/* * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): none yet. * * ***** END GPL LICENSE BLOCK ***** */ /** \file blender/editors/transform/transform_constraints.c * \ingroup edtransform */ #include #include #include #include #include "DNA_object_types.h" #include "DNA_scene_types.h" #include "DNA_screen_types.h" #include "DNA_space_types.h" #include "DNA_view3d_types.h" #include "BIF_glutil.h" #include "GPU_immediate.h" #include "GPU_matrix.h" #include "GPU_state.h" #include "BLI_math.h" #include "BLI_utildefines.h" #include "BLI_string.h" #include "BLI_rect.h" #include "BKE_context.h" #include "ED_image.h" #include "ED_view3d.h" #include "BLT_translation.h" #include "UI_resources.h" #include "transform.h" static void drawObjectConstraint(TransInfo *t); /* ************************** CONSTRAINTS ************************* */ static void constraintAutoValues(TransInfo *t, float vec[3]) { int mode = t->con.mode; if (mode & CON_APPLY) { float nval = (t->flag & T_NULL_ONE) ? 1.0f : 0.0f; if ((mode & CON_AXIS0) == 0) { vec[0] = nval; } if ((mode & CON_AXIS1) == 0) { vec[1] = nval; } if ((mode & CON_AXIS2) == 0) { vec[2] = nval; } } } void constraintNumInput(TransInfo *t, float vec[3]) { int mode = t->con.mode; if (mode & CON_APPLY) { float nval = (t->flag & T_NULL_ONE) ? 1.0f : 0.0f; const int dims = getConstraintSpaceDimension(t); if (dims == 2) { int axis = mode & (CON_AXIS0 | CON_AXIS1 | CON_AXIS2); if (axis == (CON_AXIS0 | CON_AXIS1)) { /* vec[0] = vec[0]; */ /* same */ /* vec[1] = vec[1]; */ /* same */ vec[2] = nval; } else if (axis == (CON_AXIS1 | CON_AXIS2)) { vec[2] = vec[1]; vec[1] = vec[0]; vec[0] = nval; } else if (axis == (CON_AXIS0 | CON_AXIS2)) { /* vec[0] = vec[0]; */ /* same */ vec[2] = vec[1]; vec[1] = nval; } } else if (dims == 1) { if (mode & CON_AXIS0) { /* vec[0] = vec[0]; */ /* same */ vec[1] = nval; vec[2] = nval; } else if (mode & CON_AXIS1) { vec[1] = vec[0]; vec[0] = nval; vec[2] = nval; } else if (mode & CON_AXIS2) { vec[2] = vec[0]; vec[0] = nval; vec[1] = nval; } } } } static void postConstraintChecks(TransInfo *t, float vec[3], float pvec[3]) { int i = 0; mul_m3_v3(t->con.imtx, vec); snapGridIncrement(t, vec); if (t->flag & T_NULL_ONE) { if (!(t->con.mode & CON_AXIS0)) vec[0] = 1.0f; if (!(t->con.mode & CON_AXIS1)) vec[1] = 1.0f; if (!(t->con.mode & CON_AXIS2)) vec[2] = 1.0f; } if (applyNumInput(&t->num, vec)) { constraintNumInput(t, vec); removeAspectRatio(t, vec); } /* autovalues is operator param, use that directly but not if snapping is forced */ if (t->flag & T_AUTOVALUES && (t->tsnap.status & SNAP_FORCED) == 0) { copy_v3_v3(vec, t->auto_values); constraintAutoValues(t, vec); /* inverse transformation at the end */ } if (t->con.mode & CON_AXIS0) { pvec[i++] = vec[0]; } if (t->con.mode & CON_AXIS1) { pvec[i++] = vec[1]; } if (t->con.mode & CON_AXIS2) { pvec[i++] = vec[2]; } mul_m3_v3(t->con.mtx, vec); } static void viewAxisCorrectCenter(const TransInfo *t, float t_con_center[3]) { if (t->spacetype == SPACE_VIEW3D) { // View3D *v3d = t->sa->spacedata.first; const float min_dist = 1.0f; /* v3d->near; */ float dir[3]; float l; sub_v3_v3v3(dir, t_con_center, t->viewinv[3]); if (dot_v3v3(dir, t->viewinv[2]) < 0.0f) { negate_v3(dir); } project_v3_v3v3(dir, dir, t->viewinv[2]); l = len_v3(dir); if (l < min_dist) { float