// // Copyright (C) : Please refer to the COPYRIGHT file distributed // with this source distribution. // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License // as published by the Free Software Foundation; either version 2 // of the License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. // /////////////////////////////////////////////////////////////////////////////// #include "Noise.h" # include # include # include #include #define MINX -1000000 #define MINY MINX #define MINZ MINX #define SCURVE(a) ((a)*(a)*(3.0-2.0*(a))) #define REALSCALE ( 2.0 / 65536.0 ) #define NREALSCALE ( 2.0 / 4096.0 ) #define HASH3D(a,b,c) hashTable[hashTable[hashTable[(a) & 0xfff] ^ ((b) & 0xfff)] ^ ((c) & 0xfff)] #define HASH(a,b,c) (xtab[(xtab[(xtab[(a) & 0xff] ^ (b)) & 0xff] ^ (c)) & 0xff] & 0xff) #define INCRSUM(m,s,x,y,z) ((s)*(RTable[m]*0.5 \ + RTable[m+1]*(x) \ + RTable[m+2]*(y) \ + RTable[m+3]*(z))) #define MAXSIZE 500 #define nrand() ((float)rand()/(float)RAND_MAX) #define seednrand(x) srand(x*RAND_MAX) #define BM 0xff #define N 0x1000 #define NP 12 /* 2^N */ #define NM 0xfff #define s_curve(t) ( t * t * (3. - 2. * t) ) #define lerp(t, a, b) ( a + t * (b - a) ) #define setup(i,b0,b1,r0,r1)\ t = i + N;\ b0 = ((int)t) & BM;\ b1 = (b0+1) & BM;\ r0 = t - (int)t;\ r1 = r0 - 1.; void normalize2(float v[2]) { float s; s = sqrt(v[0] * v[0] + v[1] * v[1]); v[0] = v[0] / s; v[1] = v[1] / s; } void normalize3(float v[3]) { float s; s = sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]); v[0] = v[0] / s; v[1] = v[1] / s; v[2] = v[2] / s; } float Noise::turbulence1(float arg, float freq, float amp, unsigned oct) { float t; float vec; for (t = 0; oct > 0 && freq > 0; freq *= 2, amp /= 2, --oct) { vec = freq * arg; t += smoothNoise1(vec) * amp; } return t; } float Noise::turbulence2(Vec2f& v, float freq, float amp, unsigned oct) { float t; Vec2f vec; for (t = 0; oct > 0 && freq > 0; freq *= 2, amp /= 2, --oct) { vec.x() = freq * v.x(); vec.y() = freq * v.y(); t += smoothNoise2(vec) * amp; } return t; } float Noise::turbulence3(Vec3f& v, float freq, float amp, unsigned oct) { float t; Vec3f vec; for (t = 0; oct > 0 && freq > 0; freq *= 2, amp /= 2, --oct) { vec.x() = freq * v.x(); vec.y() = freq * v.y(); vec.z() = freq * v.z(); t += smoothNoise3(vec) * amp; } return t; } // Noise functions over 1, 2, and 3 dimensions float Noise::smoothNoise1(float arg) { int bx0, bx1; float rx0, rx1, sx, t, u, v, vec; vec = arg; setup(vec, bx0,bx1, rx0,rx1); sx = s_curve(rx0); u = rx0 * g1[ p[ bx0 ] ]; v = rx1 * g1[ p[ bx1 ] ]; return lerp(sx, u, v); } float Noise::smoothNoise2(Vec2f& vec) { int bx0, bx1, by0, by1, b00, b10, b01, b11; float rx0, rx1, ry0, ry1, *q, sx, sy, a, b, t, u, v; register int i, j; setup(vec.x(), bx0,bx1, rx0,rx1); setup(vec.y(), by0,by1, ry0,ry1); i = p[ bx0 ]; j = p[ bx1 ]; b00 = p[ i + by0 ]; b10 = p[ j + by0 ]; b01 = p[ i + by1 ]; b11 = p[ j + by1 ]; sx = s_curve(rx0); sy = s_curve(ry0); #define at2(rx,ry) ( rx * q[0] + ry * q[1] ) q = g2[ b00 ] ; u = at2(rx0,ry0); q = g2[ b10 ] ; v = at2(rx1,ry0); a = lerp(sx, u, v); q = g2[ b01 ] ; u = at2(rx0,ry1); q = g2[ b11 ] ; v = at2(rx1,ry1); b = lerp(sx, u, v); return lerp(sy, a, b); } float Noise::smoothNoise3(Vec3f& vec) { int bx0, bx1, by0, by1, bz0, bz1, b00, b10, b01, b11; float rx0, rx1, ry0, ry1, rz0, rz1, *q, sy, sz, a, b, c, d, t, u, v; register int i, j; setup(vec.x(), bx0,bx1, rx0,rx1); setup(vec.y(), by0,by1, ry0,ry1); setup(vec.z(), bz0,bz1, rz0,rz1); i = p[ bx0 ]; j = p[ bx1 ]; b00 = p[ i + by0 ]; b10 = p[ j + by0 ]; b01 = p[ i + by1 ]; b11 = p[ j + by1 ]; t = s_curve(rx0); sy = s_curve(ry0); sz = s_curve(rz0); #define at3(rx,ry,rz) ( rx * q[0] + ry * q[1] + rz * q[2] ) q = g3[ b00 + bz0 ] ; u = at3(rx0,ry0,rz0); q = g3[ b10 + bz0 ] ; v = at3(rx1,ry0,rz0); a = lerp(t, u, v); q = g3[ b01 + bz0 ] ; u = at3(rx0,ry1,rz0); q = g3[ b11 + bz0 ] ; v = at3(rx1,ry1,rz0); b = lerp(t, u, v); c = lerp(sy, a, b); q = g3[ b00 + bz1 ] ; u = at3(rx0,ry0,rz1); q = g3[ b10 + bz1 ] ; v = at3(rx1,ry0,rz1); a = lerp(t, u, v); q = g3[ b01 + bz1 ] ; u = at3(rx0,ry1,rz1); q = g3[ b11 + bz1 ] ; v = at3(rx1,ry1,rz1); b = lerp(t, u, v); d = lerp(sy, a, b); return lerp(sz, c, d); } Noise::Noise() { int i, j, k; seednrand(time(NULL)); for (i = 0 ; i < _Noise_B_ ; i++) { p[i] = i; g1[i] = (float)((rand() % (_Noise_B_ + _Noise_B_)) - _Noise_B_) / _Noise_B_; for (j = 0 ; j < 2 ; j++) g2[i][j] = (float)((rand() % (_Noise_B_ + _Noise_B_)) - _Noise_B_) / _Noise_B_; normalize2(g2[i]); for (j = 0 ; j < 3 ; j++) g3[i][j] = (float)((rand() % (_Noise_B_ + _Noise_B_)) - _Noise_B_) / _Noise_B_; normalize3(g3[i]); } while (--i) { k = p[i]; p[i] = p[j = rand() % _Noise_B_]; p[j] = k; } for (i = 0 ; i < _Noise_B_ + 2 ; i++) { p[_Noise_B_ + i] = p[i]; g1[_Noise_B_ + i] = g1[i]; for (j = 0 ; j < 2 ; j++) g2[_Noise_B_ + i][j] = g2[i][j]; for (j = 0 ; j < 3 ; j++) g3[_Noise_B_ + i][j] = g3[i][j]; } }