/**************************************************************************** Copyright (C) 2002-2007 Gilles Debunne (Gilles.Debunne@imag.fr) This file is part of the QGLViewer library. Version 2.2.6-3, released on August 28, 2007. http://artis.imag.fr/Members/Gilles.Debunne/QGLViewer libQGLViewer is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. libQGLViewer is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with libQGLViewer; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA *****************************************************************************/ #include "AppGLWidget_camera.h" //#include "qglviewer.h" using namespace std; //using namespace qglviewer; /*! Default constructor. sceneCenter() is set to (0,0,0) and sceneRadius() is set to 1.0. type() is Camera::PERSPECTIVE, with a \c M_PI/4 fieldOfView(). See IODistance(), physicalDistanceToScreen(), physicalScreenWidth() and focusDistance() documentations for default stereo parameter values. */ AppGLWidget_Camera::AppGLWidget_Camera() : fieldOfView_(M_PI/4.0f) { // #CONNECTION# Camera copy constructor //interpolationKfi_ = new KeyFrameInterpolator; // Requires the interpolationKfi_ setFrame(new ManipulatedCameraFrame()); // #CONNECTION# All these default values identical in initFromDOMElement. // Requires fieldOfView() to define focusDistance() setSceneRadius(1.0); // Initial value (only scaled after this) orthoCoef_ = tan(fieldOfView()/2.0); // Also defines the revolveAroundPoint(), which changes orthoCoef_. Requires a frame(). setSceneCenter(Vec(0.0, 0.0, 0.0)); // Requires fieldOfView() when called with ORTHOGRAPHIC. Attention to projectionMatrix_ below. setType(PERSPECTIVE); // #CONNECTION# initFromDOMElement default values setZNearCoefficient(0.005f); setZClippingCoefficient(sqrt(3.0)); // Dummy values setScreenWidthAndHeight(600, 400); // Stereo parameters setIODistance(0.062f); setPhysicalDistanceToScreen(0.5f); setPhysicalScreenWidth(0.4f); // focusDistance is set from setFieldOfView() // #CONNECTION# Camera copy constructor for (unsigned short j=0; j<16; ++j) { modelViewMatrix_[j] = ((j%5 == 0) ? 1.0 : 0.0); // #CONNECTION# computeProjectionMatrix() is lazy and assumes 0.0 almost everywhere. projectionMatrix_[j] = 0.0; } computeProjectionMatrix(); } /*! Virtual destructor. The frame() is deleted, but the different keyFrameInterpolator() are \e not deleted (in case they are shared). */ AppGLWidget_Camera::~AppGLWidget_Camera() { delete frame_; //delete interpolationKfi_; } /*! Copy constructor. Performs a deep copy using operator=(). */ AppGLWidget_Camera::AppGLWidget_Camera(const AppGLWidget_Camera& camera) { // #CONNECTION# Camera constructor //interpolationKfi_ = new KeyFrameInterpolator; // Requires the interpolationKfi_ setFrame(new ManipulatedCameraFrame()); for (unsigned short j=0; j<16; ++j) { modelViewMatrix_[j] = ((j%5 == 0) ? 1.0 : 0.0); // #CONNECTION# computeProjectionMatrix() is lazy and assumes 0.0 almost everywhere. projectionMatrix_[j] = 0.0; } (*this)=camera; } /*! Equal operator. All the parameters of \p camera are copied. The frame() pointer is not modified, but its Frame::position() and Frame::orientation() are set to those of \p camera. \attention The Camera screenWidth() and screenHeight() are set to those of \p camera. If your Camera is associated with a QGLViewer, you should update these value after the call to this method: \code *(camera()) = otherCamera; camera()->setScreenWidthAndHeight(width(), height()); \endcode The same applies to sceneCenter() and sceneRadius(), if needed. */ AppGLWidget_Camera& AppGLWidget_Camera::operator=(const AppGLWidget_Camera& camera) { setScreenWidthAndHeight(camera.screenWidth(), camera.screenHeight()); setFieldOfView(camera.fieldOfView()); setSceneRadius(camera.sceneRadius()); setSceneCenter(camera.sceneCenter()); setZNearCoefficient(camera.zNearCoefficient()); setZClippingCoefficient(camera.zClippingCoefficient()); setType(camera.type()); // Stereo parameters setIODistance(camera.IODistance()); setFocusDistance(camera.focusDistance()); setPhysicalScreenWidth(camera.physicalScreenWidth()); setPhysicalDistanceToScreen(camera.physicalDistanceToScreen()); orthoCoef_ = camera.orthoCoef_; // frame_ and interpolationKfi_ pointers are not shared. frame_->setReferenceFrame(NULL); frame_->setPosition(camera.position()); frame_->setOrientation(camera.orientation()); //interpolationKfi_->resetInterpolation(); //kfi_ = camera.kfi_; computeProjectionMatrix(); computeModelViewMatrix(); return *this; } /*! Sets Camera screenWidth() and screenHeight() (expressed in pixels). You should not call this method when the Camera is associated with a QGLViewer, since the latter automatically updates these values when it is resized (hence overwritting your values). Non-positive dimension are silently replaced by a 1 pixel value to ensure frustrum coherence. If your Camera is used without a QGLViewer (offscreen rendering, shadow maps), use setAspectRatio() instead to define the projection matrix. */ void AppGLWidget_Camera::setScreenWidthAndHeight(int width, int height) { // Prevent negative and zero dimensions that would cause divisions by zero. screenWidth_ = width > 0 ? width : 1; screenHeight_ = height > 0 ? height : 1; } /*! Returns the near clipping plane distance used by the Camera projection matrix. The clipping planes' positions depend on the sceneRadius() and sceneCenter() rather than being fixed small-enough and large-enough values. A good scene dimension approximation will hence result in an optimal precision of the z-buffer. The near clipping plane is positioned at a distance equal to zClippingCoefficient() * sceneRadius() in front of the sceneCenter(): \code zNear = distanceToSceneCenter() - zClippingCoefficient()*sceneRadius(); \endcode In order to prevent negative or too small zNear() values (which would degrade the z precision), zNearCoefficient() is used when the Camera is inside the sceneRadius() sphere: \code const float zMin = zNearCoefficient() * zClippingCoefficient() * sceneRadius(); if (zNear < zMin) zNear = zMin; // With an ORTHOGRAPHIC type, the value is simply clamped to 0.0 \endcode See also the zFar(), zClippingCoefficient() and zNearCoefficient() documentations. If you need a completely different zNear computation, overload the zNear() and zFar() methods in a new class that publicly inherits from Camera and use QGLViewer::setCamera(): \code class myCamera :: public qglviewer::Camera { virtual float Camera::zNear() const { return 0.001; }; virtual float Camera::zFar() const { return 100.0; }; } \endcode See the standardCamera example for an application. \attention The value is always positive although the clipping plane is positioned at a negative z value in the Camera coordinate system. This follows the \c gluPerspective standard. */ float AppGLWidget_Camera::zNear() const { float z = distanceToSceneCenter() - zClippingCoefficient()*sceneRadius(); // Prevents negative or null zNear values. const float zMin = zNearCoefficient() * zClippingCoefficient() * sceneRadius(); if (z < zMin) switch (type()) { case AppGLWidget_Camera::PERSPECTIVE : z = zMin; break; case AppGLWidget_Camera::ORTHOGRAPHIC : z = 0.0; break; } return z; } /*! Returns the far clipping plane distance used by the Camera projection matrix. The far clipping plane is positioned at a distance equal to zClippingCoefficient() * sceneRadius() behind the sceneCenter(): \code zFar = distanceToSceneCenter() + zClippingCoefficient()*sceneRadius(); \endcode See the zNear() documentation for details. */ float AppGLWidget_Camera::zFar() const { return distanceToSceneCenter() + zClippingCoefficient()*sceneRadius(); } /*! Defines the Camera type(). Prefix the type with Camera, as in: \code camera()->setType(Camera::ORTHOGRAPHIC); // or even qglviewer::Camera::ORTHOGRAPHIC if you do not use namespace \endcode */ void AppGLWidget_Camera::setType(Type