/* SPDX-License-Identifier: GPL-2.0-or-later */ /** \file * \ingroup edtransform */ #include #include #include "DNA_screen_types.h" #include "BKE_context.h" #include "BLI_math.h" #include "BLI_utildefines.h" #include "WM_api.h" #include "WM_types.h" #include "transform.h" #include "MEM_guardedalloc.h" /* -------------------------------------------------------------------- */ /** \name Callbacks for #MouseInput.apply * \{ */ /** Callback for #INPUT_VECTOR */ static void InputVector(TransInfo *t, MouseInput *mi, const double mval[2], float output[3]) { convertViewVec(t, output, mval[0] - mi->imval[0], mval[1] - mi->imval[1]); } /** Callback for #INPUT_SPRING */ static void InputSpring(TransInfo *UNUSED(t), MouseInput *mi, const double mval[2], float output[3]) { double dx, dy; float ratio; dx = ((double)mi->center[0] - mval[0]); dy = ((double)mi->center[1] - mval[1]); ratio = hypot(dx, dy) / (double)mi->factor; output[0] = ratio; } /** Callback for #INPUT_SPRING_FLIP */ static void InputSpringFlip(TransInfo *t, MouseInput *mi, const double mval[2], float output[3]) { InputSpring(t, mi, mval, output); /* flip scale */ /* values can become really big when zoomed in so use longs T26598. */ if (((int64_t)((int)mi->center[0] - mval[0]) * (int64_t)((int)mi->center[0] - mi->imval[0]) + (int64_t)((int)mi->center[1] - mval[1]) * (int64_t)((int)mi->center[1] - mi->imval[1])) < 0) { output[0] *= -1.0f; } } /** Callback for #INPUT_SPRING_DELTA */ static void InputSpringDelta(TransInfo *t, MouseInput *mi, const double mval[2], float output[3]) { InputSpring(t, mi, mval, output); output[0] -= 1.0f; } /** Callback for #INPUT_TRACKBALL */ static void InputTrackBall(TransInfo *UNUSED(t), MouseInput *mi, const double mval[2], float output[3]) { output[0] = (float)(mi->imval[1] - mval[1]); output[1] = (float)(mval[0] - mi->imval[0]); output[0] *= mi->factor; output[1] *= mi->factor; } /** Callback for #INPUT_HORIZONTAL_RATIO */ static void InputHorizontalRatio(TransInfo *t, MouseInput *mi, const double mval[2], float output[3]) { const int winx = t->region ? t->region->winx : 1; output[0] = ((mval[0] - mi->imval[0]) / winx) * 2.0f; } /** Callback for #INPUT_HORIZONTAL_ABSOLUTE */ static void InputHorizontalAbsolute(TransInfo *t, MouseInput *mi, const double mval[2], float output[3]) { float vec[3]; InputVector(t, mi, mval, vec); project_v3_v3v3(vec, vec, t->viewinv[0]); output[0] = dot_v3v3(t->viewinv[0], vec) * 2.0f; } static void InputVerticalRatio(TransInfo *t, MouseInput *mi, const double mval[2], float output[3]) { const int winy = t->region ? t->region->winy : 1; /* Dragging up increases (matching viewport zoom). */ output[0] = ((mval[1] - mi->imval[1]) / winy) * 2.0f; } /** Callback for #INPUT_VERTICAL_ABSOLUTE */ static void InputVerticalAbsolute(TransInfo *t, MouseInput *mi, const double mval[2], float output[3]) { float vec[3]; InputVector(t, mi, mval, vec); project_v3_v3v3(vec, vec, t->viewinv[1]); /* Dragging up increases (matching viewport zoom). */ output[0] = dot_v3v3(t->viewinv[1], vec) * 2.0f; } /** Callback for #INPUT_CUSTOM_RATIO_FLIP */ static void InputCustomRatioFlip(TransInfo *UNUSED(t), MouseInput *mi, const double mval[2], float output[3]) { double length; double distance; double dx, dy; const int *data = mi->data; if (data) { int mdx, mdy; dx = data[2] - data[0]; dy = data[3] - data[1]; length = hypot(dx, dy); mdx = mval[0] - data[2]; mdy = mval[1] - data[3]; distance = (length != 0.0) ? (mdx * dx + mdy * dy) / length : 0.0; output[0] = (length != 0.0) ? (double)(distance / length) : 0.0; } } /** Callback for #INPUT_CUSTOM_RATIO */ static void InputCustomRatio(TransInfo *t, MouseInput *mi, const double mval[2], float output[3]) { InputCustomRatioFlip(t, mi, mval, output); output[0] = -output[0]; } struct InputAngle_Data { double angle; double mval_prev[2]; }; /** Callback for #INPUT_ANGLE */ static void InputAngle(TransInfo *UNUSED(t), MouseInput *mi, const double mval[2], float output[3]) { struct InputAngle_Data *data = mi->data; float dir_prev[2], dir_curr[2], mi_center[2]; copy_v2_v2(mi_center, mi->center); sub_v2_v2v2(dir_prev, (const float[2]){UNPACK2(data->mval_prev)}, mi_center); sub_v2_v2v2(dir_curr, (const float[2]){UNPACK2(mval)}, mi_center); if (normalize_v2(dir_prev) && normalize_v2(dir_curr)) { float dphi = angle_normalized_v2v2(dir_prev, dir_curr); if (cross_v2v2(dir_prev, dir_curr) > 0.0f) { dphi = -dphi; } data->angle += ((double)dphi) * (mi->precision ? (double)mi->precision_factor : 1.0); data->mval_prev[0] = mval[0]; data->mval_prev[1] = mval[1]; } output[0] = data->angle; } static void InputAngleSpring(TransInfo *t, MouseInput *mi, const double mval[2], float output[3]) { float toutput[3]; InputAngle(t, mi, mval, output); InputSpring(t, mi, mval, toutput); output[1] = toutput[0]; } /** \} */ /* -------------------------------------------------------------------- */ /** \name Custom 2D Start/End Coordinate API * * - #INPUT_CUSTOM_RATIO * - #INPUT_CUSTOM_RATIO_FLIP * \{ */ void setCustomPoints(TransInfo *UNUSED(t), MouseInput *mi, const int mval_start[2], const int mval_end[2]) { int *data; mi->data = MEM_reallocN(mi->data, sizeof(int[4])); data = mi->data; data[0] = mval_start[0]; data[1] = mval_start[1]; data[2] = mval_end[0]; data[3] = mval_end[1]; } void setCustomPointsFromDirection(TransInfo *t, MouseInput *mi, const float dir[2]) { BLI_ASSERT_UNIT_V2(dir); const int win_axis = t->region ? ((abs((int)(t->region->winx * dir[0])) + abs((int)(t->region->winy * dir[1]))) / 2) : 1; const int mval_start[2] = { mi->imval[0] + dir[0] * win_axis, mi->imval[1] + dir[1] * win_axis, }; const int mval_end[2] = {mi->imval[0], mi->imval[1]}; setCustomPoints(t, mi, mval_start, mval_end); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Setup & Handle Mouse Input * \{ */ void initMouseInput(TransInfo *UNUSED(t), MouseInput *mi, const float center[2], const int mval[2], const bool precision) { mi->factor = 0; mi->precision = precision; mi->center[0] = center[0]; mi->center[1] = center[1]; mi->imval[0] = mval[0]; mi->imval[1] = mval[1]; mi->post = NULL; } static void calcSpringFactor(MouseInput *mi) { mi->factor = sqrtf( ((float)(mi->center[1] - mi->imval[1])) * ((float)(mi->center[1] - mi->imval[1])) + ((float)(mi->center[0] - mi->imval[0])) * ((float)(mi->center[0] - mi->imval[0]))); if (mi->factor == 0.0f) { mi->factor = 1.0f; /* prevent Inf */ } } void initMouseInputMode(TransInfo *t, MouseInput *mi, MouseInputMode mode) { /* In case we allocate a new value. */ void *mi_data_prev = mi->data; mi->use_virtual_mval = true; mi->precision_factor = 1.0f / 10.0f; switch (mode) { case INPUT_VECTOR: mi->apply = InputVector; t->helpline = HLP_NONE; break; case