diff[3]; normalize_v3_v3_length(diff, t->viewinv[2], min_dist - l); sub_v3_v3(t_con_center, diff); } } } /** * Axis calculation taking the view into account, correcting view-aligned axis. */ static void axisProjection(const TransInfo *t, const float axis[3], const float in[3], float out[3]) { float norm[3], vec[3], factor, angle; float t_con_center[3]; if (is_zero_v3(in)) { return; } copy_v3_v3(t_con_center, t->center_global); /* checks for center being too close to the view center */ viewAxisCorrectCenter(t, t_con_center); angle = fabsf(angle_v3v3(axis, t->viewinv[2])); if (angle > (float)M_PI_2) { angle = (float)M_PI - angle; } /* For when view is parallel to constraint... will cause NaNs otherwise * So we take vertical motion in 3D space and apply it to the * constraint axis. Nice for camera grab + MMB */ if (angle < DEG2RADF(5.0f)) { project_v3_v3v3(vec, in, t->viewinv[1]); factor = dot_v3v3(t->viewinv[1], vec) * 2.0f; /* since camera distance is quite relative, use quadratic relationship. holding shift can compensate */ if (factor < 0.0f) factor *= -factor; else factor *= factor; /* -factor makes move down going backwards */ normalize_v3_v3_length(out, axis, -factor); } else { float v[3], i1[3], i2[3]; float v2[3], v4[3]; float norm_center[3]; float plane[3]; getViewVector(t, t_con_center, norm_center); cross_v3_v3v3(plane, norm_center, axis); project_v3_v3v3(vec, in, plane); sub_v3_v3v3(vec, in, vec); add_v3_v3v3(v, vec, t_con_center); getViewVector(t, v, norm); /* give arbitrary large value if projection is impossible */ factor = dot_v3v3(axis, norm); if (1.0f - fabsf(factor) < 0.0002f) { copy_v3_v3(out, axis); if (factor > 0) { mul_v3_fl(out, 1000000000.0f); } else { mul_v3_fl(out, -1000000000.0f); } } else { add_v3_v3v3(v2, t_con_center, axis); add_v3_v3v3(v4, v, norm); isect_line_line_v3(t_con_center, v2, v, v4, i1, i2); sub_v3_v3v3(v, i2, v); sub_v3_v3v3(out, i1, t_con_center); /* possible some values become nan when * viewpoint and object are both zero */ if (!isfinite(out[0])) out[0] = 0.0f; if (!isfinite(out[1])) out[1] = 0.0f; if (!isfinite(out[2])) out[2] = 0.0f; } } } /** * Return true if the 2x axis are both aligned when projected into the view. * In this case, we can't usefully project the cursor onto the plane. */ static bool isPlaneProjectionViewAligned(const TransInfo *t) { const float eps = 0.001f; const float *constraint_vector[2]; int n = 0; for (int i = 0; i < 3; i++) { if (t->con.mode & (CON_AXIS0 << i)) { constraint_vector[n++] = t->con.mtx[i]; if (n == 2) { break; } } } BLI_assert(n == 2); float view_to_plane[3], plane_normal[3]; getViewVector(t, t->center_global, view_to_plane); cross_v3_v3v3(plane_normal, constraint_vector[0], constraint_vector[1]); normalize_v3(plane_normal); float factor = dot_v3v3(plane_normal, view_to_plane); return fabsf(factor) < eps; } static void planeProjection(const TransInfo *t, const float in[3], float out[3]) { float vec[3], factor, norm[3]; add_v3_v3v3(vec, in, t->center_global); getViewVector(t, vec, norm); sub_v3_v3v3(vec, out, in); factor = dot_v3v3(vec, norm); if (fabsf(factor) <= 0.001f) { return; /* prevent divide by zero */ } factor = dot_v3v3(vec, vec) / factor; copy_v3_v3(vec, norm); mul_v3_fl(vec, factor); add_v3_v3v3(out, in, vec); } /* * Generic callback for constant spatial constraints applied to linear motion * * The IN