type) { // make ORTHOGRAPHIC frustum fit PERSPECTIVE (at least in plane normal to viewDirection(), passing // through RAP) Done only when CHANGING type since orthoCoef_ may have been changed with a // setRevolveAroundPoint() in the meantime. if ( (type == AppGLWidget_Camera::ORTHOGRAPHIC) && (type_ == AppGLWidget_Camera::PERSPECTIVE) ) orthoCoef_ = tan(fieldOfView()/2.0); type_ = type; } /*! Sets the Camera frame(). If you want to move the Camera, use setPosition() and setOrientation() or one of the Camera positioning methods (lookAt(), fitSphere(), showEntireScene()...) instead. If you want to save the Camera position(), there's no need to call this method either. Use addKeyFrameToPath() and playPath() instead. This method is actually mainly useful if you derive the ManipulatedCameraFrame class and want to use an instance of your new class to move the Camera. A \c NULL \p mcf pointer will silently be ignored. The calling method is responsible for deleting the previous frame() pointer if needed in order to prevent memory leaks. */ void AppGLWidget_Camera::setFrame(ManipulatedCameraFrame* const mcf) { if (!mcf) return; frame_ = mcf; //interpolationKfi_->setFrame(frame()); } /*! Returns the distance from the Camera center to sceneCenter(), projected along the Camera Z axis. Used by zNear() and zFar() to optimize the Z range. */ float AppGLWidget_Camera::distanceToSceneCenter() const { return fabs((frame()->coordinatesOf(sceneCenter())).z); } /*! Returns the \p halfWidth and \p halfHeight of the Camera orthographic frustum. These values are only valid and used when the Camera is of type() Camera::ORTHOGRAPHIC. They are expressed in OpenGL units and are used by loadProjectionMatrix() to define the projection matrix using: \code glOrtho( -halfWidth, halfWidth, -halfHeight, halfHeight, zNear(), zFar() ) \endcode These values are proportional to the Camera (z projected) distance to the revolveAroundPoint(). When zooming on the object, the Camera is translated forward \e and its frustum is narrowed, making the object appear bigger on screen, as intuitively expected. Overload this method to change this behavior if desired, as is done in the standardCamera example. */ void AppGLWidget_Camera::getOrthoWidthHeight(GLdouble& halfWidth, GLdouble& halfHeight) const { const float dist = orthoCoef_ * fabs(cameraCoordinatesOf(revolveAroundPoint()).z); //#CONNECTION# fitScreenRegion halfWidth = dist * ((aspectRatio() < 1.0) ? 1.0 : aspectRatio()); halfHeight = dist * ((aspectRatio() < 1.0) ? 1.0/aspectRatio() : 1.0); } /*! Computes the projection matrix associated with the Camera. If type() is Camera::PERSPECTIVE, defines a \c GL_PROJECTION matrix similar to what would \c gluPerspective() do using the fieldOfView(), window aspectRatio(), zNear() and zFar() parameters. If type() is Camera::ORTHOGRAPHIC, the projection matrix is as what \c glOrtho() would do. Frustum's width and height are set using getOrthoWidthHeight(). Both types use zNear() and zFar() to place clipping planes. These values are determined from sceneRadius() and sceneCenter() so that they best fit the scene size. Use getProjectionMatrix() to retrieve this matrix. Overload loadProjectionMatrix() if you want your Camera to use an exotic projection matrix. \note You must call this method if your Camera is not associated with a QGLViewer and is used for offscreen computations (using (un)projectedCoordinatesOf() for instance). loadProjectionMatrix() does it otherwise. */ void AppGLWidget_Camera::computeProjectionMatrix() const { const float ZNear = zNear(); const float ZFar = zFar(); switch (type()) { case AppGLWidget_Camera::PERSPECTIVE: { // #CONNECTION# all non null coefficients were set to 0.0 in constructor. const float f = 1.0/tan(fieldOfView()/2.0); projectionMatrix_[0] = f/aspectRatio(); projectionMatrix_[5] = f; projectionMatrix_[10] = (ZNear + ZFar) / (ZNear - ZFar); projectionMatrix_[11] = -1.0; projectionMatrix_[14] = 2.0 * ZNear * ZFar / (ZNear - ZFar); projectionMatrix_[15] = 0.0; // same as gluPerspective( 180.0*fieldOfView()/M_PI, aspectRatio(), zNear(), zFar() ); break; } case AppGLWidget_Camera::ORTHOGRAPHIC: { GLdouble w, h; getOrthoWidthHeight(w,h); projectionMatrix_[0] = 1.0/w; projectionMatrix_[5] = 1.0/h; projectionMatrix_[10] = -2.0/(ZFar - ZNear); projectionMatrix_[11] = 0.0; projectionMatrix_[14] = -(ZFar + ZNear)/(ZFar - ZNear); projectionMatrix_[15] = 1.0; // same as glOrtho( -w, w, -h, h, zNear(), zFar() ); break; } } } /*! Computes the modelView matrix associated with the Camera's position() and orientation(). This matrix converts from the world coordinates system to the Camera coordinates system, so that coordinates can then be projected on screen using the projection matrix (see computeProjectionMatrix()). Use getModelViewMatrix() to retrieve this matrix. \note You must call this method if your Camera is not associated with a QGLViewer and is used for offscreen computations (using (un)projectedCoordinatesOf() for instance). loadModelViewMatrix() does it otherwise. */ void AppGLWidget_Camera::computeModelViewMatrix() const { const Quaternion q = frame()->orientation(); const double q00 = 2.0l * q[0] * q[0]; const double q11 = 2.0l * q[1] * q[1]; const double q22 = 2.0l * q[2] * q[2]; const double q01 = 2.0l * q[0] * q[1]; const double q02 = 2.0l * q[0] * q[2]; const double q03 = 2.0l * q[0] * q[3]; const double q12 = 2.0l * q[1] * q[2]; const double q13 = 2.0l * q[1] * q[3]; const double q23 = 2.0l * q[2] * q[3]; modelViewMatrix_[0] = 1.0l - q11 - q22; modelViewMatrix_[1] = q01 - q23; modelViewMatrix_[2] = q02 + q13; modelViewMatrix_[3] = 0.0l; modelViewMatrix_[4] = q01 + q23; modelViewMatrix_[5] = 1.0l - q22 - q00; modelViewMatrix_[6] = q12 - q03; modelViewMatrix_[7] = 0.0l; modelViewMatrix_[8] = q02 - q13; modelViewMatrix_[9] = q12 + q03; modelViewMatrix_[10] = 1.0l - q11 - q00; modelViewMatrix_[11] = 0.0l; const Vec t = q.inverseRotate(frame()->position()); modelViewMatrix_[12] = -t.x; modelViewMatrix_[13] = -t.y; modelViewMatrix_[14] = -t.z; modelViewMatrix_[15] = 1.0l; } /*! Loads the OpenGL \c GL_PROJECTION matrix with the Camera projection matrix. The Camera projection matrix is computed using computeProjectionMatrix(). When \p reset is \c true (default), the method clears the previous projection matrix by calling \c glLoadIdentity before setting the matrix. Setting \p reset to \c false is useful for \c GL_SELECT mode, to combine the pushed matrix with a picking matrix. See QGLViewer::beginSelection() for details. This method is used by QGLViewer::preDraw() (called before user's QGLViewer::draw() method) to set the \c GL_PROJECTION matrix according to the viewer's QGLViewer::camera() settings. Use getProjectionMatrix() to retrieve this matrix. Overload this method if you want your Camera to use an exotic projection matrix. See also loadModelViewMatrix(). \attention \c glMatrixMode is set to \c GL_PROJECTION. \attention If you use several OpenGL contexts and bypass the Qt main refresh loop, you should call QGLWidget::makeCurrent() before this method in order to activate the right OpenGL context. */ void AppGLWidget_Camera::loadProjectionMatrix(bool reset) const { // WARNING: makeCurrent must be called by every calling method glMatrixMode(GL_PROJECTION); if (reset) glLoadIdentity(); computeProjectionMatrix(); glMultMatrixd(projectionMatrix_); } /*! Loads the OpenGL \c GL_MODELVIEW matrix with the modelView matrix corresponding to the Camera. Calls computeModelViewMatrix() to compute the Camera's modelView matrix. This method is used by QGLViewer::preDraw() (called before user's QGLViewer::draw() method) to set the \c GL_MODELVIEW matrix according to the viewer's QGLViewer::camera() position() and orientation(). As a result, the vertices used in QGLViewer::draw() can be defined in the so called world coordinate system. They are multiplied by this