSTRAINTS ---------------------- */ void startConstraint(TransInfo *t) { t->con.mode |= CON_APPLY; *t->con.text = ' '; t->num.idx_max = MIN2(getConstraintSpaceDimension(t) - 1, t->idx_max); } void stopConstraint(TransInfo *t) { t->con.mode &= ~(CON_APPLY|CON_SELECT); *t->con.text = '\0'; t->num.idx_max = t->idx_max; } void getConstraintMatrix(TransInfo *t) { float mat[3][3]; invert_m3_m3(t->con.imtx, t->con.mtx); unit_m3(t->con.pmtx); if (!(t->con.mode & CON_AXIS0)) { t->con.pmtx[0][0] = t->con.pmtx[0][1] = t->con.pmtx[0][2] = 0.0f; } if (!(t->con.mode & CON_AXIS1)) { t->con.pmtx[1][0] = t->con.pmtx[1][1] = t->con.pmtx[1][2] = 0.0f; } if (!(t->con.mode & CON_AXIS2)) { t->con.pmtx[2][0] = t->con.pmtx[2][1] = t->con.pmtx[2][2] = 0.0f; } mul_m3_m3m3(mat, t->con.pmtx, t->con.imtx); mul_m3_m3m3(t->con.pmtx, t->con.mtx, mat); } /*------------------------- MMB Select -------------------------------*/ void initSelectConstraint(TransInfo *t, float mtx[3][3]) { copy_m3_m3(t->con.mtx, mtx); t->con.mode |= CON_APPLY; t->con.mode |= CON_SELECT; setNearestAxis(t); t->con.drawExtra = NULL; t->con.applyVec = applyAxisConstraintVec; t->con.applySize = applyAxisConstraintSize; t->con.applyRot = applyAxisConstraintRot; } void selectConstraint(TransInfo *t) { if (t->con.mode & CON_SELECT) { setNearestAxis(t); startConstraint(t); } } void postSelectConstraint(TransInfo *t) { if (!(t->con.mode & CON_SELECT)) return; t->con.mode &= ~CON_AXIS0; t->con.mode &= ~CON_AXIS1; t->con.mode &= ~CON_AXIS2; t->con.mode &= ~CON_SELECT; setNearestAxis(t); startConstraint(t); t->redraw = 1; } static void setNearestAxis2d(TransInfo *t) { /* no correction needed... just use whichever one is lower */ if ( abs(t->mval[0]-t->con.imval[0]) < abs(t->mval[1]-t->con.imval[1]) ) { t->con.mode |= CON_AXIS1; BLI_snprintf(t->con.text, sizeof(t->con.text), " along Y axis"); } else { t->con.mode |= CON_AXIS0; BLI_snprintf(t->con.text, sizeof(t->con.text), " along X axis"); } } static void setNearestAxis3d(TransInfo *t) { float zfac; float mvec[3], axis[3], proj[3]; float len[3]; int i, icoord[2]; /* calculate mouse movement */ mvec[0] = (float)(t->mval[0] - t->con.imval[0]); mvec[1] = (float)(t->mval[1] - t->con.imval[1]); mvec[2] = 0.0f; /* we need to correct axis length for the current zoomlevel of view, * this to prevent projected values to be clipped behind the camera * and to overflow the short integers. * The formula used is a bit stupid, just a simplification of the subtraction * of two 2D points 30 pixels apart (that's the last factor in the formula) after * projecting them with window_to_3d_delta and then get the length of that vector. */ zfac= t->persmat[0][3]*t->center[0]+ t->persmat[1][3]*t->center[1]+ t->persmat[2][3]*t->center[2]+ t->persmat[3][3]; zfac = len_v3(t->persinv[0]) * 2.0f/t->ar->winx * zfac * 30.0f; for (i = 0; i<3; i++) { copy_v3_v3(axis, t->con.mtx[i]); mul_v3_fl(axis, zfac); /* now we can project to get window coordinate */ add_v3_v3(axis, t->con.center); projectIntView(t, axis, icoord); axis[0] = (float)(icoord[0] - t->center2d[0]); axis[1] = (float)(icoord[1] - t->center2d[1]); axis[2] = 0.0f; if (normalize_v3(axis) != 0.0f) { project_v3_v3v3(proj, mvec, axis); sub_v3_v3v3(axis, mvec, proj); len[i] = normalize_v3(axis); } else { len[i] = 10000000000.0f; } } if (len[0] <= len[1] && len[0] <= len[2]) { if (t->modifiers & MOD_CONSTRAINT_PLANE) { t->con.mode |= (CON_AXIS1|CON_AXIS2); BLI_snprintf(t->con.text, sizeof(t->con.text), " locking %s X axis", t->spacename); } else { t->con.mode |= CON_AXIS0; BLI_snprintf(t->con.text, sizeof(t->con.text), " along %s X axis", t->spacename); } } else if (len[1] <= len[0] && len[1] <= len[2]) { if (t->modifiers & MOD_CONSTRAINT_PLANE) { t->con.mode |= (CON_AXIS0|CON_AXIS2); BLI_snprintf(t->con.text, sizeof(t->con.text), " locking %s Y axis", t->spacename); } else { t->con.mode |= CON_AXIS1; BLI_snprintf(t->con.text, sizeof(t->con.text), " along %s Y axis", t->spacename); } } else if (len[2] <= len[1] && len[2] <= len[0]) { if (t->modifiers & MOD_CONSTRAINT_PLANE) { t->con.mode |= (CON_AXIS0|CON_AXIS1); BLI_snprintf(t->con.text, sizeof(t->con.text), " locking %s Z axis", t->spacename); } else { t->con.mode |= CON_AXIS2; BLI_snprintf(t->con.text, sizeof(t->con.text), " along %s Z axis", t->spacename); } } } void setNearestAxis(TransInfo *t) { /* clear any prior constraint flags */ t->con.mode &= ~CON_AXIS0; t->con.mode &= ~CON_AXIS1; t->con.mode &= ~CON_AXIS2; /* constraint setting - depends on spacetype */ if (t->spacetype == SPACE_VIEW3D) { /* 3d-view */ setNearestAxis3d(t); } else { /* assume that this means a 2D-Editor */ setNearestAxis2d(t); } getConstraintMatrix(t); } /*-------------- HELPER FUNCTIONS ----------------*/ char constraintModeToChar(TransInfo *t) { if ((t->con.mode & CON_APPLY)==0) { return '\0'; } switch (t->con.mode & (CON_AXIS0|CON_AXIS1|CON_AXIS2)) { case (CON_AXIS0): case (CON_AXIS1|CON_AXIS2): return 'X'; case (CON_AXIS1): case (CON_AXIS0|CON_AXIS2): return 'Y'; case (CON_AXIS2): case (CON_AXIS0|CON_AXIS1): return 'Z'; default: return '\0'; } } int isLockConstraint(TransInfo *t) { int mode = t->con.mode; if ( (mode & (CON_AXIS0|CON_AXIS1)) == (CON_AXIS0|CON_AXIS1)) return 1; if ( (mode & (CON_AXIS1|CON_AXIS2)) == (CON_AXIS1|CON_AXIS2)) return 1; if ( (mode & (CON_AXIS0|CON_AXIS2)) == (CON_AXIS0|CON_AXIS2)) return 1; return 0; } /* * Returns the dimension of the constraint space. * * For that reason, the flags always needs to be set to properly evaluate here, * even if they aren't actually used in the callback function. (Which could happen * for weird constraints not yet designed. Along a path for example.) */ int getConstraintSpaceDimension(TransInfo *t) { int n = 0; if (t->con.mode & CON_AXIS0) n++; if (t->con.mode & CON_AXIS1) n++; if (t->con.mode & CON_AXIS2) n++; return n; /* * Someone willing to do it cryptically could do the following instead: * * return t->con & (CON_AXIS0|CON_AXIS1|CON_AXIS2); * * Based on the assumptions that the axis flags are one after the other and start at 1 */ }