/* * $Id$ * * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * Contributor(s): none yet. * * ***** END GPL LICENSE BLOCK ***** */ /** \file blender/editors/transform/transform_input.c * \ingroup edtransform */ #include #include #include "DNA_screen_types.h" #include "BLI_math.h" #include "BLI_utildefines.h" #include "WM_types.h" #include "transform.h" #include "MEM_guardedalloc.h" /* ************************** INPUT FROM MOUSE *************************** */ static void InputVector(TransInfo *t, MouseInput *mi, const int mval[2], float output[3]) { float vec[3], dvec[3]; if(mi->precision) { /* calculate the main translation and the precise one separate */ convertViewVec(t, dvec, (mval[0] - mi->precision_mval[0]), (mval[1] - mi->precision_mval[1])); mul_v3_fl(dvec, 0.1f); convertViewVec(t, vec, (mi->precision_mval[0] - t->imval[0]), (mi->precision_mval[1] - t->imval[1])); add_v3_v3v3(output, vec, dvec); } else { convertViewVec(t, output, (mval[0] - t->imval[0]), (mval[1] - t->imval[1])); } } static void InputSpring(TransInfo *UNUSED(t), MouseInput *mi, const int mval[2], float output[3]) { float ratio, precise_ratio, dx, dy; if(mi->precision) { /* calculate ratio for shiftkey pos, and for total, and blend these for precision */ dx = (float)(mi->center[0] - mi->precision_mval[0]); dy = (float)(mi->center[1] - mi->precision_mval[1]); ratio = (float)sqrt( dx*dx + dy*dy); dx= (float)(mi->center[0] - mval[0]); dy= (float)(mi->center[1] - mval[1]); precise_ratio = (float)sqrt( dx*dx + dy*dy); ratio = (ratio + (precise_ratio - ratio) / 10.0f) / mi->factor; } else { dx = (float)(mi->center[0] - mval[0]); dy = (float)(mi->center[1] - mval[1]); ratio = (float)sqrt( dx*dx + dy*dy) / mi->factor; } output[0] = ratio; } static void InputSpringFlip(TransInfo *t, MouseInput *mi, const int mval[2], float output[3]) { InputSpring(t, mi, mval, output); /* flip scale */ /* values can become really big when zoomed in so use longs [#26598] */ if ((long long int)(mi->center[0] - mval[0]) * (long long int)(mi->center[0] - mi->imval[0]) + (long long int)(mi->center[1] - mval[1]) * (long long int)(mi->center[1] - mi->imval[1]) < 0) { output[0] *= -1.0f; } } static void InputTrackBall(TransInfo *UNUSED(t), MouseInput *mi, const int mval[2], float output[3]) { if(mi->precision) { output[0] = ( mi->imval[1] - mi->precision_mval[1] ) + ( mi->precision_mval[1] - mval[1] ) * 0.1f; output[1] = ( mi->precision_mval[0] - mi->imval[0] ) + ( mval[0] - mi->precision_mval[0] ) * 0.1f; } else { output[0] = (float)( mi->imval[1] - mval[1] ); output[1] = (float)( mval[0] - mi->imval[0] ); } output[0] *= mi->factor; output[1] *= mi->factor; } static void InputHorizontalRatio(TransInfo *t, MouseInput *mi, const int mval[2], float output[3]) { float x, pad; pad = t->ar->winx / 10; if (mi->precision) { /* deal with Shift key by adding motion / 10 to motion before shift press */ x = mi->precision_mval[0] + (float)(mval[0] - mi->precision_mval[0]) / 10.0f; } else { x = mval[0]; } output[0] = (x - pad) / (t->ar->winx - 2 * pad); } static void