matrix to get converted to the Camera coordinate system, before getting projected using the \c GL_PROJECTION matrix (see loadProjectionMatrix()). When \p reset is \c true (default), the method loads (overwrites) the \c GL_MODELVIEW matrix. Setting \p reset to \c false simply calls \c glMultMatrixd (might be useful for some applications). Overload this method or simply call glLoadMatrixd() at the beginning of QGLViewer::draw() if you want your Camera to use an exotic modelView matrix. See also loadProjectionMatrix(). getModelViewMatrix() returns the 4x4 modelView matrix. \attention glMatrixMode is set to \c GL_MODELVIEW \attention If you use several OpenGL contexts and bypass the Qt main refresh loop, you should call QGLWidget::makeCurrent() before this method in order to activate the right OpenGL context. */ void AppGLWidget_Camera::loadModelViewMatrix(bool reset) const { // WARNING: makeCurrent must be called by every calling method glMatrixMode(GL_MODELVIEW); computeModelViewMatrix(); if (reset) glLoadMatrixd(modelViewMatrix_); else glMultMatrixd(modelViewMatrix_); } /*! Same as loadProjectionMatrix() but for a stereo setup. Only the Camera::PERSPECTIVE type() is supported for stereo mode. See QGLViewer::setStereoDisplay(). Uses focusDistance(), IODistance(), and physicalScreenWidth() to compute cameras offset and asymmetric frustums. When \p leftBuffer is \c true, computes the projection matrix associated to the left eye (right eye otherwise). See also loadModelViewMatrixStereo(). See the stereoViewer and the anaglyph examples for an illustration. To retrieve this matrix, use a code like: \code glMatrixMode(GL_PROJECTION); glPushMatrix(); loadProjectionMatrixStereo(left_or_right); glGetFloatv(GL_PROJECTION_MATRIX, m); glPopMatrix(); \endcode Note that getProjectionMatrix() always returns the mono-vision matrix. \attention glMatrixMode is set to \c GL_PROJECTION. */ void AppGLWidget_Camera::loadProjectionMatrixStereo(bool leftBuffer) const { float left, right, bottom, top; float screenHalfWidth, halfWidth, side, shift, delta; glMatrixMode(GL_PROJECTION); glLoadIdentity(); switch (type()) { case AppGLWidget_Camera::PERSPECTIVE: // compute half width of screen, // corresponding to zero parallax plane to deduce decay of cameras screenHalfWidth = focusDistance() * tan(horizontalFieldOfView() / 2.0); shift = screenHalfWidth * IODistance() / physicalScreenWidth(); // should be * current y / y total // to take into account that the window doesn't cover the entire screen // compute half width of "view" at znear and the delta corresponding to // the shifted camera to deduce what to set for asymmetric frustums halfWidth = zNear() * tan(horizontalFieldOfView() / 2.0); delta = shift * zNear() / focusDistance(); side = leftBuffer ? -1.0 : 1.0; left = -halfWidth + side * delta; right = halfWidth + side * delta; top = halfWidth / aspectRatio(); bottom = -top; glFrustum(left, right, bottom, top, zNear(), zFar() ); break; case AppGLWidget_Camera::ORTHOGRAPHIC: cout << "AppGLWidget_Camera::setProjectionMatrixStereo: Stereo not available with Ortho mode"; break; } } /*! Same as loadModelViewMatrix() but for a stereo setup. Only the Camera::PERSPECTIVE type() is supported for stereo mode. See QGLViewer::setStereoDisplay(). The modelView matrix is almost identical to the mono-vision one. It is simply translated along its horizontal axis by a value that depends on stereo parameters (see focusDistance(), IODistance(), and physicalScreenWidth()). When \p leftBuffer is \c true, computes the modelView matrix associated to the left eye (right eye otherwise). loadProjectionMatrixStereo() explains how to retrieve to resulting matrix. See the stereoViewer and the anaglyph examples for an illustration. \attention glMatrixMode is set to \c GL_MODELVIEW. */ void AppGLWidget_Camera::loadModelViewMatrixStereo(bool leftBuffer) const { // WARNING: makeCurrent must be called by every calling method glMatrixMode(GL_MODELVIEW); float halfWidth = focusDistance() * tan(horizontalFieldOfView() / 2.0); float shift = halfWidth * IODistance() / physicalScreenWidth(); // * current window width / full screen width computeModelViewMatrix(); if (leftBuffer) modelViewMatrix_[12] -= shift; else modelViewMatrix_[12] += shift; glLoadMatrixd(modelViewMatrix_); } /*! Fills \p m with the Camera projection matrix values. Calls computeProjectionMatrix() to define the Camera projection matrix. This matrix only reflects the Camera's internal parameters and it may differ from the \c GL_PROJECTION matrix retrieved using \c glGetDoublev(GL_PROJECTION_MATRIX, m). It actually represents the state of the \c GL_PROJECTION after QGLViewer::preDraw(), at the beginning of QGLViewer::draw(). If you modified the \c GL_PROJECTION matrix (for instance using QGLViewer::startScreenCoordinatesSystem()), the two results differ. The result is an OpenGL 4x4 matrix, which is given in \e column-major order (see \c glMultMatrix man page for details). See also getModelViewMatrix() and setFromProjectionMatrix(). */ void AppGLWidget_Camera::getProjectionMatrix(GLdouble m[16]) const { // May not be needed, but easier and more robust like this. computeProjectionMatrix(); for (unsigned short i=0; i<16; ++i) m[i] = projectionMatrix_[i]; } /*! Fills \p m with the Camera modelView matrix values. First calls computeModelViewMatrix() to define the Camera modelView matrix. Note that this matrix is usually \e not the one you would get from a \c glGetDoublev(GL_MODELVIEW_MATRIX, m). It actually represents the state of the \c GL_MODELVIEW after QGLViewer::preDraw(), at the beginning of QGLViewer::draw(). It converts from the world to the Camera coordinate system. As soon as you modify the \c GL_MODELVIEW in your QGLViewer::draw() method, the two matrices differ. The result is an OpenGL 4x4 matrix, which is given in \e column-major order (see \c glMultMatrix man page for details). See also getProjectionMatrix() and setFromModelViewMatrix(). */ void AppGLWidget_Camera::getModelViewMatrix(GLdouble m[16]) const { // May not be needed, but easier like this. // Prevents from retrieving matrix in stereo mode -> overwrites shifted value. computeModelViewMatrix(); for (unsigned short i=0; i<16; ++i) m[i] = modelViewMatrix_[i]; } /*! Fills \p m with the product of the ModelView and Projection matrices. Calls getModelViewMatrix() and getProjectionMatrix() and then fills \p m with the product of these two matrices. */ void AppGLWidget_Camera::getModelViewProjectionMatrix(GLdouble m[16]) const { GLdouble mv[16]; GLdouble proj[16]; getModelViewMatrix(mv); getProjectionMatrix(proj); for (unsigned short i=0; i<4; ++i) { for (unsigned short j=0; j<4; ++j) { double sum = 0.0; for (unsigned short k=0; k<4; ++k) sum += proj[i+4*k]*mv[k+4*j]; m[i+4*j] = sum; } } } #ifndef DOXYGEN void AppGLWidget_Camera::getProjectionMatrix(GLfloat m[16]) const { cout << "Warning : AppGLWidget_Camera::getProjectionMatrix requires a GLdouble matrix array"; static GLdouble mat[16]; getProjectionMatrix(mat); for (int i=0; i<16; ++i) m[i] = float(mat[i]); } void AppGLWidget_Camera::getModelViewMatrix(GLfloat m[16]) const { cout << "Warning : AppGLWidget_Camera::getModelViewMatrix requires a GLdouble matrix array"; static GLdouble mat[16]; getModelViewMatrix(mat); for (int i=0; i<16; ++i) m[i] = float(mat[i]); } #endif /*! Sets the sceneRadius() value. Negative values are ignored. \attention This methods also sets focusDistance() to sceneRadius() / tan(fieldOfView()/2) and flySpeed() to 1% of sceneRadius(). */ void AppGLWidget_Camera::setSceneRadius(float radius) { if (radius <= 0.0) { cout << "Scene radius must be positive - Ignoring value"; return; } sceneRadius_ = radius; setFocusDistance(sceneRadius() / tan(fieldOfView()/2.0)); frame()->setFlySpeed(0.01*sceneRadius()); } /*! Similar to setSceneRadius() and setSceneCenter(), but the scene limits are defined by a (world