/* * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /** \file blender/freestyle/intern/scene_graph/NodeTransform.cpp * \ingroup freestyle * \brief Class to represent a transform node. A Transform node contains one or several children, * \brief all affected by the transformation. */ #include "NodeTransform.h" #include "BLI_math.h" namespace Freestyle { void NodeTransform::Translate(real x, real y, real z) { _Matrix(0, 3) += x; _Matrix(1, 3) += y; _Matrix(2, 3) += z; } void NodeTransform::Rotate(real iAngle, real x, real y, real z) { //Normalize the x,y,z vector; real norm = (real)sqrt(x * x + y * y + z * z); if (0 == norm) return; x /= norm; y /= norm; z /= norm; /* find the corresponding matrix with the Rodrigues formula: * R = I + sin(iAngle)*Ntilda + (1-cos(iAngle))*Ntilda*Ntilda */ Matrix33r Ntilda; Ntilda(0, 0) = Ntilda(1, 1) = Ntilda(2, 2) = 0.0f; Ntilda(0, 1) = -z; Ntilda(0, 2) = y; Ntilda(1, 0) = z; Ntilda(1, 2) = -x; Ntilda(2, 0) = -y; Ntilda(2, 1) = x; const Matrix33r Ntilda2(Ntilda * Ntilda); const real sinAngle = (real)sin((iAngle / 180.0f) * M_PI); const real cosAngle = (real)cos((iAngle / 180.0f) * M_PI); Matrix33r NS(Ntilda * sinAngle); Matrix33r NC(Ntilda2 * (1.0f - cosAngle)); Matrix33r R; R = Matrix33r::identity(); R += NS + NC; // R4 is the corresponding 4x4 matrix Matrix44r R4; R4 = Matrix44r::identity(); for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) R4(i, j) = R(i, j); } // Finally, we multiply our current matrix by R4: Matrix44r mat_tmp(_Matrix); _Matrix = mat_tmp * R4; } void NodeTransform::Scale(real x, real y, real z) { _Matrix(0, 0) *= x; _Matrix(1, 1) *= y; _Matrix(2, 2) *= z; _Scaled = true; } void NodeTransform::MultiplyMatrix(const Matrix44r &iMatrix) { Matrix44r mat_tmp(_Matrix); _Matrix = mat_tmp * iMatrix; } void NodeTransform::setMatrix(const Matrix44r &iMatrix) { _Matrix = iMatrix; if (isScaled(iMatrix)) _Scaled = true; } void NodeTransform::accept(SceneVisitor& v) { v.visitNodeTransform(*this); v.visitNodeTransformBefore(*this); for (vector::iterator node = _Children.begin(), end = _Children.end(); node != end; ++node) (*node)->accept(v); v.visitNodeTransformAfter(*this); } void NodeTransform::AddBBox(const BBox& iBBox) { Vec3r oldMin(iBBox.getMin()); Vec3r oldMax(iBBox.getMax()); // compute the 8 corners of the bbox HVec3r box[8]; box[0] = HVec3r(iBBox.getMin()); box[1] = HVec3r(oldMax[0], oldMin[1], oldMin[2]); box[2] = HVec3r(oldMax[0], oldMax[1], oldMin[2]); box[3] = HVec3r(oldMin[0], oldMax[1], oldMin[2]); box[4] = HVec3r(oldMin[0], oldMin[1], oldMax[2]); box[5] = HVec3r(oldMax[0], oldMin[1], oldMax[2]); box[6] = HVec3r(oldMax[0], oldMax[1], oldMax[2]); box[7] = HVec3r(oldMin[0], oldMax[1], oldMax[2]); // Computes the transform iBBox HVec3r tbox[8]; unsigned int i; for (i = 0; i < 8; i++) tbox[i] = _Matrix * box[i]; Vec3r newMin(tbox[0]); Vec3r newMax(tbox[0]); for (i = 0; i < 8; i++) { for (unsigned int j = 0; j < 3; j++) { if (newMin[j] > tbox[i][j]) newMin[j] = tbox[i][j]; if (newMax[j] < tbox[i][j]) newMax[j] = tbox[i][j]; } } BBox transformBox(newMin, newMax); Node::AddBBox(transformBox); } bool NodeTransform::isScaled(const Matrix44r &M) { for (unsigned int j = 0; j < 3; j++) { real norm = 0; for (unsigned int i = 0; i < 3; i++) { norm += M(i, j) * M(i, j); } if ((norm > 1.01) || (norm < 0.99)) return true; } return false; } } /* namespace Freestyle */