vector in projected into the constrained space and then further * projected along the view vector. * (in perspective mode, the view vector is relative to the position on screen) * */ static void applyAxisConstraintVec( TransInfo *t, TransDataContainer *UNUSED(tc), TransData *td, const float in[3], float out[3], float pvec[3]) { copy_v3_v3(out, in); if (!td && t->con.mode & CON_APPLY) { mul_m3_v3(t->con.pmtx, out); // With snap, a projection is alright, no need to correct for view alignment if (!validSnap(t)) { const int dims = getConstraintSpaceDimension(t); if (dims == 2) { if (!is_zero_v3(out)) { if (!isPlaneProjectionViewAligned(t)) { planeProjection(t, in, out); } } } else if (dims == 1) { float c[3]; if (t->con.mode & CON_AXIS0) { copy_v3_v3(c, t->con.mtx[0]); } else if (t->con.mode & CON_AXIS1) { copy_v3_v3(c, t->con.mtx[1]); } else if (t->con.mode & CON_AXIS2) { copy_v3_v3(c, t->con.mtx[2]); } axisProjection(t, c, in, out); } } postConstraintChecks(t, out, pvec); } } /* * Generic callback for object based spatial constraints applied to linear motion * * At first, the following is applied to the first data in the array * The IN vector in projected into the constrained space and then further * projected along the view vector. * (in perspective mode, the view vector is relative to the position on screen) * * Further down, that vector is mapped to each data's space. */ static void applyObjectConstraintVec( TransInfo *t, TransDataContainer *tc, TransData *td, const float in[3], float out[3], float pvec[3]) { copy_v3_v3(out, in); if (t->con.mode & CON_APPLY) { if (!td) { mul_m3_v3(t->con.pmtx, out); const int dims = getConstraintSpaceDimension(t); if (dims == 2) { if (!is_zero_v3(out)) { if (!isPlaneProjectionViewAligned(t)) { planeProjection(t, in, out); } } } else if (dims == 1) { float c[3]; if (t->con.mode & CON_AXIS0) { copy_v3_v3(c, t->con.mtx[0]); } else if (t->con.mode & CON_AXIS1) { copy_v3_v3(c, t->con.mtx[1]); } else if (t->con.mode & CON_AXIS2) { copy_v3_v3(c, t->con.mtx[2]); } axisProjection(t, c, in, out); } postConstraintChecks(t, out, pvec); copy_v3_v3(out, pvec); } else { int i = 0; out[0] = out[1] = out[2] = 0.0f; if (t->con.mode & CON_AXIS0) { out[0] = in[i++]; } if (t->con.mode & CON_AXIS1) { out[1] = in[i++]; } if (t->con.mode & CON_AXIS2) { out[2] = in[i++]; } mul_m3_v3(td->axismtx, out); if (t->flag & T_EDIT) { mul_m3_v3(tc->mat3_unit, out); } } } } /* * Generic callback for constant spatial constraints applied to resize motion */ static void applyAxisConstraintSize( TransInfo *t, TransDataContainer *UNUSED(tc), TransData *td, float smat[3][3]) { if (!td && t->con.mode & CON_APPLY) { float tmat[3][3]; if (!(t->con.mode & CON_AXIS0)) { smat[0][0] = 1.0f; } if (!(t->con.mode & CON_AXIS1)) { smat[1][1] = 1.0f; } if (!(t->con.mode & CON_AXIS2)) { smat[2][2] = 1.0f; } mul_m3_m3m3(tmat, smat, t->con.imtx); mul_m3_m3m3(smat, t->con.mtx, tmat); } } /* * Callback for object based spatial constraints applied to resize motion */ static void applyObjectConstraintSize( TransInfo *t, TransDataContainer *tc, TransData *td, float smat[3][3]) { if (td && t->con.mode & CON_APPLY) { float tmat[3][3]; float imat[3][3]; invert_m3_m3(imat, td->axismtx); if (!(t->con.mode & CON_AXIS0)) { smat[0][0] = 1.0f; } if (!(t->con.mode & CON_AXIS1)) { smat[1][1] = 1.0f; } if (!