axis aligned) bounding box. */ void AppGLWidget_Camera::setSceneBoundingBox(const Vec& min, const Vec& max) { setSceneCenter((min+max)/2.0); setSceneRadius(0.5*(max-min).norm()); } /*! Sets the sceneCenter(). \attention This method also sets the revolveAroundPoint() to sceneCenter(). */ void AppGLWidget_Camera::setSceneCenter(const Vec& center) { sceneCenter_ = center; setRevolveAroundPoint(sceneCenter()); } /*! setSceneCenter() to the result of pointUnderPixel(\p pixel). Returns \c true if a pointUnderPixel() was found and sceneCenter() was actually changed. See also setRevolveAroundPointFromPixel(). See the pointUnderPixel() documentation. */ bool AppGLWidget_Camera::setSceneCenterFromPixel(const Point& pixel) { bool found; Vec point = pointUnderPixel(pixel, found); if (found) setSceneCenter(point); return found; } /*! Changes the revolveAroundPoint() to \p rap (defined in the world coordinate system). */ void AppGLWidget_Camera::setRevolveAroundPoint(const Vec& rap) { const float prevDist = fabs(cameraCoordinatesOf(revolveAroundPoint()).z); frame()->setRevolveAroundPoint(rap); // orthoCoef_ is used to compensate for changes of the revolveAroundPoint, so that the image does // not change when the revolveAroundPoint is changed in ORTHOGRAPHIC mode. const float newDist = fabs(cameraCoordinatesOf(revolveAroundPoint()).z); // Prevents division by zero when rap is set to camera position if ((prevDist > 1E-9) && (newDist > 1E-9)) orthoCoef_ *= prevDist / newDist; } /*! The revolveAroundPoint() is set to the point located under \p pixel on screen. Returns \c true if a pointUnderPixel() was found. If no point was found under \p pixel, the revolveAroundPoint() is left unchanged. \p pixel is expressed in Qt format (origin in the upper left corner of the window). See pointUnderPixel(). See also setSceneCenterFromPixel(). */ bool AppGLWidget_Camera::setRevolveAroundPointFromPixel(const Point& pixel) { bool found; Vec point = pointUnderPixel(pixel, found); if (found) setRevolveAroundPoint(point); return found; } /*! Returns the ratio between pixel and OpenGL units at \p position. A line of \c n * pixelGLRatio() OpenGL units, located at \p position in the world coordinates system, will be projected with a length of \c n pixels on screen. Use this method to scale objects so that they have a constant pixel size on screen. The following code will draw a 20 pixel line, starting at sceneCenter() and always directed along the screen vertical direction: \code glBegin(GL_LINES); glVertex3fv(sceneCenter()); glVertex3fv(sceneCenter() + 20 * pixelGLRatio(sceneCenter()) * camera()->upVector()); glEnd(); \endcode */ float AppGLWidget_Camera::pixelGLRatio(const Vec& position) const { switch (type()) { case AppGLWidget_Camera::PERSPECTIVE : return 2.0 * fabs((frame()->coordinatesOf(position)).z) * tan(fieldOfView()/2.0) / screenHeight(); case AppGLWidget_Camera::ORTHOGRAPHIC : { GLdouble w, h; getOrthoWidthHeight(w,h); return 2.0 * h / screenHeight(); } } // Bad compilers complain return 1.0; } /*! Changes the Camera fieldOfView() so that the entire scene (defined by QGLViewer::sceneCenter() and QGLViewer::sceneRadius()) is visible from the Camera position(). The position() and orientation() of the Camera are not modified and you first have to orientate the Camera in order to actually see the scene (see lookAt(), showEntireScene() or fitSphere()). This method is especially useful for \e shadow \e maps computation. Use the Camera positioning tools (setPosition(), lookAt()) to position a Camera at the light position. Then use this method to define the fieldOfView() so that the shadow map resolution is optimally used: \code // The light camera needs size hints in order to optimize its fieldOfView lightCamera->setSceneRadius(sceneRadius()); lightCamera->setSceneCenter(sceneCenter()); // Place the light camera. lightCamera->setPosition(lightFrame->position()); lightCamera->lookAt(sceneCenter()); lightCamera->setFOVToFitScene(); \endcode See the (soon available) shadowMap contribution example for a practical implementation. \attention The fieldOfView() is clamped to M_PI/2.0. This happens when the Camera is at a distance lower than sqrt(2.0) * sceneRadius() from the sceneCenter(). It optimizes the shadow map resolution, although it may miss some parts of the scene. */ void AppGLWidget_Camera::setFOVToFitScene() { if (distanceToSceneCenter() > sqrt(2.0)*sceneRadius()) setFieldOfView(2.0 * asin(sceneRadius() / distanceToSceneCenter())); else setFieldOfView(M_PI / 2.0f); } /*! Makes the Camera smoothly zoom on the pointUnderPixel() \p pixel. Nothing happens if no pointUnderPixel() is found. Otherwise a KeyFrameInterpolator is created that animates the Camera on a one second path that brings the Camera closer to the point under \p pixel. See also interpolateToFitScene(). */ // void Camera::interpolateToZoomOnPixel(const Point& pixel) // { // const float coef = 0.1f; // // bool found; // Vec target = pointUnderPixel(pixel, found); // // if (!found) // return; // // if (interpolationKfi_->interpolationIsStarted()) // interpolationKfi_->stopInterpolation(); // // interpolationKfi_->deletePath(); // interpolationKfi_->addKeyFrame(*(frame())); // // interpolationKfi_->addKeyFrame(Frame(0.3f*frame()->position() + 0.7f*target, frame()->orientation()), 0.4f); // // // Small hack: attach a temporary frame to take advantage of lookAt without modifying frame // static ManipulatedCameraFrame* tempFrame = new ManipulatedCameraFrame(); // ManipulatedCameraFrame* const originalFrame = frame(); // tempFrame->setPosition(coef*frame()->position() + (1.0-coef)*target); // tempFrame->setOrientation(frame()->orientation()); // setFrame(tempFrame); // lookAt(target); // setFrame(originalFrame); // // interpolationKfi_->addKeyFrame(*(tempFrame), 1.0); // // interpolationKfi_->startInterpolation(); // } /*! Interpolates the Camera on a one second KeyFrameInterpolator path so that the entire scene fits the screen at the end. The scene is defined by its sceneCenter() and its sceneRadius(). See showEntireScene(). The orientation() of the Camera is not modified. See also interpolateToZoomOnPixel(). */ // void Camera::interpolateToFitScene() // { // if (interpolationKfi_->interpolationIsStarted()) // interpolationKfi_->stopInterpolation(); // // interpolationKfi_->deletePath(); // interpolationKfi_->addKeyFrame(*(frame())); // // // Small hack: attach a temporary frame to take advantage of lookAt without modifying frame // static ManipulatedCameraFrame* tempFrame = new ManipulatedCameraFrame(); // ManipulatedCameraFrame* const originalFrame = frame(); // tempFrame->setPosition(frame()->position()); // tempFrame->setOrientation(frame()->orientation()); // setFrame(tempFrame); // showEntireScene(); // setFrame(originalFrame); // // //interpolationKfi_->addKeyFrame(*(tempFrame)); // // //interpolationKfi_->startInterpolation(); // } /*! Smoothly interpolates the Camera on a KeyFrameInterpolator path so that it goes to \p fr. \p fr is expressed in world coordinates. \p duration tunes the interpolation speed (default is 1 second). See also interpolateToFitScene() and interpolateToZoomOnPixel(). */ // void Camera::interpolateTo(const Frame& fr, float duration) // { // if (interpolationKfi_->interpolationIsStarted()) // interpolationKfi_->stopInterpolation(); // // interpolationKfi_->deletePath(); // interpolationKfi_->addKeyFrame(*(frame())); // interpolationKfi_->addKeyFrame(fr, duration); // // interpolationKfi_->startInterpolation(); // } /*! Returns the coordinates of the 3D point located at pixel (x,y) on screen. Calls a \c glReadPixel to get the pixel depth and applies an unprojectedCoordinatesOf() to the result. \p found indicates whether a point was found or not (i.e. background pixel, result's depth is zFar() in that case). \p x and \p y are expressed in pixel units with an origin in the upper