#include "BPy_CurvePoint.h" #include "../BPy_Convert.h" #include "../Interface0D/BPy_SVertex.h" #ifdef __cplusplus extern "C" { #endif /////////////////////////////////////////////////////////////////////////////////////////// //------------------------INSTANCE METHODS ---------------------------------- static char CurvePoint___doc__[] = "Class hierarchy: :class:`Interface0D` > :class:`CurvePoint`\n" "\n" "Class to represent a point of a curve. A CurvePoint can be any point\n" "of a 1D curve (it doesn't have to be a vertex of the curve). Any\n" ":class:`Interface1D` is built upon ViewEdges, themselves built upon\n" "FEdges. Therefore, a curve is basically a polyline made of a list of\n" ":class:`SVertex` objects. Thus, a CurvePoint is built by linearly\n" "interpolating two :class:`SVertex` instances. CurvePoint can be used\n" "as virtual points while querying 0D information along a curve at a\n" "given resolution.\n" "\n" ".. method:: __init__()\n" "\n" " Defult constructor.\n" "\n" ".. method:: __init__(iBrother)\n" "\n" " Copy constructor.\n" "\n" " :arg iBrother: A CurvePoint object.\n" " :type iBrother: :class:`CurvePoint`\n" "\n" ".. method:: __init__(iA, iB, t2d)\n" "\n" " Builds a CurvePoint from two SVertex and an interpolation parameter.\n" "\n" " :arg iA: The first SVertex.\n" " :type iA: :class:`SVertex`\n" " :arg iB: The second SVertex.\n" " :type iB: :class:`SVertex`\n" " :arg t2d: A 2D interpolation parameter used to linearly interpolate\n" " iA and iB.\n" " :type t2d: float\n" "\n" ".. method:: __init__(iA, iB, t2d)\n" "\n" " Builds a CurvePoint from two CurvePoint and an interpolation\n" " parameter.\n" "\n" " :arg iA: The first CurvePoint.\n" " :type iA: :class:`CurvePoint`\n" " :arg iB: The second CurvePoint.\n" " :type iB: :class:`CurvePoint`\n" " :arg t2d: The 2D interpolation parameter used to linearly\n" " interpolate iA and iB.\n" " :type t2d: float\n"; static int CurvePoint___init__(BPy_CurvePoint *self, PyObject *args, PyObject *kwds) { PyObject *obj1 = 0, *obj2 = 0 , *obj3 = 0; if (! PyArg_ParseTuple(args, "|OOO!", &obj1, &obj2, &PyFloat_Type, &obj3) ) return -1; if( !obj1 ){ self->cp = new CurvePoint(); } else if( !obj2 && BPy_CurvePoint_Check(obj1) ) { self->cp = new CurvePoint( *(((BPy_CurvePoint *) obj1)->cp) ); } else if( obj3 && BPy_SVertex_Check(obj1) && BPy_SVertex_Check(obj2) ) { self->cp = new CurvePoint( ((BPy_SVertex *) obj1)->sv, ((BPy_SVertex *) obj2)->sv, PyFloat_AsDouble( obj3 ) ); } else if( obj3 && BPy_CurvePoint_Check(obj1) && BPy_CurvePoint_Check(obj2) ) { CurvePoint *cp1 = ((BPy_CurvePoint *) obj1)->cp; CurvePoint *cp2 = ((BPy_CurvePoint *) obj2)->cp; if( !cp1 || cp1->A() == 0 || cp1->B() == 0 ) { PyErr_SetString(PyExc_TypeError, "argument 1 is an invalid CurvePoint object"); return -1; } if( !cp2 || cp2->A() == 0 || cp2->B() == 0 ) { PyErr_SetString(PyExc_TypeError, "argument 2 is an invalid CurvePoint object"); return -1; } self->cp = new CurvePoint( cp1, cp2, PyFloat_AsDouble( obj3 ) ); } else { PyErr_SetString(PyExc_TypeError, "invalid argument(s)"); return -1; } self->py_if0D.if0D = self->cp; self->py_if0D.borrowed = 0; return 0; } static char CurvePoint_A___doc__[] = ".. method:: A()\n" "\n" " Returns the first SVertex upon which the CurvePoint is built.\n" "\n" " :return: The first SVertex.\n" " :rtype: :class:`SVertex`\n"; static PyObject * CurvePoint_A( BPy_CurvePoint *self ) { SVertex *A = self->cp->A(); if( A ) return BPy_SVertex_from_SVertex( *A ); Py_RETURN_NONE; } static char CurvePoint_B___doc__[] = ".. method:: B()\n" "\n" " Returns the second SVertex upon which the CurvePoint is built.\n" "\n" " :return: The second SVertex.\n" " :rtype: :class:`SVertex`\n"; static PyObject * CurvePoint_B( BPy_CurvePoint *self ) { SVertex *B = self->cp->B(); if( B ) return BPy_SVertex_from_SVertex( *B ); Py_RETURN_NONE; } static char CurvePoint_t2d___doc__[] = ".. method:: t2d()\n" "\n" " Returns the 2D interpolation parameter.