/* SPDX-License-Identifier: GPL-2.0-or-later */ /** \file * \ingroup freestyle * \brief Class to define a cell grid surrounding the projected image of a scene */ #include "AverageAreaGridDensityProvider.h" #include "BLI_sys_types.h" #include "BKE_global.h" namespace Freestyle { AverageAreaGridDensityProvider::AverageAreaGridDensityProvider(OccluderSource &source, const real proscenium[4], real sizeFactor) : GridDensityProvider(source) { initialize(proscenium, sizeFactor); } AverageAreaGridDensityProvider::AverageAreaGridDensityProvider( OccluderSource &source, const BBox &bbox, const GridHelpers::Transform &transform, real sizeFactor) : GridDensityProvider(source) { real proscenium[4]; calculateQuickProscenium(transform, bbox, proscenium); initialize(proscenium, sizeFactor); } AverageAreaGridDensityProvider::AverageAreaGridDensityProvider(OccluderSource &source, real sizeFactor) : GridDensityProvider(source) { real proscenium[4]; calculateOptimalProscenium(source, proscenium); initialize(proscenium, sizeFactor); } void AverageAreaGridDensityProvider::initialize(const real proscenium[4], real sizeFactor) { float prosceniumWidth = (proscenium[1] - proscenium[0]); float prosceniumHeight = (proscenium[3] - proscenium[2]); real cellArea = 0.0; uint numFaces = 0; for (source.begin(); source.isValid(); source.next()) { Polygon3r &poly(source.getGridSpacePolygon()); Vec3r min, max; poly.getBBox(min, max); cellArea += (max[0] - min[0]) * (max[1] - min[1]); ++numFaces; } if (G.debug & G_DEBUG_FREESTYLE) { cout << "Total area: " << cellArea << ". Number of faces: " << numFaces << "." << endl; } cellArea /= numFaces; cellArea *= sizeFactor; if (G.debug & G_DEBUG_FREESTYLE) { cout << "Building grid with average area " << cellArea << endl; } _cellSize = sqrt(cellArea); uint maxCells = 931; // * 1.1 = 1024 if (std::max(prosceniumWidth, prosceniumHeight) / _cellSize > maxCells) { if (G.debug & G_DEBUG_FREESTYLE) { cout << "Scene-dependent cell size (" << _cellSize << " square) is too small." << endl; } _cellSize = std::max(prosceniumWidth, prosceniumHeight) / maxCells; } // Now we know how many cells make each side of our grid _cellsX = ceil(prosceniumWidth / _cellSize); _cellsY = ceil(prosceniumHeight / _cellSize); if (G.debug & G_DEBUG_FREESTYLE) { cout << _cellsX << "x" << _cellsY << " cells of size " << _cellSize << " square." << endl; } // Make sure the grid exceeds the proscenium by a small amount float safetyZone = 0.1f; if (_cellsX * _cellSize < prosceniumWidth * (1.0 + safetyZone)) { _cellsX = ceil(prosceniumWidth * (1.0 + safetyZone) / _cellSize); } if (_cellsY * _cellSize < prosceniumHeight * (1.0 + safetyZone)) { _cellsY = ceil(prosceniumHeight * (1.0 + safetyZone) / _cellSize); } if (G.debug & G_DEBUG_FREESTYLE) { cout << _cellsX << "x" << _cellsY << " cells of size " << _cellSize << " square." << endl; } // Find grid origin _cellOrigin[0] = ((proscenium[0] + proscenium[1]) / 2.0) - (_cellsX / 2.0) * _cellSize; _cellOrigin[1] = ((proscenium[2] + proscenium[3]) / 2.0) - (_cellsY / 2.0) * _cellSize; } AverageAreaGridDensityProviderFactory::AverageAreaGridDensityProviderFactory(real sizeFactor) : sizeFactor(sizeFactor) { } AutoPtr AverageAreaGridDensityProviderFactory::newGridDensityProvider( OccluderSource &source, const real proscenium[4]) { return AutoPtr( new AverageAreaGridDensityProvider(source, proscenium, sizeFactor)); } AutoPtr AverageAreaGridDensityProviderFactory::newGridDensityProvider( OccluderSource &source, const BBox &bbox, const GridHelpers::Transform &transform) { return AutoPtr( new AverageAreaGridDensityProvider(source, bbox, transform, sizeFactor)); } AutoPtr AverageAreaGridDensityProviderFactory::newGridDensityProvider( OccluderSource &source) { return AutoPtr(new AverageAreaGridDensityProvider(source, sizeFactor)); } } /* namespace Freestyle */