left corner. Use screenHeight() - y to convert to OpenGL standard. \attention This method assumes that a GL context is available, and that its content was drawn using the Camera (i.e. using its projection and modelview matrices). This method hence cannot be used for offscreen Camera computations. Use cameraCoordinatesOf() and worldCoordinatesOf() to perform similar operations in that case. \note The precision of the z-Buffer highly depends on how the zNear() and zFar() values are fitted to your scene. Loose boundaries will result in imprecision along the viewing direction. */ Vec AppGLWidget_Camera::pointUnderPixel(const Point& pixel, bool& found) const { float depth; // Qt uses upper corner for its origin while GL uses the lower corner. glReadPixels(pixel.x(), screenHeight()-1-pixel.y(), 1, 1, GL_DEPTH_COMPONENT, GL_FLOAT, &depth); found = depth < 1.0; Vec point(pixel.x(), pixel.y(), depth); point = unprojectedCoordinatesOf(point); return point; } /*! Moves the Camera so that the entire scene is visible. Simply calls fitSphere() on a sphere defined by sceneCenter() and sceneRadius(). You will typically use this method in QGLViewer::init() after you defined a new sceneRadius(). */ void AppGLWidget_Camera::showEntireScene() { fitSphere(sceneCenter(), sceneRadius()); } /*! Moves the Camera so that its sceneCenter() is projected on the center of the window. The orientation() and fieldOfView() are unchanged. Simply projects the current position on a line passing through sceneCenter(). See also showEntireScene().*/ void AppGLWidget_Camera::centerScene() { frame()->projectOnLine(sceneCenter(), viewDirection()); } /*! Sets the Camera orientation(), so that it looks at point \p target (defined in the world coordinate system). The Camera position() is not modified. Simply setViewDirection(). See also setUpVector(), setOrientation(), showEntireScene(), fitSphere() and fitBoundingBox(). */ void AppGLWidget_Camera::lookAt(const Vec& target) { setViewDirection(target - position()); } /*! Moves the Camera so that the sphere defined by (\p center, \p radius) is visible and fits the window. The Camera is simply translated along its viewDirection() so that the sphere fits the screen. Its orientation() and its fieldOfView() are unchanged. You should therefore orientate the Camera before you call this method. See lookAt(), setOrientation() and setUpVector(). */ void AppGLWidget_Camera::fitSphere(const Vec& center, float radius) { float distance = 0.0f; switch (type()) { case AppGLWidget_Camera::PERSPECTIVE : { const float yview = radius / sin(fieldOfView()/2.0); const float xview = radius / sin(horizontalFieldOfView()/2.0); distance = qMax(xview,yview); break; } case AppGLWidget_Camera::ORTHOGRAPHIC : { distance = ((center-revolveAroundPoint()) * viewDirection()) + (radius / orthoCoef_); break; } } Vec newPos(center - distance * viewDirection()); frame()->setPositionWithConstraint(newPos); } /*! Moves the Camera so that the (world axis aligned) bounding box (\p min, \p max) is entirely visible, using fitSphere(). */ void AppGLWidget_Camera::fitBoundingBox(const Vec& min, const Vec& max) { float diameter = qMax(fabs(max[1]-min[1]), fabs(max[0]-min[0])); diameter = qMax(fabsf(max[2]-min[2]), diameter); fitSphere(0.5*(min+max), 0.5*diameter); } /*! Rotates the Camera so that its upVector() becomes \p up (defined in the world coordinate system). The Camera is rotated around an axis orthogonal to \p up and to the current upVector() direction. Use this method in order to define the Camera horizontal plane. When \p noMove is set to \c false, the orientation modification is compensated by a translation, so that the revolveAroundPoint() stays projected at the same position on screen. This is especially useful when the Camera is an observer of the scene (default mouse binding). When \p noMove is \c true (default), the Camera position() is left unchanged, which is an intuitive behavior when the Camera is in a walkthrough fly mode (see the QGLViewer::MOVE_FORWARD and QGLViewer::MOVE_BACKWARD QGLViewer::MouseAction). */ void AppGLWidget_Camera::setUpVector(const Vec& up, bool noMove) { Quaternion q(Vec(0.0, 1.0, 0.0), frame()->transformOf(up)); if (!noMove) frame()->setPosition(revolveAroundPoint() - (frame()->orientation()*q).rotate(frame()->coordinatesOf(revolveAroundPoint()))); frame()->rotate(q); // Useful in fly mode to keep the horizontal direction. //frame()->updateFlyUpVector(); } /*! Sets the orientation() of the Camera using polar coordinates. \p theta rotates the Camera around its Y axis, and \e then \p phi rotates it around its X axis. The polar coordinates are defined in the world coordinates system: \p theta = \p phi = 0 means that the Camera is directed towards the world Z axis. Both angles are expressed in radians. See also setUpVector(). The position() of the Camera is unchanged, you may want to call showEntireScene() after this method to move the Camera. This method can be useful to create Quicktime VR panoramic sequences, see the QGLViewer::saveSnapshot() documentation for details. */ void AppGLWidget_Camera::setOrientation(float theta, float phi) { Vec axis(0.0, 1.0, 0.0); const Quaternion rot1(axis, theta); axis = Vec(-cos(theta), 0., sin(theta)); const Quaternion rot2(axis, phi); setOrientation(rot1 * rot2); } /*! Sets the Camera orientation(), defined in the world coordinate system. */ void AppGLWidget_Camera::setOrientation(const Quaternion& q) { frame()->setOrientation(q); //frame()->updateFlyUpVector(); } /*! Rotates the Camera so that its viewDirection() is \p direction (defined in the world coordinate system). The Camera position() is not modified. The Camera is rotated so that the horizon (defined by its upVector()) is preserved. See also lookAt() and setUpVector(). */ void AppGLWidget_Camera::setViewDirection(const Vec& direction) { if (direction.squaredNorm() < 1E-10) return; Vec xAxis = direction ^ upVector(); if (xAxis.squaredNorm() < 1E-10) { // target is aligned with upVector, this means a rotation around X axis // X axis is then unchanged, let's keep it ! xAxis = frame()->inverseTransformOf(Vec(1.0, 0.0, 0.0)); } Quaternion q; q.setFromRotatedBasis(xAxis, xAxis^direction, -direction); frame()->setOrientationWithConstraint(q); } // Compute a 3 by 3 determinant. static float det(float m00,float m01,float m02, float m10,float m11,float m12, float m20,float m21,float m22) { return m00*m11*m22 + m01*m12*m20 + m02*m10*m21 - m20*m11*m02 - m10*m01*m22 - m00*m21*m12; } // Computes the index of element [i][j] in a \c float matrix[3][4]. static inline unsigned int ind(unsigned int i, unsigned int j) { return (i*4+j); } /*! Sets the Camera's position() and orientation() from an OpenGL ModelView matrix. This enables a Camera initialisation from an other OpenGL application. \p modelView is a 16 GLdouble vector representing a valid OpenGL ModelView matrix, such as one can get using: \code GLdouble mvm[16]; glGetDoublev(GL_MODELVIEW_MATRIX, mvm); myCamera->setFromModelViewMatrix(mvm); \endcode After this method has been called, getModelViewMatrix() returns a matrix equivalent to \p modelView. Only the orientation() and position() of the Camera are modified. \note If you defined your matrix as \c GLdouble \c mvm[4][4], pass \c &(mvm[0][0]) as a parameter. */ void AppGLWidget_Camera::setFromModelViewMatrix(const GLdouble* const modelViewMatrix) { // Get upper left (rotation) matrix double upperLeft[3][3]; for (int i=0; i<3; ++i) for (int j=0; j<3; ++j) upperLeft[i][j] = modelViewMatrix[i*4+j]; // Transform upperLeft into the associated Quaternion Quaternion q; q.setFromRotationMatrix(upperLeft); setOrientation(q); setPosition(-q.rotate(Vec(modelViewMatrix[12], modelViewMatrix[13], modelViewMatrix[14]))); } /*! Defines the Camera position(), orientation() and fieldOfView() from a projection matrix. \p matrix has to be given in the format used by