// // Copyright (C) : Please refer to the COPYRIGHT file distributed // with this source distribution. // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License // as published by the Free Software Foundation; either version 2 // of the License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. // /////////////////////////////////////////////////////////////////////////////// #include "../system/FreestyleConfig.h" #include "NodeTransform.h" void NodeTransform::Translate(real x, real y, real z) { _Matrix(0, 3) += x; _Matrix(1, 3) += y; _Matrix(2, 3) += z; } void NodeTransform::Rotate(real iAngle, real x, real y, real z) { //Normalize the x,y,z vector; real norm = (real)sqrt(x*x+y*y+z*z); if(0 == norm) return; x /= norm; y /= norm; z /= norm; // find the corresponding matrix with the Rodrigues formula: // R = I + sin(iAngle)*Ntilda + (1-cos(iAngle))*Ntilda*Ntilda Matrix33r Ntilda; Ntilda(0,0) = Ntilda(1,1) = Ntilda(2,2) = 0.f; Ntilda(0,1) = -z; Ntilda(0,2) = y; Ntilda(1,0) = z; Ntilda(1,2) = -x; Ntilda(2,0) = -y; Ntilda(2,1) = x; const Matrix33r Ntilda2(Ntilda * Ntilda); const real sinAngle = (real)sin((iAngle/180.f)*M_PI); const real cosAngle = (real)cos((iAngle/180.f)*M_PI); Matrix33r NS(Ntilda*sinAngle); Matrix33r NC(Ntilda2*(1.f-cosAngle)); Matrix33r R; R = Matrix33r::identity(); R += NS + NC; //R4 is the corresponding 4x4 matrix Matrix44r R4; R4 = Matrix44r::identity(); for(int i=0; i<3; i++) for(int j=0; j<3; j++) R4(i,j) = R(i,j); // Finally, we multiply our current matrix by R4: Matrix44r mat_tmp(_Matrix); _Matrix = mat_tmp * R4; } void NodeTransform::Scale(real x, real y, real z) { _Matrix(0,0) *= x; _Matrix(1,1) *= y; _Matrix(2,2) *= z; _Scaled = true; } void NodeTransform::MultiplyMatrix(const Matrix44r &iMatrix) { Matrix44r mat_tmp(_Matrix); _Matrix = mat_tmp * iMatrix; } void NodeTransform::setMatrix(const Matrix44r &iMatrix) { _Matrix = iMatrix; if(isScaled(iMatrix)) _Scaled = true; } void NodeTransform::accept(SceneVisitor& v) { v.visitNodeTransform(*this); v.visitNodeTransformBefore(*this); for(vector::iterator node=_Children.begin(), end=_Children.end(); node!=end; node++) (*node)->accept(v); v.visitNodeTransformAfter(*this); } void NodeTransform::AddBBox(const BBox& iBBox) { Vec3r oldMin(iBBox.getMin()); Vec3r oldMax(iBBox.getMax()); // compute the 8 corners of the bbox HVec3r box[8]; box[0] = HVec3r(iBBox.getMin()); box[1] = HVec3r(oldMax[0], oldMin[1], oldMin[2]); box[2] = HVec3r(oldMax[0], oldMax[1], oldMin[2]); box[3] = HVec3r(oldMin[0], oldMax[1], oldMin[2]); box[4] = HVec3r(oldMin[0], oldMin[1], oldMax[2]); box[5] = HVec3r(oldMax[0], oldMin[1], oldMax[2]); box[6] = HVec3r(oldMax[0], oldMax[1], oldMax[2]); box[7] = HVec3r(oldMin[0], oldMax[1], oldMax[2]); // Computes the transform iBBox HVec3r tbox[8]; unsigned i; for(i = 0; i < 8; i++) tbox[i] = _Matrix * box[i]; Vec3r newMin(tbox[0]); Vec3r newMax(tbox[0]); for (i=0; i<8; i++) { for (unsigned int j=0; j<3; j++) { if (newMin[j] > tbox[i][j]) newMin[j] = tbox[i][j]; if (newMax[j] < tbox[i][j]) newMax[j] = tbox[i][j]; } } BBox transformBox(newMin, newMax); Node::AddBBox(transformBox); } bool NodeTransform::isScaled(const Matrix44r &M) { for(unsigned int j=0; j<3; j++) { real norm = 0; for(unsigned int i=0; i<3; i++) { norm += M(i,j)*M(i,j); } if((norm > 1.01) || (norm < 0.99)) return true; } return false; }