INPUT_SPRING: calcSpringFactor(mi); mi->apply = InputSpring; t->helpline = HLP_SPRING; break; case INPUT_SPRING_FLIP: calcSpringFactor(mi); mi->apply = InputSpringFlip; t->helpline = HLP_SPRING; break; case INPUT_SPRING_DELTA: calcSpringFactor(mi); mi->apply = InputSpringDelta; t->helpline = HLP_SPRING; break; case INPUT_ANGLE: case INPUT_ANGLE_SPRING: { struct InputAngle_Data *data; mi->use_virtual_mval = false; mi->precision_factor = 1.0f / 30.0f; data = MEM_callocN(sizeof(struct InputAngle_Data), "angle accumulator"); data->mval_prev[0] = mi->imval[0]; data->mval_prev[1] = mi->imval[1]; mi->data = data; if (mode == INPUT_ANGLE) { mi->apply = InputAngle; } else { calcSpringFactor(mi); mi->apply = InputAngleSpring; } t->helpline = HLP_ANGLE; break; } case INPUT_TRACKBALL: mi->precision_factor = 1.0f / 30.0f; /* factor has to become setting or so */ mi->factor = 0.01f; mi->apply = InputTrackBall; t->helpline = HLP_TRACKBALL; break; case INPUT_HORIZONTAL_RATIO: mi->apply = InputHorizontalRatio; t->helpline = HLP_HARROW; break; case INPUT_HORIZONTAL_ABSOLUTE: mi->apply = InputHorizontalAbsolute; t->helpline = HLP_HARROW; break; case INPUT_VERTICAL_RATIO: mi->apply = InputVerticalRatio; t->helpline = HLP_VARROW; break; case INPUT_VERTICAL_ABSOLUTE: mi->apply = InputVerticalAbsolute; t->helpline = HLP_VARROW; break; case INPUT_CUSTOM_RATIO: mi->apply = InputCustomRatio; t->helpline = HLP_CARROW; break; case INPUT_CUSTOM_RATIO_FLIP: mi->apply = InputCustomRatioFlip; t->helpline = HLP_CARROW; break; case INPUT_NONE: default: mi->apply = NULL; break; } /* setup for the mouse cursor: either set a custom one, * or hide it if it will be drawn with the helpline */ wmWindow *win = CTX_wm_window(t->context); switch (t->helpline) { case HLP_NONE: /* INPUT_VECTOR, INPUT_CUSTOM_RATIO, INPUT_CUSTOM_RATIO_FLIP */ if (t->flag & T_MODAL) { t->flag |= T_MODAL_CURSOR_SET; WM_cursor_modal_set(win, WM_CURSOR_NSEW_SCROLL); } break; case HLP_SPRING: case HLP_ANGLE: case HLP_TRACKBALL: case HLP_HARROW: case HLP_VARROW: case HLP_CARROW: if (t->flag & T_MODAL) { t->flag |= T_MODAL_CURSOR_SET; WM_cursor_modal_set(win, WM_CURSOR_NONE); } break; default: break; } /* if we've allocated new data, free the old data * less hassle than checking before every alloc above */ if (mi_data_prev && (mi_data_prev != mi->data)) { MEM_freeN(mi_data_prev); } } void setInputPostFct(MouseInput *mi, void (*post)(struct TransInfo *t, float values[3])) { mi->post = post; } void applyMouseInput(TransInfo *t, MouseInput *mi, const int mval[2], float output[3]) { double mval_db[2]; if (mi->use_virtual_mval) { /* update accumulator */ double mval_delta[2]; mval_delta[0] = (mval[0] - mi->imval[0]) - mi->virtual_mval.prev[0]; mval_delta[1] = (mval[1] - mi->imval[1]) - mi->virtual_mval.prev[1]; mi->virtual_mval.prev[0] += mval_delta[0]; mi->virtual_mval.prev[1] += mval_delta[1]; if (mi->precision) { mval_delta[0] *= (double)mi->precision_factor; mval_delta[1] *= (double)mi->precision_factor; } mi->virtual_mval.accum[0] += mval_delta[0]; mi->virtual_mval.accum[1] += mval_delta[1]; mval_db[0] = mi->imval[0] + mi->virtual_mval.accum[0]; mval_db[1] = mi->imval[1] + mi->virtual_mval.accum[1]; } else { mval_db[0] = mval[0]; mval_db[1] = mval[1]; } if (mi->apply != NULL) { mi->apply(t, mi, mval_db, output); } if (mi->post) { mi->post(t, output); } } /** \} */