(t->con.mode & CON_AXIS2)) { smat[2][2] = 1.0f; } mul_m3_m3m3(tmat, smat, imat); if (t->flag & T_EDIT) { mul_m3_m3m3(smat, tc->mat3_unit, smat); } mul_m3_m3m3(smat, td->axismtx, tmat); } } /* * Generic callback for constant spatial constraints applied to rotations * * The rotation axis is copied into VEC. * * In the case of single axis constraints, the rotation axis is directly the one constrained to. * For planar constraints (2 axis), the rotation axis is the normal of the plane. * * The following only applies when CON_NOFLIP is not set. * The vector is then modified to always point away from the screen (in global space) * This insures that the rotation is always logically following the mouse. * (ie: not doing counterclockwise rotations when the mouse moves clockwise). */ static void applyAxisConstraintRot(TransInfo *t, TransDataContainer *UNUSED(tc), TransData *td, float vec[3], float *angle) { if (!td && t->con.mode & CON_APPLY) { int mode = t->con.mode & (CON_AXIS0 | CON_AXIS1 | CON_AXIS2); switch (mode) { case CON_AXIS0: case (CON_AXIS1 | CON_AXIS2): copy_v3_v3(vec, t->con.mtx[0]); break; case CON_AXIS1: case (CON_AXIS0 | CON_AXIS2): copy_v3_v3(vec, t->con.mtx[1]); break; case CON_AXIS2: case (CON_AXIS0 | CON_AXIS1): copy_v3_v3(vec, t->con.mtx[2]); break; } /* don't flip axis if asked to or if num input */ if (angle && (mode & CON_NOFLIP) == 0 && hasNumInput(&t->num) == 0) { if (dot_v3v3(vec, t->viewinv[2]) > 0.0f) { *angle = -(*angle); } } } } /* * Callback for object based spatial constraints applied to rotations * * The rotation axis is copied into VEC. * * In the case of single axis constraints, the rotation axis is directly the one constrained to. * For planar constraints (2 axis), the rotation axis is the normal of the plane. * * The following only applies when CON_NOFLIP is not set. * The vector is then modified to always point away from the screen (in global space) * This insures that the rotation is always logically following the mouse. * (ie: not doing counterclockwise rotations when the mouse moves clockwise). */ static void applyObjectConstraintRot( TransInfo *t, TransDataContainer *tc, TransData *td, float vec[3], float *angle) { if (t->con.mode & CON_APPLY) { int mode = t->con.mode & (CON_AXIS0 | CON_AXIS1 | CON_AXIS2); float tmp_axismtx[3][3]; float (*axismtx)[3]; /* on setup call, use first object */ if (td == NULL) { td = TRANS_DATA_CONTAINER_FIRST_OK(t)->data; } if (t->flag & T_EDIT) { mul_m3_m3m3(tmp_axismtx, tc->mat3_unit, td->axismtx); axismtx = tmp_axismtx; } else { axismtx = td->axismtx; } switch (mode) { case CON_AXIS0: case (CON_AXIS1 | CON_AXIS2): copy_v3_v3(vec, axismtx[0]); break; case CON_AXIS1: case (CON_AXIS0 | CON_AXIS2): copy_v3_v3(vec, axismtx[1]); break; case CON_AXIS2: case (CON_AXIS0 | CON_AXIS1): copy_v3_v3(vec, axismtx[2]); break; } if (angle && (mode & CON_NOFLIP) == 0 && hasNumInput(&t->num) == 0) { if (dot_v3v3(vec, t->viewinv[2]) > 0.0f) { *angle = -(*angle); } } } } /*--------------------- INTERNAL SETUP CALLS ------------------*/ void setConstraint(TransInfo *t, float space[3][3], int mode, const char text[]) { BLI_strncpy(t->con.text + 1, text, sizeof(t->con.text) - 1); copy_m3_m3(t->con.mtx, space); t->con.mode = mode; getConstraintMatrix(t); startConstraint(t); t->con.drawExtra = NULL; t->con.applyVec = applyAxisConstraintVec; t->con.applySize = applyAxisConstraintSize; t->con.applyRot = applyAxisConstraintRot; t->redraw = TREDRAW_HARD; } /* applies individual td->axismtx constraints */ void setAxisMatrixConstraint(TransInfo *t, int mode, const char text[]) { TransDataContainer *tc = t->data_container; if (t->data_len_all == 1) { float axismtx[3][3]; if (t->flag & T_EDIT) { mul_m3_m3m3(axismtx, tc->mat3_unit, tc->data->axismtx); } else { copy_m3_m3(axismtx, tc->data->axismtx); } setConstraint(t, axismtx, mode, text); } else { BLI_strncpy(t->con.text + 1, text, sizeof(t->con.text) - 1); copy_m3_m3(t->con.mtx, tc->data->axismtx); t->con.mode = mode; getConstraintMatrix(t); startConstraint(t); t->con.drawExtra = drawObjectConstraint; t->con.applyVec = applyObjectConstraintVec; t->con.applySize = applyObjectConstraintSize; t->con.applyRot = applyObjectConstraintRot; t->redraw = TREDRAW_HARD; } } void setLocalConstraint(TransInfo *t, int mode, const char text[]) { /* edit-mode now allows local transforms too */ if (t->flag & T_EDIT) { /* Use the active (first) edit object. */ TransDataContainer *tc = t->data_container; setConstraint(t, tc->mat3_unit, mode, text); } else { setAxisMatrixConstraint(t, mode, text); } } /* * Set the constraint according to the user defined orientation * * ftext is a format string passed to BLI_snprintf. It will add the name of * the orientation where %s is (logically). */ void setUserConstraint(TransInfo *t, short orientation, int mode, const char ftext[]) { char text[256]; switch (orientation) { case V3D_MANIP_GLOBAL: { float mtx[3][3]; BLI_snprintf(text, sizeof(text), ftext, IFACE_("global")); unit_m3(mtx); setConstraint(t, mtx, mode, text); break; } case V3D_MANIP_LOCAL: BLI_snprintf(text, sizeof(text), ftext, IFACE_("local")); setLocalConstraint(t, mode, text); break; case V3D_MANIP_NORMAL: BLI_snprintf(text, sizeof(text), ftext, IFACE_("normal")); if (checkUseAxisMatrix(t)) { setAxisMatrixConstraint(t, mode, text); } else { setConstraint(t, t->spacemtx, mode, text); } break; case V3D_MANIP_VIEW: BLI_snprintf(text, sizeof(text), ftext, IFACE_("view")); setConstraint(t, t->spacemtx, mode, text); break; case V3D_MANIP_CURSOR: BLI_snprintf(text, sizeof(text), ftext, IFACE_("cursor")); setConstraint(t, t->spacemtx, mode, text); break; case V3D_MANIP_GIMBAL: BLI_snprintf(text, sizeof(text), ftext, IFACE_("gimbal")); setConstraint(t, t->spacemtx, mode, text); break; case V3D_MANIP_CUSTOM: { char orientation_str[128]; BLI_snprintf(orientation_str, sizeof(orientation_str), "%s \"%s\"", IFACE_("custom orientation"), t->custom_orientation->name); BLI_snprintf(text, sizeof(text), ftext, orientation_str); setConstraint(t, t->spacemtx, mode, text); break; } } t->con.orientation = orientation; t->con.mode |= CON_USER; } /*----------------- DRAWING CONSTRAINTS -------------------*/ void drawConstraint(TransInfo *t) { TransCon *tc = &(t->con); if (!ELEM(t->spacetype, SPACE_VIEW3D, SPACE_IMAGE, SPACE_NODE)) return; if (!