/* * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. * All rights reserved. */ /** \file * \ingroup edtransform */ #include #include "MEM_guardedalloc.h" #include "DNA_gpencil_types.h" #include "BLI_math.h" #include "BLI_string.h" #include "BLI_task.h" #include "BKE_context.h" #include "BKE_unit.h" #include "ED_screen.h" #include "WM_api.h" #include "WM_types.h" #include "UI_interface.h" #include "BLT_translation.h" #include "transform.h" #include "transform_mode.h" #include "transform_snap.h" /* -------------------------------------------------------------------- */ /** \name Transform (Bend) Custom Data * \{ */ /** * Custom data, stored in #TransInfo.custom.mode.data */ struct BendCustomData { /* All values are in global space. */ float warp_sta[3]; float warp_end[3]; float warp_nor[3]; float warp_tan[3]; /* for applying the mouse distance */ float warp_init_dist; }; /** \} */ /* -------------------------------------------------------------------- */ /** \name Transform (Bend) Element * \{ */ /** * \note Small arrays / data-structures should be copied for faster memory access. */ struct TransDataArgs_Bend { const TransInfo *t; const TransDataContainer *tc; float angle; struct BendCustomData bend_data; const float warp_sta_local[3]; const float warp_end_local[3]; const float warp_end_radius_local[3]; const float pivot_local[3]; bool is_clamp; }; static void transdata_elem_bend(const TransInfo *t, const TransDataContainer *tc, TransData *td, float angle, const struct BendCustomData *bend_data, const float warp_sta_local[3], const float UNUSED(warp_end_local[3]), const float warp_end_radius_local[3], const float pivot_local[3], bool is_clamp) { if (UNLIKELY(angle == 0.0f)) { copy_v3_v3(td->loc, td->iloc); return; } float vec[3]; float mat[3][3]; float delta[3]; float fac, fac_scaled; copy_v3_v3(vec, td->iloc); mul_m3_v3(td->mtx, vec); fac = line_point_factor_v3(vec, warp_sta_local, warp_end_radius_local); if (is_clamp) { CLAMP(fac, 0.0f, 1.0f); } if (t->options & CTX_GPENCIL_STROKES) { /* grease pencil multiframe falloff */ bGPDstroke *gps = (bGPDstroke *)td->extra; if (gps != NULL) { fac_scaled = fac * td->factor * gps->runtime.multi_frame_falloff; } else { fac_scaled = fac * td->factor; } } else { fac_scaled = fac * td->factor; } axis_angle_normalized_to_mat3(mat, bend_data->warp_nor, angle * fac_scaled); interp_v3_v3v3(delta, warp_sta_local, warp_end_radius_local, fac_scaled); sub_v3_v3(delta, warp_sta_local); /* delta is subtracted, rotation adds back this offset */ sub_v3_v3(vec, delta); sub_v3_v3(vec, pivot_local); mul_m3_v3(mat, vec); add_v3_v3(vec, pivot_local); mul_m3_v3(td->smtx, vec); /* rotation */ if ((t->flag & T_POINTS) == 0) { ElementRotation(t, tc, td, mat, V3D_AROUND_LOCAL_ORIGINS); } /* location */ copy_v3_v3(td->loc, vec); } static void transdata_elem_bend_fn(void *__restrict iter_data_v, const int iter, const TaskParallelTLS *__restrict UNUSED(tls)) { struct TransDataArgs_Bend *data = iter_data_v; TransData *td = &data->tc->data[iter]; if (td->flag & TD_SKIP) { return; } transdata_elem_bend(data->t, data->tc, td, data->angle, &data->bend_data, data->warp_sta_local, data->warp_end_local, data->warp_end_radius_local, data->pivot_local, data->is_clamp); } /** \} */ /* -------------------------------------------------------------------- */ /** \name Transform (Bend) * \{ */ static eRedrawFlag handleEventBend(TransInfo *UNUSED(t), const wmEvent *event) { eRedrawFlag status = TREDRAW_NOTHING; if (event->type == MIDDLEMOUSE && event->val == KM_PRESS) { status = TREDRAW_HARD; } return status; } static void Bend(TransInfo *t, const int UNUSED(mval[2])) { float pivot_global[3]; float warp_end_radius_global[3]; int i; char str[UI_MAX_DRAW_STR]; const struct BendCustomData *bend_data = t->custom.mode.data; const bool is_clamp = (t->flag & T_ALT_TRANSFORM) == 0; union { struct { float angle, scale; }; float vector[2]; } values; /* amount of radians for bend */ copy_v2_v2(values.vector, t->values); #if 0 snapGrid(t, angle_rad); #else /* hrmf, snapping radius is using 'angle' steps, need to convert to something else * this isn't essential but nicer to give reasonable snapping values for radius. */ if (t->tsnap.mode & SCE_SNAP_MODE_INCREMENT) { const float radius_snap = 0.1f; const float snap_hack = (t->snap[0] * bend_data->warp_init_dist) / radius_snap; values.scale *= snap_hack; transform_snap_increment(t, values.vector); values.scale /= snap_hack; } #endif if (applyNumInput(&t->num, values.vector)) { values.scale = values.scale / bend_data->warp_init_dist; } copy_v2_v2(t->values_final, values.vector); /* header print for NumInput */ if (hasNumInput(&t->num)) { char c[NUM_STR_REP_LEN * 2]; outputNumInput(&(t->num), c, &t->scene->unit); BLI_snprintf(str, sizeof(str), TIP_("Bend Angle: %s Radius: %s Alt, Clamp %s"), &c[0], &c[NUM_STR_REP_LEN], WM_bool_as_string(is_clamp)); } else { /* default header print */ BLI_snprintf(str, sizeof(str), TIP_("Bend Angle: %.3f Radius: %.4f, Alt, Clamp %s"), RAD2DEGF(values.angle), values.scale * bend_data->warp_init_dist, WM_bool_as_string(is_clamp)); } values.angle *= -1.0f; values.scale *= bend_data->warp_init_dist; /* calc 'data->warp_end' from 'data->warp_end_init' */ copy_v3_v3(warp_end_radius_global, bend_data->warp_end); dist_ensure_v3_v3fl(warp_end_radius_global, bend_data->warp_sta, values.scale); /* done */ /* calculate pivot */ copy_v3_v3(pivot_global, bend_data->warp_sta); if (values.angle > 0.0f) { madd_v3_v3fl(pivot_global, bend_data->warp_tan, -values.scale * shell_angle_to_dist((float)M_PI_2 - values.angle)); } else { madd_v3_v3fl(pivot_global, bend_data->warp_tan, +values.scale * shell_angle_to_dist((float)M_PI_2 + values.angle)); } /* TODO(campbell): xform, compensate object center. */ FOREACH_TRANS_DATA_CONTAINER (t, tc) { float warp_sta_local[3]; float warp_end_local[3]; float warp_end_radius_local[3]; float pivot_local[3]; if (tc->use_local_mat) { sub_v3_v3v3(warp_sta_local, bend_data->warp_sta, tc->mat[3]); sub_v3_v3v3(warp_end_local, bend_data->warp_end, tc->mat[3]); sub_v3_v3v3(warp_end_radius_local, warp_end_radius_global, tc->mat[3]); sub_v3_v3v3(pivot_local, pivot_global, tc->mat[3]); } else { copy_v3_v3(warp_sta_local, bend_data->warp_sta); copy_v3_v3(warp_end_local, bend_data->warp_end); copy_v3_v3(warp_end_radius_local, warp_end_radius_global); copy_v3_v3(pivot_local, pivot_global); } if (tc->data_len < TRANSDATA_THREAD_LIMIT) { TransData *td = tc->data; for (i = 0; i < tc->data_len; i++, td++) { if (td->flag & TD_SKIP) { continue; } transdata_elem_bend(t, tc, td, values.angle, bend_data, warp_sta_local, warp_end_local, warp_end_radius_local, pivot_local, is_clamp); } } else { struct TransDataArgs_Bend data = { .t = t, .tc = tc, .angle = values.angle, .bend_data = *bend_data, .warp_sta_local = {UNPACK3(warp_sta_local)}, .warp_end_local = {UNPACK3(warp_end_local)}, .warp_end_radius_local = {UNPACK3(warp_end_radius_local)}, .pivot_local = {UNPACK3(pivot_local)}, .is_clamp = is_clamp, }; TaskParallelSettings settings; BLI_parallel_range_settings_defaults(&settings); BLI_task_parallel_range(0, tc->data_len, &data, transdata_elem_bend_fn, &settings); } } recalcData(t); ED_area_status_text(t->area, str); } void initBend(TransInfo *t) { const float mval_fl[2] = {UNPACK2(t->mval)}; const float *curs; float tvec[3]; struct BendCustomData *data; t->mode = TFM_BEND; t->transform = Bend; t->handleEvent = handleEventBend; initMouseInputMode(t, &t->mouse, INPUT_ANGLE_SPRING); t->idx_max = 1; t->num.idx_max = 1; t->snap[0] = SNAP_INCREMENTAL_ANGLE; t->snap[1] = t->snap[0] * 0.2; copy_v3_fl(t->num.val_inc, t->snap[0]); t->num.unit_sys = t->scene->unit.system; t->num.unit_use_radians = (t->scene->unit.system_rotation == USER_UNIT_ROT_RADIANS); t->num.unit_type[0] = B_UNIT_ROTATION; t->num.unit_type[1] = B_UNIT_LENGTH; t->flag |= T_NO_CONSTRAINT; // copy_v3_v3(t->center, ED_view3d_cursor3d_get(t->scene, t->view)); if ((t->flag & T_OVERRIDE_CENTER) == 0) { calculateCenterCursor(t, t->center_global); } calculateCenterLocal(t, t->center_global); data = MEM_callocN(sizeof(*data), __func__); curs = t->scene->cursor.location; copy_v3_v3(data->warp_sta, curs); ED_view3d_win_to_3d( (View3D *)t->area->spacedata.first, t->region, curs, mval_fl, data->warp_end); copy_v3_v3(data->warp_nor, t->viewinv[2]); normalize_v3(data->warp_nor); /* tangent */ sub_v3_v3v3(tvec, data->warp_end, data->warp_sta); cross_v3_v3v3(data->warp_tan, tvec, data->warp_nor); normalize_v3(data->warp_tan); data->warp_init_dist = len_v3v3(data->warp_end, data->warp_sta); t->custom.mode.data = data; t->custom.mode.use_free = true; } /** \} */