InputHorizontalAbsolute(TransInfo *t, MouseInput *mi, const int mval[2], float output[3]) { float vec[3]; InputVector(t, mi, mval, vec); project_v3_v3v3(vec, vec, t->viewinv[0]); output[0] = dot_v3v3(t->viewinv[0], vec) * 2.0f; } static void InputVerticalRatio(TransInfo *t, MouseInput *mi, const int mval[2], float output[3]) { float y, pad; pad = t->ar->winy / 10; if (mi->precision) { /* deal with Shift key by adding motion / 10 to motion before shift press */ y = mi->precision_mval[1] + (float)(mval[1] - mi->precision_mval[1]) / 10.0f; } else { y = mval[0]; } output[0] = (y - pad) / (t->ar->winy - 2 * pad); } static void InputVerticalAbsolute(TransInfo *t, MouseInput *mi, const int mval[2], float output[3]) { float vec[3]; InputVector(t, mi, mval, vec); project_v3_v3v3(vec, vec, t->viewinv[1]); output[0] = dot_v3v3(t->viewinv[1], vec) * 2.0f; } void setCustomPoints(TransInfo *UNUSED(t), MouseInput *mi, int start[2], int end[2]) { int *data; if (mi->data == NULL) { mi->data = MEM_callocN(sizeof(int) * 4, "custom points"); } data = mi->data; data[0] = start[0]; data[1] = start[1]; data[2] = end[0]; data[3] = end[1]; } static void InputCustomRatio(TransInfo *UNUSED(t), MouseInput *mi, const int mval[2], float output[3]) { float length; float distance; int *data = mi->data; int dx, dy; if (data) { dx = data[2] - data[0]; dy = data[3] - data[1]; length = (float)sqrtf(dx*dx + dy*dy); if (mi->precision) { /* deal with Shift key by adding motion / 10 to motion before shift press */ int mdx, mdy; mdx = (mi->precision_mval[0] + (float)(mval[0] - mi->precision_mval[0]) / 10.0f) - data[2]; mdy = (mi->precision_mval[1] + (float)(mval[1] - mi->precision_mval[1]) / 10.0f) - data[3]; distance = (length != 0.0f)? (mdx*dx + mdy*dy) / length: 0.0f; } else { int mdx, mdy; mdx = mval[0] - data[2]; mdy = mval[1] - data[3]; distance = (length != 0.0f)? (mdx*dx + mdy*dy) / length: 0.0f; } output[0] = (length != 0.0f)? distance / length: 0.0f; } } static void InputAngle(TransInfo *UNUSED(t), MouseInput *mi, const int mval[2], float output[3]) { double dx2 = mval[0] - mi->center[0]; double dy2 = mval[1] - mi->center[1]; double B = sqrt(dx2*dx2+dy2*dy2); double dx1 = mi->imval[0] - mi->center[0]; double dy1 = mi->imval[1] - mi->center[1]; double A = sqrt(dx1*dx1+dy1*dy1); double dx3 = mval[0] - mi->imval[0]; double dy3 = mval[1] - mi->imval[1]; double *angle = mi->data; /* use doubles here, to make sure a "1.0" (no rotation) doesnt become 9.999999e-01, which gives 0.02 for acos */ double deler = ((dx1*dx1+dy1*dy1)+(dx2*dx2+dy2*dy2)-(dx3*dx3+dy3*dy3)) / (2.0 * ((A*B)?(A*B):1.0)); /* ((A*B)?(A*B):1.0) this takes care of potential divide by zero errors */ float dphi; dphi = saacos((float)deler); if( (dx1*dy2-dx2*dy1)>0.0 ) dphi= -dphi; /* If the angle is zero, because of lack of precision close to the 1.0 value in acos * approximate the angle with the opposite side of the normalized triangle * This is a good approximation here since the smallest acos value seems to be around * 0.02 degree and lower values don't even have a 0.01% error compared to the