vision algorithm. It has 3 lines and 4 columns. It transforms a point from the world homogeneous coordinate system (4 coordinates: \c sx, \c sy, \c sz and \c s) into a point in the screen homogeneous coordinate system (3 coordinates: \c sx, \c sy, and \c s, where \c x and \c y are the pixel coordinates on the screen). Its three lines correspond to the homogeneous coordinates of the normals to the planes x=0, y=0 and z=0, defined in the Camera coordinate system. The elements of the matrix are ordered in line major order: you can call \c setFromProjectionMatrix(&(matrix[0][0])) if you defined your matrix as a \c float \c matrix[3][4]. \attention Passing the result of getProjectionMatrix() or getModelViewMatrix() to this method is not possible (purposefully incompatible matrix dimensions). \p matrix is more likely to be the product of these two matrices, without the last line. Use setFromModelViewMatrix() to set position() and orientation() from a \c GL_MODELVIEW matrix. fieldOfView() can also be retrieved from a \e perspective \c GL_PROJECTION matrix using 2.0 * atan(1.0/projectionMatrix[5]). This code was written by Sylvain Paris. */ void AppGLWidget_Camera::setFromProjectionMatrix(const float matrix[12]) { // The 3 lines of the matrix are the normals to the planes x=0, y=0, z=0 // in the camera CS. As we normalize them, we do not need the 4th coordinate. Vec line_0(matrix[ind(0,0)],matrix[ind(0,1)],matrix[ind(0,2)]); Vec line_1(matrix[ind(1,0)],matrix[ind(1,1)],matrix[ind(1,2)]); Vec line_2(matrix[ind(2,0)],matrix[ind(2,1)],matrix[ind(2,2)]); line_0.normalize(); line_1.normalize(); line_2.normalize(); // The camera position is at (0,0,0) in the camera CS so it is the // intersection of the 3 planes. It can be seen as the kernel // of the 3x4 projection matrix. We calculate it through 4 dimensional // vectorial product. We go directly into 3D that is to say we directly // divide the first 3 coordinates by the 4th one. // We derive the 4 dimensional vectorial product formula from the // computation of a 4x4 determinant that is developped according to // its 4th column. This implies some 3x3 determinants. const Vec cam_pos = Vec(det(matrix[ind(0,1)],matrix[ind(0,2)],matrix[ind(0,3)], matrix[ind(1,1)],matrix[ind(1,2)],matrix[ind(1,3)], matrix[ind(2,1)],matrix[ind(2,2)],matrix[ind(2,3)]), -det(matrix[ind(0,0)],matrix[ind(0,2)],matrix[ind(0,3)], matrix[ind(1,0)],matrix[ind(1,2)],matrix[ind(1,3)], matrix[ind(2,0)],matrix[ind(2,2)],matrix[ind(2,3)]), det(matrix[ind(0,0)],matrix[ind(0,1)],matrix[ind(0,3)], matrix[ind(1,0)],matrix[ind(1,1)],matrix[ind(1,3)], matrix[ind(2,0)],matrix[ind(2,1)],matrix[ind(2,3)])) / (-det(matrix[ind(0,0)],matrix[ind(0,1)],matrix[ind(0,2)], matrix[ind(1,0)],matrix[ind(1,1)],matrix[ind(1,2)], matrix[ind(2,0)],matrix[ind(2,1)],matrix[ind(2,2)])); // We compute the rotation matrix column by column. // GL Z axis is front facing. Vec column_2 = -line_2; // X-axis is almost like line_0 but should be orthogonal to the Z axis. Vec column_0 = ((column_2^line_0)^column_2); column_0.normalize(); // Y-axis is almost like line_1 but should be orthogonal to the Z axis. // Moreover line_1 is downward oriented as the screen CS. Vec column_1 = -((column_2^line_1)^column_2); column_1.normalize(); double rot[3][3]; rot[0][0] = column_0[0]; rot[1][0] = column_0[1]; rot[2][0] = column_0[2]; rot[0][1] = column_1[0]; rot[1][1] = column_1[1]; rot[2][1] = column_1[2]; rot[0][2] = column_2[0]; rot[1][2] = column_2[1]; rot[2][2] = column_2[2]; // We compute the field of view // line_1^column_0 -> vector of intersection line between // y_screen=0 and x_camera=0 plane. // column_2*(...) -> cos of the angle between Z vector et y_screen=0 plane // * 2 -> field of view = 2 * half angle // We need some intermediate values. Vec dummy = line_1^column_0; dummy.normalize(); float fov = acos(column_2*dummy) * 2.0; // We set the camera. Quaternion q; q.setFromRotationMatrix(rot); setOrientation(q); setPosition(cam_pos); setFieldOfView(fov); } /* // persp : projectionMatrix_[0] = f/aspectRatio(); void Camera::setFromProjectionMatrix(const GLdouble* projectionMatrix) { QString message; if ((fabs(projectionMatrix[1]) > 1E-3) || (fabs(projectionMatrix[2]) > 1E-3) || (fabs(projectionMatrix[3]) > 1E-3) || (fabs(projectionMatrix[4]) > 1E-3) || (fabs(projectionMatrix[6]) > 1E-3) || (fabs(projectionMatrix[7]) > 1E-3) || (fabs(projectionMatrix[8]) > 1E-3) || (fabs(projectionMatrix[9]) > 1E-3)) message = "Non null coefficient in projection matrix - Aborting"; else if ((fabs(projectionMatrix[11]+1.0) < 1E-5) && (fabs(projectionMatrix[15]) < 1E-5)) { if (projectionMatrix[5] < 1E-4) message="Negative field of view in Camera::setFromProjectionMatrix"; else setType(Camera::PERSPECTIVE); } else if ((fabs(projectionMatrix[11]) < 1E-5) && (fabs(projectionMatrix[15]-1.0) < 1E-5)) setType(Camera::ORTHOGRAPHIC); else message = "Unable to determine camera type in setFromProjectionMatrix - Aborting"; if (!message.isEmpty()) { qWarning(message); return; } switch (type()) { case Camera::PERSPECTIVE: { setFieldOfView(2.0 * atan(1.0/projectionMatrix[5])); const float far = projectionMatrix[14] / (2.0 * (1.0 + projectionMatrix[10])); const float near = (projectionMatrix[10]+1.0) / (projectionMatrix[10]-1.0) * far; setSceneRadius((far-near)/2.0); setSceneCenter(position() + (near + sceneRadius())*viewDirection()); break; } case Camera::ORTHOGRAPHIC: { GLdouble w, h; getOrthoWidthHeight(w,h); projectionMatrix_[0] = 1.0/w; projectionMatrix_[5] = 1.0/h; projectionMatrix_[10] = -2.0/(ZFar - ZNear); projectionMatrix_[11] = 0.0; projectionMatrix_[14] = -(ZFar + ZNear)/(ZFar - ZNear); projectionMatrix_[15] = 1.0; // same as glOrtho( -w, w, -h, h, zNear(), zFar() ); break; } } } */ ///////////////////////// Camera to world transform /////////////////////// /*! Same as cameraCoordinatesOf(), but with \c float[3] parameters (\p src and \p res may be identical pointers). */ void AppGLWidget_Camera::getCameraCoordinatesOf(const float src[3], float res[3]) const { Vec r = cameraCoordinatesOf(Vec(src)); for (int i=0; i<3; ++i) res[i] = r[i]; } /*! Same as worldCoordinatesOf(), but with \c float[3] parameters (\p src and \p res may be identical pointers). */ void AppGLWidget_Camera::getWorldCoordinatesOf(const float src[3], float res[3]) const { Vec r = worldCoordinatesOf(Vec(src)); for (int i=0; i<3; ++i) res[i] = r[i]; } /*! Fills \p viewport with the Camera OpenGL viewport. This method is mainly used in conjunction with \c gluProject, which requires such a viewport. Returned values are (0, screenHeight(), screenWidth(), - screenHeight()), so that the origin is located in the \e upper left corner of the window (Qt style coordinate system). */ void AppGLWidget_Camera::getViewport(GLint viewport[4]) const { viewport[0] = 0; viewport[1] = screenHeight(); viewport[2] = screenWidth(); viewport[3] = -screenHeight(); } /*! Returns the screen projected coordinates of a point \p src defined in the \p frame coordinate system. When \p frame in \c NULL (default), \p src is expressed in the world coordinate system. The x and y coordinates of the returned Vec are expressed in pixel, (0,0) being the \e upper left corner of the window. The z coordinate ranges between 0.0 (near plane) and 1.0 (excluded, far plane). See the \c gluProject man page for details. unprojectedCoordinatesOf() performs the inverse transformation. See the screenCoordSystem example. This method only uses the intrinsic Camera parameters (see getModelViewMatrix(), getProjectionMatrix() and getViewport()) and is completely independent of the OpenGL \c GL_MODELVIEW, \c GL_PROJECTION and viewport matrices. You can hence define a virtual Camera and use this method to compute projections out of a classical rendering context. \attention However, if your Camera is not attached to a QGLViewer (used for offscreen computations for instance), make sure