\n" "\n" " :return: The 2D interpolation parameter.\n" " :rtype: float\n"; static PyObject * CurvePoint_t2d( BPy_CurvePoint *self ) { return PyFloat_FromDouble( self->cp->t2d() ); } static char CurvePoint_setA___doc__[] = ".. method:: setA(iA)\n" "\n" " Sets the first SVertex upon which to build the CurvePoint.\n" "\n" " :arg iA: The first SVertex.\n" " :type iA: :class:`SVertex`\n"; static PyObject *CurvePoint_setA( BPy_CurvePoint *self , PyObject *args) { PyObject *py_sv; if(!( PyArg_ParseTuple(args, "O!", &SVertex_Type, &py_sv) )) return NULL; self->cp->setA( ((BPy_SVertex *) py_sv)->sv ); Py_RETURN_NONE; } static char CurvePoint_setB___doc__[] = ".. method:: setB(iB)\n" "\n" " Sets the first SVertex upon which to build the CurvePoint.\n" "\n" " :arg iB: The second SVertex.\n" " :type iB: :class:`SVertex`\n"; static PyObject *CurvePoint_setB( BPy_CurvePoint *self , PyObject *args) { PyObject *py_sv; if(!( PyArg_ParseTuple(args, "O!", &SVertex_Type, &py_sv) )) return NULL; self->cp->setB( ((BPy_SVertex *) py_sv)->sv ); Py_RETURN_NONE; } static char CurvePoint_setT2d___doc__[] = ".. method:: setT2d(t)\n" "\n" " Sets the 2D interpolation parameter to use.\n" "\n" " :arg t: The 2D interpolation parameter.\n" " :type t: float\n"; static PyObject *CurvePoint_setT2d( BPy_CurvePoint *self , PyObject *args) { float t; if(!( PyArg_ParseTuple(args, "f", &t) )) return NULL; self->cp->setT2d( t ); Py_RETURN_NONE; } static char CurvePoint_curvatureFredo___doc__[] = ".. method:: curvatureFredo()\n" "\n" " Returns the angle in radians.\n" "\n" " :return: The angle in radians.\n" " :rtype: float\n"; static PyObject *CurvePoint_curvatureFredo( BPy_CurvePoint *self , PyObject *args) { return PyFloat_FromDouble( self->cp->curvatureFredo() ); } ///bool operator== (const CurvePoint &b) /*----------------------CurvePoint instance definitions ----------------------------*/ static PyMethodDef BPy_CurvePoint_methods[] = { {"A", ( PyCFunction ) CurvePoint_A, METH_NOARGS, CurvePoint_A___doc__}, {"B", ( PyCFunction ) CurvePoint_B, METH_NOARGS, CurvePoint_B___doc__}, {"t2d", ( PyCFunction ) CurvePoint_t2d, METH_NOARGS, CurvePoint_t2d___doc__}, {"setA", ( PyCFunction ) CurvePoint_setA, METH_VARARGS, CurvePoint_setA___doc__}, {"setB", ( PyCFunction ) CurvePoint_setB, METH_VARARGS, CurvePoint_setB___doc__}, {"setT2d", ( PyCFunction ) CurvePoint_setT2d, METH_VARARGS, CurvePoint_setT2d___doc__}, {"curvatureFredo", ( PyCFunction ) CurvePoint_curvatureFredo, METH_NOARGS, CurvePoint_curvatureFredo___doc__}, {NULL, NULL, 0, NULL} }; /*-----------------------BPy_CurvePoint type definition ------------------------------*/ PyTypeObject CurvePoint_Type = { PyVarObject_HEAD_INIT(NULL, 0) "CurvePoint", /* tp_name */ sizeof(BPy_CurvePoint), /* tp_basicsize */ 0, /* tp_itemsize */ 0, /* tp_dealloc */ 0, /* tp_print */ 0, /* tp_getattr */ 0, /* tp_setattr */ 0, /* tp_reserved */ 0, /* tp_repr */ 0, /* tp_as_number */ 0, /* tp_as_sequence */ 0, /* tp_as_mapping */ 0, /* tp_hash */ 0, /* tp_call */ 0, /* tp_str */ 0, /* tp_getattro */ 0, /* tp_setattro */ 0, /* tp_as_buffer */ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */ CurvePoint___doc__, /* tp_doc */ 0, /* tp_traverse */ 0, /* tp_clear */ 0, /* tp_richcompare */ 0, /* tp_weaklistoffset */ 0, /* tp_iter */ 0, /* tp_iternext */ BPy_CurvePoint_methods, /* tp_methods */ 0, /* tp_members */ 0, /* tp_getset */ &Interface0D_Type, /* tp_base */ 0, /* tp_dict */ 0, /* tp_descr_get */ 0, /* tp_descr_set */ 0, /* tp_dictoffset */ (initproc)CurvePoint___init__, /* tp_init */ 0, /* tp_alloc */ 0, /* tp_new */ }; /////////////////////////////////////////////////////////////////////////////////////////// #ifdef __cplusplus } #endif