approximation * */ if (dphi == 0) { double dx, dy; dx2 /= A; dy2 /= A; dx1 /= B; dy1 /= B; dx = dx1 - dx2; dy = dy1 - dy2; dphi = sqrt(dx*dx + dy*dy); if( (dx1*dy2-dx2*dy1)>0.0 ) dphi= -dphi; } if(mi->precision) dphi = dphi/30.0f; /* if no delta angle, don't update initial position */ if (dphi != 0) { mi->imval[0] = mval[0]; mi->imval[1] = mval[1]; } *angle += (double)dphi; output[0] = *angle; } void initMouseInput(TransInfo *UNUSED(t), MouseInput *mi, int center[2], int mval[2]) { mi->factor = 0; mi->precision = 0; mi->center[0] = center[0]; mi->center[1] = center[1]; mi->imval[0] = mval[0]; mi->imval[1] = mval[1]; mi->post = NULL; } static void calcSpringFactor(MouseInput *mi) { mi->factor = (float)sqrt( ( ((float)(mi->center[1] - mi->imval[1]))*((float)(mi->center[1] - mi->imval[1])) + ((float)(mi->center[0] - mi->imval[0]))*((float)(mi->center[0] - mi->imval[0])) ) ); if (mi->factor==0.0f) mi->factor= 1.0f; /* prevent Inf */ } void initMouseInputMode(TransInfo *t, MouseInput *mi, MouseInputMode mode) { switch(mode) { case INPUT_VECTOR: mi->apply = InputVector; t->helpline = HLP_NONE; break; case INPUT_SPRING: calcSpringFactor(mi); mi->apply = InputSpring; t->helpline = HLP_SPRING; break; case INPUT_SPRING_FLIP: calcSpringFactor(mi); mi->apply = InputSpringFlip; t->helpline = HLP_SPRING; break; case INPUT_ANGLE: mi->data = MEM_callocN(sizeof(double), "angle accumulator"); mi->apply = InputAngle; t->helpline = HLP_ANGLE; break; case INPUT_TRACKBALL: /* factor has to become setting or so */ mi->factor = 0.01f; mi->apply = InputTrackBall; t->helpline = HLP_TRACKBALL; break; case INPUT_HORIZONTAL_RATIO: mi->factor = (float)(mi->center[0] - mi->imval[0]); mi->apply = InputHorizontalRatio; t->helpline = HLP_HARROW; break; case INPUT_HORIZONTAL_ABSOLUTE: mi->apply = InputHorizontalAbsolute; t->helpline = HLP_HARROW; break; case INPUT_VERTICAL_RATIO: mi->apply = InputVerticalRatio; t->helpline = HLP_VARROW; break; case INPUT_VERTICAL_ABSOLUTE: mi->apply = InputVerticalAbsolute; t->helpline = HLP_VARROW; break; case INPUT_CUSTOM_RATIO: mi->apply = InputCustomRatio; t->helpline = HLP_NONE; break; case INPUT_NONE: default: mi->apply = NULL; break; } /* bootstrap mouse input with initial values */ applyMouseInput(t, mi, mi->imval, t->values); } void setInputPostFct(MouseInput *mi, void (*post)(struct TransInfo *, float [3])) { mi->post = post; } void applyMouseInput(TransInfo *t, MouseInput *mi, const int mval[2], float output[3]) { if (mi->apply != NULL) { mi->apply(t, mi, mval, output); } if (mi->post) { mi->post(t, output); } } int handleMouseInput(TransInfo *t, MouseInput *mi, wmEvent *event) { int redraw = TREDRAW_NOTHING; switch (event->type) { case LEFTSHIFTKEY: case RIGHTSHIFTKEY: if (event->val==KM_PRESS) { t->modifiers |= MOD_PRECISION; /* shift is modifier for higher precision transform * store the mouse position where the normal movement ended */ VECCOPY2D(mi->precision_mval, event->mval); mi->precision = 1; } else { t->modifiers &= ~MOD_PRECISION; mi->precision = 0; } redraw = TREDRAW_HARD; break; } return redraw; }