the Camera matrices are updated before calling this method. Call computeModelViewMatrix() and computeProjectionMatrix() to do so. If you call this method several times with no change in the matrices, consider precomputing the projection times modelview matrix to save computation time if required (\c P x \c M in the \c gluProject man page). */ Vec AppGLWidget_Camera::projectedCoordinatesOf(const Vec& src, const Frame* frame) const { GLdouble x,y,z; static GLint viewport[4]; getViewport(viewport); if (frame) { const Vec tmp = frame->inverseCoordinatesOf(src); gluProject(tmp.x,tmp.y,tmp.z, modelViewMatrix_, projectionMatrix_, viewport, &x,&y,&z); } else gluProject(src.x,src.y,src.z, modelViewMatrix_, projectionMatrix_, viewport, &x,&y,&z); return Vec(x,y,z); } /*! Returns the world unprojected coordinates of a point \p src defined in the screen coordinate system. The \p src.x and \p src.y input values are expressed in pixels, (0,0) being the \e upper left corner of the window. \p src.z is a depth value ranging in [0..1[ (near and far plane respectively). See the \c gluUnProject man page for details. The result is expressed in the \p frame coordinate system. When \p frame is \c NULL (default), the result is expressed in the world coordinates system. The possible \p frame Frame::referenceFrame() are taken into account. projectedCoordinatesOf() performs the inverse transformation. This method only uses the intrinsic Camera parameters (see getModelViewMatrix(), getProjectionMatrix() and getViewport()) and is completely independent of the OpenGL \c GL_MODELVIEW, \c GL_PROJECTION and viewport matrices. You can hence define a virtual Camera and use this method to compute un-projections out of a classical rendering context. \attention However, if your Camera is not attached to a QGLViewer (used for offscreen computations for instance), make sure the Camera matrices are updated before calling this method (use computeModelViewMatrix(), computeProjectionMatrix()). See also setScreenWidthAndHeight(). This method is not computationally optimized. If you call it several times with no change in the matrices, you should buffer the entire inverse projection matrix (modelview, projection and then viewport) to speed-up the queries. See the \c gluUnProject man page for details. */ Vec AppGLWidget_Camera::unprojectedCoordinatesOf(const Vec& src, const Frame* frame) const { GLdouble x,y,z; static GLint viewport[4]; getViewport(viewport); gluUnProject(src.x,src.y,src.z, modelViewMatrix_, projectionMatrix_, viewport, &x,&y,&z); if (frame) return frame->coordinatesOf(Vec(x,y,z)); else return Vec(x,y,z); } /*! Same as projectedCoordinatesOf(), but with \c float parameters (\p src and \p res can be identical pointers). */ void AppGLWidget_Camera::getProjectedCoordinatesOf(const float src[3], float res[3], const Frame* frame) const { Vec r = projectedCoordinatesOf(Vec(src), frame); for (int i=0; i<3; ++i) res[i] = r[i]; } /*! Same as unprojectedCoordinatesOf(), but with \c float parameters (\p src and \p res can be identical pointers). */ void AppGLWidget_Camera::getUnprojectedCoordinatesOf(const float src[3], float res[3], const Frame* frame) const { Vec r = unprojectedCoordinatesOf(Vec(src), frame); for (int i=0; i<3; ++i) res[i] = r[i]; } ///////////////////////////////////// KFI ///////////////////////////////////////// /*! Returns the KeyFrameInterpolator that defines the Camera path number \p i. If path \p i is not defined for this index, the method returns a \c NULL pointer. */ // KeyFrameInterpolator* Camera::keyFrameInterpolator(int i) // { // if ( kfi_.find(i) != kfi_.end()) // return kfi_[i]; // else // return NULL; // } /*! Sets the KeyFrameInterpolator that defines the Camera path of index \p i. The previous keyFrameInterpolator() is lost and should be deleted by the calling method if needed. The KeyFrameInterpolator::interpolated() signal of \p kfi probably needs to be connected to the Camera's associated QGLViewer::updateGL() slot, so that when the Camera position is interpolated using \p kfi, every interpolation step updates the display: \code myViewer.camera()->deletePath(3); myViewer.camera()->setKeyFrameInterpolator(3, myKeyFrameInterpolator); connect(myKeyFrameInterpolator, SIGNAL(interpolated()), myViewer, SLOT(updateGL()); \endcode \note These connections are done automatically when a Camera is attached to a QGLViewer, or when a new KeyFrameInterpolator is defined using the QGLViewer::addKeyFrameKeyboardModifiers() and QGLViewer::pathKey() (default is Alt+F[1-12]). See the keyboard page for details. */ // void Camera::setKeyFrameInterpolator(int i, KeyFrameInterpolator* const kfi) // { // if (kfi) // kfi_[i] = kfi; // else // kfi_.erase(i); // } /*! Adds the current Camera position() and orientation() as a keyFrame to the path number \p i. This method can also be used if you simply want to save a Camera point of view (a path made of a single keyFrame). Use playPath() to make the Camera play the keyFrame path (resp. restore the point of view). Use deletePath() to clear the path. The default keyboard shortcut for this method is Alt+F[1-12]. Set QGLViewer::pathKey() and QGLViewer::addKeyFrameKeyboardModifiers(). If you use directly this method and the keyFrameInterpolator(i) does not exist, a new one is created. Its KeyFrameInterpolator::interpolated() signal should then be connected to the QGLViewer::updateGL() slot (see setKeyFrameInterpolator()). */ // void Camera::addKeyFrameToPath(int i) // { // if (kfi_.find(i) != kfi_.end()) // setKeyFrameInterpolator(i, new KeyFrameInterpolator(frame())); // // kfi_[i]->addKeyFrame(*(frame())); // } /*! Makes the Camera follow the path of keyFrameInterpolator() number \p i. If the interpolation is started, it stops it instead. This method silently ignores undefined (empty) paths (see keyFrameInterpolator()). The default keyboard shortcut for this method is F[1-12]. Set QGLViewer::pathKey() and QGLViewer::playPathKeyboardModifiers(). */ // void Camera::playPath(int i) // { // if (kfi_.find(i) != kfi_.end()) // if (kfi_[i]->interpolationIsStarted()) // kfi_[i]->stopInterpolation(); // else // kfi_[i]->startInterpolation(); // } /*! Resets the path of the keyFrameInterpolator() number \p i. If this path is \e not being played (see playPath() and KeyFrameInterpolator::interpolationIsStarted()), resets it to is its starting position (see KeyFrameInterpolator::resetInterpolation()). If the path is played, simply stops interpolation. */ // void Camera::resetPath(int i) // { // // if (kfi_.contains(i)) // if (kfi_.find(i) != kfi_.end()) // if ((kfi_[i]->interpolationIsStarted())) // kfi_[i]->stopInterpolation(); // else // { // kfi_[i]->resetInterpolation(); // kfi_[i]->interpolateAtTime(kfi_[i]->interpolationTime()); // } // } /*! Deletes the keyFrameInterpolator() of index \p i. Disconnect the keyFrameInterpolator() KeyFrameInterpolator::interpolated() signal before deleting the keyFrameInterpolator() if needed: \code disconnect(camera()->keyFrameInterpolator(i), SIGNAL(interpolated()), this, SLOT(updateGL())); camera()->deletePath(i); \endcode */ // void Camera::deletePath(int i) // { // if (kfi_.find(i) != kfi_.end()) // { // kfi_[i]->stopInterpolation(); // delete kfi_[i]; // kfi_.erase(i); // } // } /*! Gives the coefficients of a 3D half-line passing through the Camera eye and pixel (x,y). The origin of the half line (eye position) is stored in \p orig, while \p dir contains the properly oriented and normalized direction of the half line. \p x and \p y are expressed in Qt format (origin in the upper left corner). Use screenHeight() - y to convert to OpenGL units. This method is useful for analytical intersection in a selection method. See the select example for an illustration. */ void AppGLWidget_Camera::convertClickToLine(const Point& pixel, Vec& orig, Vec& dir) const { switch (type()) { case