(tc->mode & CON_APPLY)) return; if (t->flag & T_NO_CONSTRAINT) return; if (tc->drawExtra) { tc->drawExtra(t); } else { if (tc->mode & CON_SELECT) { float vec[3]; int depth_test_enabled; convertViewVec(t, vec, (t->mval[0] - t->con.imval[0]), (t->mval[1] - t->con.imval[1])); add_v3_v3(vec, t->center_global); drawLine(t, t->center_global, tc->mtx[0], 'X', 0); drawLine(t, t->center_global, tc->mtx[1], 'Y', 0); drawLine(t, t->center_global, tc->mtx[2], 'Z', 0); depth_test_enabled = GPU_depth_test_enabled(); if (depth_test_enabled) GPU_depth_test(false); const uint shdr_pos = GWN_vertformat_attr_add(immVertexFormat(), "pos", GWN_COMP_F32, 3, GWN_FETCH_FLOAT); immBindBuiltinProgram(GPU_SHADER_3D_LINE_DASHED_UNIFORM_COLOR); float viewport_size[4]; GPU_viewport_size_get_f(viewport_size); immUniform2f("viewport_size", viewport_size[2], viewport_size[3]); immUniform1i("colors_len", 0); /* "simple" mode */ immUniformColor4f(1.0f, 1.0f, 1.0f, 1.0f); immUniform1f("dash_width", 2.0f); immUniform1f("dash_factor", 0.5f); immBegin(GWN_PRIM_LINES, 2); immVertex3fv(shdr_pos, t->center_global); immVertex3fv(shdr_pos, vec); immEnd(); immUnbindProgram(); if (depth_test_enabled) GPU_depth_test(true); } if (tc->mode & CON_AXIS0) { drawLine(t, t->center_global, tc->mtx[0], 'X', DRAWLIGHT); } if (tc->mode & CON_AXIS1) { drawLine(t, t->center_global, tc->mtx[1], 'Y', DRAWLIGHT); } if (tc->mode & CON_AXIS2) { drawLine(t, t->center_global, tc->mtx[2], 'Z', DRAWLIGHT); } } } /* called from drawview.c, as an extra per-window draw option */ void drawPropCircle(const struct bContext *C, TransInfo *t) { if (t->flag & T_PROP_EDIT) { RegionView3D *rv3d = CTX_wm_region_view3d(C); float tmat[4][4], imat[4][4]; int depth_test_enabled; if (t->spacetype == SPACE_VIEW3D && rv3d != NULL) { copy_m4_m4(tmat, rv3d->viewmat); invert_m4_m4(imat, tmat); } else { unit_m4(tmat); unit_m4(imat); } gpuPushMatrix(); if (t->spacetype == SPACE_VIEW3D) { /* pass */ } else if (t->spacetype == SPACE_IMAGE) { gpuScale2f(1.0f / t->aspect[0], 1.0f / t->aspect[1]); } else if (ELEM(t->spacetype, SPACE_IPO, SPACE_ACTION)) { /* only scale y */ rcti *mask = &t->ar->v2d.mask; rctf *datamask = &t->ar->v2d.cur; float xsize = BLI_rctf_size_x(datamask); float ysize = BLI_rctf_size_y(datamask); float xmask = BLI_rcti_size_x(mask); float ymask = BLI_rcti_size_y(mask); gpuScale2f(1.0f, (ysize / xsize) * (xmask / ymask)); } depth_test_enabled = GPU_depth_test_enabled(); if (depth_test_enabled) GPU_depth_test(false); unsigned int pos = GWN_vertformat_attr_add(immVertexFormat(), "pos", GWN_COMP_F32, 3, GWN_FETCH_FLOAT); immBindBuiltinProgram(GPU_SHADER_3D_UNIFORM_COLOR); immUniformThemeColor(TH_GRID); set_inverted_drawing(1); imm_drawcircball(t->center_global, t->prop_size, imat, pos); set_inverted_drawing(0); immUnbindProgram(); if (depth_test_enabled) GPU_depth_test(true); gpuPopMatrix(); } } static void drawObjectConstraint(TransInfo *t) { /* Draw the first one lighter because that's the one who controls the others. * Meaning the transformation is projected on that one and just copied on the others * constraint space. * In a nutshell, the object with light axis is controlled by the user and the others follow. * Without drawing the first light, users have little clue what they are doing. */ short options = DRAWLIGHT; int i; float tmp_axismtx[3][3]; FOREACH_TRANS_DATA_CONTAINER (t, tc) { TransData *td = tc->data; for (i = 0; i < tc->data_len; i++, td++) { float co[3]; float (*axismtx)[3]; if (t->flag & T_PROP_EDIT) { /* we're sorted, so skip the rest */ if (td->factor == 0.0f) { break; } } if (t->options & CTX_GPENCIL_STROKES) { /* only draw a constraint line for one point, otherwise we can't see anything */ if ((options & DRAWLIGHT) == 0) { break; } } if (t->flag & T_OBJECT) { copy_v3_v3(co, td->ob->obmat[3]); axismtx = td->axismtx; } else if (t->flag & T_EDIT) { mul_v3_m4v3(co, tc->mat, td->center); mul_m3_m3m3(tmp_axismtx, tc->mat3_unit, td->axismtx); axismtx = tmp_axismtx; } else if (t->flag & T_POSE) { mul_v3_m4v3(co, tc->mat, td->center); axismtx = td->axismtx; } else { copy_v3_v3(co, td->center); axismtx = td->axismtx; } if (t->con.mode & CON_AXIS0) { drawLine(t, co, axismtx[0], 'X', options); } if (t->con.mode & CON_AXIS1) { drawLine(t, co, axismtx[1], 'Y', options); } if (t->con.mode & CON_AXIS2) { drawLine(t, co, axismtx[2], 'Z', options); } options &= ~DRAWLIGHT; } } } /*--------------------- START / STOP CONSTRAINTS ---------------------- */ void startConstraint(TransInfo *t) { t->con.mode |= CON_APPLY; *t->con.text = ' '; t->num.idx_max = min_ii(getConstraintSpaceDimension(t) - 1, t->idx_max); } void stopConstraint(TransInfo *t) { t->con.mode &= ~(CON_APPLY | CON_SELECT); *t->con.text = '\0'; t->num.idx_max = t->idx_max; } void getConstraintMatrix(TransInfo *t) { float mat[3][3]; invert_m3_m3(t->con.imtx, t->con.mtx); unit_m3(t->con.pmtx); if (!(t->con.mode & CON_AXIS0)) { zero_v3(t->con.pmtx[0]); } if (!(t->con.mode & CON_AXIS1)) { zero_v3(t->con.pmtx[1]); } if (!(t->con.mode & CON_AXIS2)) { zero_v3(t->con.pmtx[2]); } mul_m3_m3m3(mat, t->con.pmtx, t->con.imtx); mul_m3_m3m3(t->con.pmtx, t->con.mtx, mat); } /*------------------------- MMB Select -------------------------------*/ void initSelectConstraint(TransInfo *t, float mtx[3][3]) { copy_m3_m3(t->con.mtx, mtx); t->con.mode |= CON_APPLY; t->con.mode |= CON_SELECT; setNearestAxis(t); t->con.drawExtra = NULL; t->con.applyVec = applyAxisConstraintVec; t->con.applySize = applyAxisConstraintSize; t->con.applyRot = applyAxisConstraintRot; } void selectConstraint(TransInfo *t) { if (t->con.mode & CON_SELECT) { setNearestAxis(t); startConstraint(t); } } void postSelectConstraint(TransInfo *t) { if (!(t->con.mode & CON_SELECT)) return; t->con.mode &= ~CON_AXIS0; t->con.mode &= ~CON_AXIS1; t->con.mode &= ~CON_AXIS2; t->con.mode &= ~CON_SELECT; setNearestAxis(t); startConstraint(t); t->redraw = TREDRAW_HARD; } static void setNearestAxis2d(TransInfo *t) { /* no correction needed... just use whichever one is lower */ if (abs(t->mval[0] - t->con.imval[0]) < abs(t->mval[1] - t->con.imval[1])) { t->con.mode |= CON_AXIS1; BLI_strncpy(t->con.text, IFACE_(" along Y axis"), sizeof(t->con.text)); } else { t->con.mode |= CON_AXIS0; BLI_strncpy(t->con.text, IFACE_(" along X axis"), sizeof(t->con.text)); } } static void setNearestAxis3d(TransInfo *t) { float zfac; float mvec[3], proj[3]; float len[3]; int i; /* calculate mouse movement */ mvec[0] = (float)(t->mval[0] - t->con.imval[0]); mvec[1] = (float)(t->mval[1] - t->con.imval[1]); mvec[2] = 0.0f; /* we need to correct axis length for the current zoomlevel of view, * this to prevent projected values to be clipped behind the camera * and to overflow the short integers. * The formula used is a bit stupid, just a simplification of the subtraction * of two 2D points 30 pixels apart (that's the last factor in the formula) after * projecting them with ED_view3d_win_to_delta and then get the length of that vector. */ zfac = mul_project_m4_v3_zfac(t->persmat, t->center_global); zfac = len_v3(t->persinv[0]) * 2.0f / t->ar->winx * zfac * 30.0f; for (i = 0; i < 3; i++) { float axis[3], axis_2d[2]; copy_v3_v3(axis, t->con.mtx[i]); mul_v3_fl(axis, zfac); /* now we can project to get window coordinate */ add_v3_v3(axis, t->center_global); projectFloatView(t, axis, axis_2d); sub_v2_v2v2(axis, axis_2d, t->center2d); axis[2] = 0.0f; if (normalize_v3(axis) > 1e-3f) { project_v3_v3v3(proj, mvec, axis); sub_v3_v3v3(axis, mvec, proj); len[i] = normalize_v3(axis); } else { len[i] = 1e10f; } } if (len[0] <= len[1] && len[0] <= len[2]) { if (t->modifiers & MOD_CONSTRAINT_PLANE) { t->con.mode |= (CON_AXIS1 | CON_AXIS2); BLI_snprintf(t->con.text, sizeof(t->con.text), IFACE_(" locking %s X axis"), t->spacename); } else { t->con.mode |= CON_AXIS0; BLI_snprintf(t->con.text, sizeof(t->con.text), IFACE_(" along %s X axis"), t->spacename); } } else if (len[1] <= len[0] && len[1] <= len[2]) { if (t->modifiers & MOD_CONSTRAINT_PLANE) { t->con.mode |= (CON_AXIS0 | CON_AXIS2); BLI_snprintf(t->con.text, sizeof(t->con.text), IFACE_(" locking %s Y axis"), t->spacename); } else { t->con.mode |= CON_AXIS1; BLI_snprintf(t->con.text, sizeof(t->con.text), IFACE_(" along %s Y axis"), t->spacename); } } else if (len[2] <= len[1] && len[2] <= len[0]) { if (t->modifiers & MOD_CONSTRAINT_PLANE) { t->con.mode |= (CON_AXIS0 | CON_AXIS1); BLI_snprintf(t->con.text, sizeof(t->con.text), IFACE_(" locking %s Z axis"), t->spacename); } else { t->con.mode |= CON_AXIS2; BLI_snprintf(t->con.text, sizeof(t->con.text), IFACE_(" along %s Z axis"), t->spacename); } } } void setNearestAxis(TransInfo *t) { /* clear any prior constraint flags */ t->con.mode &= ~CON_AXIS0; t->con.mode &= ~CON_AXIS1; t->con.mode &= ~CON_AXIS2; /* constraint setting - depends on spacetype */ if (t->spacetype == SPACE_VIEW3D) { /* 3d-view */ setNearestAxis3d(t); } else { /* assume that this means a 2D-Editor */ setNearestAxis2d(t); } getConstraintMatrix(t); } /*-------------- HELPER FUNCTIONS ----------------*/ char constraintModeToChar(TransInfo *t) { if ((t->con.mode & CON_APPLY) == 0) { return '\0'; } switch (t->con.mode & (CON_AXIS0 | CON_AXIS1 | CON_AXIS2)) { case (CON_AXIS0): case (CON_AXIS1 | CON_AXIS2): return 'X'; case (CON_AXIS1): case (CON_AXIS0 | CON_AXIS2): return 'Y'; case (CON_AXIS2): case (CON_AXIS0 | CON_AXIS1): return 'Z'; default: return '\0'; } } bool isLockConstraint(TransInfo *t) { int mode = t->con.mode; if ((mode & (CON_AXIS0 | CON_AXIS1)) == (CON_AXIS0 | CON_AXIS1)) return true; if ((mode & (CON_AXIS1 | CON_AXIS2)) == (CON_AXIS1 | CON_AXIS2)) return true; if ((mode & (CON_AXIS0 | CON_AXIS2)) == (CON_AXIS0 | CON_AXIS2)) return true; return false; } /* * Returns the dimension of the constraint space. * * For that reason, the flags always needs to be set to properly evaluate here, * even if they aren't actually used in the callback function. (Which could happen * for weird constraints not yet designed. Along a path for example.) */ int getConstraintSpaceDimension(TransInfo *t) { int n = 0; if (t->con.mode & CON_AXIS0) n++; if (t->con.mode & CON_AXIS1) n++; if (t->con.mode & CON_AXIS2) n++; return n; /* * Someone willing to do it cryptically could do the following instead: * * return t->con & (CON_AXIS0|CON_AXIS1|CON_AXIS2); * * Based on the assumptions that the axis flags are one after the other and start at 1 */ }