AppGLWidget_Camera::PERSPECTIVE: orig = position(); dir = Vec( ((2.0 * pixel.x() / screenWidth()) - 1.0) * tan(fieldOfView()/2.0) * aspectRatio(), ((2.0 * (screenHeight()-pixel.y()) / screenHeight()) - 1.0) * tan(fieldOfView()/2.0), -1.0 ); dir = worldCoordinatesOf(dir) - orig; dir.normalize(); break; case AppGLWidget_Camera::ORTHOGRAPHIC: { GLdouble w,h; getOrthoWidthHeight(w,h); orig = Vec((2.0 * pixel.x() / screenWidth() - 1.0)*w, -(2.0 * pixel.y() / screenHeight() - 1.0)*h, 0.0); orig = worldCoordinatesOf(orig); dir = viewDirection(); break; } } } #ifndef DOXYGEN /*! This method has been deprecated in libQGLViewer version 2.2.0 */ void AppGLWidget_Camera::drawCamera(float, float, float) { cout << "drawCamera is deprecated. Use AppGLWidget_Camera::draw() instead."; } #endif /*! Draws a representation of the Camera in the 3D world. The near and far planes are drawn as quads, the frustum is drawn using lines and the camera up vector is represented by an arrow to disambiguate the drawing. See the standardCamera example for an illustration. Note that the current \c glColor and \c glPolygonMode are used to draw the near and far planes. See the frustumCulling example for an example of semi-transparent plane drawing. Similarly, the current \c glLineWidth and \c glColor is used to draw the frustum outline. When \p drawFarPlane is \c false, only the near plane is drawn. \p scale can be used to scale the drawing: a value of 1.0 (default) will draw the Camera's frustum at its actual size. This method assumes that the \c glMatrixMode is \c GL_MODELVIEW and that the current ModelView matrix corresponds to the world coordinate system (as it is at the beginning of QGLViewer::draw()). The Camera is then correctly positioned and orientated. \note The drawing of a QGLViewer's own QGLViewer::camera() should not be visible, but may create artefacts due to numerical imprecisions. */ void AppGLWidget_Camera::draw(bool drawFarPlane, float scale) const { glPushMatrix(); glMultMatrixd(frame()->worldMatrix()); // 0 is the upper left coordinates of the near corner, 1 for the far one Vec points[2]; points[0].z = scale * zNear(); points[1].z = scale * zFar(); switch (type()) { case AppGLWidget_Camera::PERSPECTIVE: { points[0].y = points[0].z * tan(fieldOfView()/2.0); points[0].x = points[0].y * aspectRatio(); const float ratio = points[1].z / points[0].z; points[1].y = ratio * points[0].y; points[1].x = ratio * points[0].x; break; } case AppGLWidget_Camera::ORTHOGRAPHIC: { GLdouble hw, hh; getOrthoWidthHeight(hw, hh); points[0].x = points[1].x = scale * float(hw); points[0].y = points[1].y = scale * float(hh); break; } } const int farIndex = drawFarPlane?1:0; // Near and (optionally) far plane(s) glBegin(GL_QUADS); for (int i=farIndex; i>=0; --i) { glNormal3f(0.0, 0.0, (i==0)?1.0:-1.0); glVertex3f( points[i].x, points[i].y, -points[i].z); glVertex3f(-points[i].x, points[i].y, -points[i].z); glVertex3f(-points[i].x, -points[i].y, -points[i].z); glVertex3f( points[i].x, -points[i].y, -points[i].z); } glEnd(); // Up arrow const float arrowHeight = 1.5f * points[0].y; const float baseHeight = 1.2f * points[0].y; const float arrowHalfWidth = 0.5f * points[0].x; const float baseHalfWidth = 0.3f * points[0].x; glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); // Base glBegin(GL_QUADS); glVertex3f(-baseHalfWidth, points[0].y, -points[0].z); glVertex3f( baseHalfWidth, points[0].y, -points[0].z); glVertex3f( baseHalfWidth, baseHeight, -points[0].z); glVertex3f(-baseHalfWidth, baseHeight, -points[0].z); glEnd(); // Arrow glBegin(GL_TRIANGLES); glVertex3f( 0.0f, arrowHeight, -points[0].z); glVertex3f(-arrowHalfWidth, baseHeight, -points[0].z); glVertex3f( arrowHalfWidth, baseHeight, -points[0].z); glEnd(); // Frustum lines switch (type()) { case AppGLWidget_Camera::PERSPECTIVE : glBegin(GL_LINES); glVertex3f(0.0f, 0.0f, 0.0f); glVertex3f( points[farIndex].x, points[farIndex].y, -points[farIndex].z); glVertex3f(0.0f, 0.0f, 0.0f); glVertex3f(-points[farIndex].x, points[farIndex].y, -points[farIndex].z); glVertex3f(0.0f, 0.0f, 0.0f); glVertex3f(-points[farIndex].x, -points[farIndex].y, -points[farIndex].z); glVertex3f(0.0f, 0.0f, 0.0f); glVertex3f( points[farIndex].x, -points[farIndex].y, -points[farIndex].z); glEnd(); break; case AppGLWidget_Camera::ORTHOGRAPHIC : if (drawFarPlane) { glBegin(GL_LINES); glVertex3f( points[0].x, points[0].y, -points[0].z); glVertex3f( points[1].x, points[1].y, -points[1].z); glVertex3f(-points[0].x, points[0].y, -points[0].z); glVertex3f(-points[1].x, points[1].y, -points[1].z); glVertex3f(-points[0].x, -points[0].y, -points[0].z); glVertex3f(-points[1].x, -points[1].y, -points[1].z); glVertex3f( points[0].x, -points[0].y, -points[0].z); glVertex3f( points[1].x, -points[1].y, -points[1].z); glEnd(); } } glPopMatrix(); } /*! Returns the 6 plane equations of the Camera frustum. The six 4-component vectors of \p coef respectively correspond to the left, right, near, far, top and bottom Camera frustum planes. Each vector holds a plane equation of the form: \code a*x + b*y + c*z + d = 0 \endcode where \c a, \c b, \c c and \c d are the 4 components of each vector, in that order. See the frustumCulling example for an application. This format is compatible with the \c glClipPlane() function. One camera frustum plane can hence be applied in an other viewer to visualize the culling results: \code // Retrieve plance equations GLdouble coef[6][4]; mainViewer->camera()->getFrustumPlanesCoefficients(coef); // These two additional clipping planes (which must have been enabled) // will reproduce the mainViewer's near and far clipping. glClipPlane(GL_CLIP_PLANE0, coef[2]); glClipPlane(GL_CLIP_PLANE1, coef[3]); \endcode */ void AppGLWidget_Camera::getFrustumPlanesCoefficients(GLdouble coef[6][4]) const { // Computed once and for all const Vec pos = position(); const Vec viewDir = viewDirection(); const Vec up = upVector(); const Vec right = rightVector(); const float posViewDir = pos * viewDir; static Vec normal[6]; static GLdouble dist[6]; switch (type()) { case AppGLWidget_Camera::PERSPECTIVE : { const float hhfov = horizontalFieldOfView() / 2.0; const float chhfov = cos(hhfov); const float shhfov = sin(hhfov); normal[0] = - shhfov * viewDir; normal[1] = normal[0] + chhfov * right; normal[0] = normal[0] - chhfov * right; normal[2] = -viewDir; normal[3] = viewDir; const float hfov = fieldOfView() / 2.0; const float chfov = cos(hfov); const float shfov = sin(hfov); normal[4] = - shfov * viewDir; normal[5] = normal[4] - chfov * up; normal[4] = normal[4] + chfov * up; for (int i=0; i<2; ++i) dist[i] = pos * normal[i]; for (int j=4; j<6; ++j) dist[j] = pos * normal[j]; // Natural equations are: // dist[0,1,4,5] = pos * normal[0,1,4,5]; // dist[2] = (pos + zNear() * viewDir) * normal[2]; // dist[3] = (pos + zFar() * viewDir) * normal[3]; // 2 times less computations using expanded/merged equations. Dir vectors are normalized. const float posRightCosHH = chhfov * pos * right; dist[0] = -shhfov * posViewDir; dist[1] = dist[0] + posRightCosHH; dist[0] = dist[0] - posRightCosHH; const float posUpCosH = chfov * pos * up; dist[4] = - shfov * posViewDir; dist[5] = dist[4] - posUpCosH; dist[4] = dist[4] + posUpCosH; break; } case AppGLWidget_Camera::ORTHOGRAPHIC : normal[0] = -right; normal[1] = right; normal[4] = up; normal[5] = -up; GLdouble hw, hh; getOrthoWidthHeight(hw, hh); dist[0] = (pos - hw * right) * normal[0]; dist[1] = (pos + hw * right) * normal[1]; dist[4] = (pos + hh * up) * normal[4]; dist[5] = (pos - hh * up) * normal[5]; break; } // Front and far planes are identical for both camera types. normal[2] = -viewDir; normal[3] = viewDir; dist[2] = -posViewDir - zNear(); dist[3] = posViewDir + zFar(); for (int i=0; i<6; ++i) { coef[i][0] = GLdouble(normal[i].x); coef[i][1] = GLdouble(normal[i].y); coef[i][2] = GLdouble(normal[i].z); coef[i][3] = dist[i]; } }