/* * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /** \file * \ingroup freestyle * \brief Class to define a cell grid surrounding the projected image of a scene */ #include "CulledOccluderSource.h" #include "../geometry/GridHelpers.h" #include "BKE_global.h" namespace Freestyle { CulledOccluderSource::CulledOccluderSource(const GridHelpers::Transform &t, WingedEdge &we, ViewMap &viewMap, bool extensiveFEdgeSearch) : OccluderSource(t, we), rejected(0), gridSpaceOccluderProsceniumInitialized(false) { cullViewEdges(viewMap, extensiveFEdgeSearch); // If we have not found any visible FEdges during our cull, then there is nothing to iterate // over. Short-circuit everything. valid = gridSpaceOccluderProsceniumInitialized; if (valid && !testCurrent()) { next(); } } bool CulledOccluderSource::testCurrent() { if (valid) { // The test for gridSpaceOccluderProsceniumInitialized should not be necessary return gridSpaceOccluderProsceniumInitialized && GridHelpers::insideProscenium(gridSpaceOccluderProscenium, cachedPolygon); } return false; } bool CulledOccluderSource::next() { while (OccluderSource::next()) { if (testCurrent()) { ++rejected; return true; } } if (G.debug & G_DEBUG_FREESTYLE) { std::cout << "Finished generating occluders. Rejected " << rejected << " faces." << std::endl; } return false; } void CulledOccluderSource::getOccluderProscenium(real proscenium[4]) { for (unsigned int i = 0; i < 4; ++i) { proscenium[i] = gridSpaceOccluderProscenium[i]; } } static inline real distance2D(const Vec3r &point, const real origin[2]) { return ::hypot((point[0] - origin[0]), (point[1] - origin[1])); } static inline bool crossesProscenium(real proscenium[4], FEdge *fe) { Vec2r min(proscenium[0], proscenium[2]); Vec2r max(proscenium[1], proscenium[3]); Vec2r A(fe->vertexA()->getProjectedX(), fe->vertexA()->getProjectedY()); Vec2r B(fe->vertexB()->getProjectedX(), fe->vertexB()->getProjectedY()); return GeomUtils::intersect2dSeg2dArea(min, max, A, B); } static inline bool insideProscenium(const real proscenium[4], const Vec3r &point) { return !(point[0] < proscenium[0] || point[0] > proscenium[1] || point[1] < proscenium[2] || point[1] > proscenium[3]); } void CulledOccluderSource::cullViewEdges(ViewMap &viewMap, bool extensiveFEdgeSearch) { // Cull view edges by marking them as non-displayable. // This avoids the complications of trying to delete edges from the ViewMap. // Non-displayable view edges will be skipped over during visibility calculation. // View edges will be culled according to their position w.r.t. the viewport proscenium (viewport // + 5% border, or some such). // Get proscenium boundary for culling real viewProscenium[4]; GridHelpers::getDefaultViewProscenium(viewProscenium); real prosceniumOrigin[2]; prosceniumOrigin[0] = (viewProscenium[1] - viewProscenium[0]) / 2.0; prosceniumOrigin[1] = (viewProscenium[3] - viewProscenium[2]) / 2.0; if (G.debug & G_DEBUG_FREESTYLE) { cout << "Proscenium culling:" << endl; cout << "Proscenium: [" << viewProscenium[0] << ", " << viewProscenium[1] << ", " << viewProscenium[2] << ", " << viewProscenium[3] << "]" << endl; cout << "Origin: [" << prosceniumOrigin[0] << ", " << prosceniumOrigin[1] << "]" << endl; } // A separate occluder proscenium will also be maintained, starting out the same as the viewport // proscenium, and expanding as necessary so that it encompasses the center point of at least one // feature edge in each retained view edge. The occluder proscenium will be used later to cull // occluding triangles before they are inserted into the Grid. The occluder proscenium starts out // the same size as the view proscenium GridHelpers::getDefaultViewProscenium(occluderProscenium); // XXX Freestyle is inconsistent in its use of ViewMap::viewedges_container and // vector::iterator. Probably all occurrences of vector::iterator should be // replaced ViewMap::viewedges_container throughout the code. For each view edge ViewMap::viewedges_container::iterator ve, veend; for (ve = viewMap.ViewEdges().begin(), veend = viewMap.ViewEdges().end(); ve != veend; ve++) { // Overview: // Search for a visible feature edge // If none: mark view edge as non-displayable // Otherwise: // Find a feature edge with center point inside occluder proscenium. // If none exists, find the feature edge with center point closest to viewport origin. // Expand occluder proscenium to enclose center point. // For each feature edge, while bestOccluderTarget not found and view edge not visible bool bestOccluderTargetFound = false; FEdge *bestOccluderTarget = nullptr; real bestOccluderDistance = 0.0; FEdge *festart = (*ve)->fedgeA(); FEdge *fe = festart; // All ViewEdges start culled (*ve)->setIsInImage(false); // For simple visibility calculation: mark a feature edge that is known to have a center point // inside the occluder proscenium. Cull all other feature edges. do { // All FEdges start culled fe->setIsInImage(false); // Look for the visible edge that can most easily be included in the occluder proscenium. if (!bestOccluderTargetFound) { // If center point is inside occluder proscenium, if (insideProscenium(occluderProscenium, fe->center2d())) { // Use this feature edge for visibility deterimination fe->setIsInImage(true); expandGridSpaceOccluderProscenium(fe); // Mark bestOccluderTarget as found bestOccluderTargetFound = true; bestOccluderTarget = fe; } else { real d = distance2D(fe->center2d(), prosceniumOrigin); // If center point is closer to viewport origin than current target if (bestOccluderTarget == nullptr || d < bestOccluderDistance) { // Then store as bestOccluderTarget bestOccluderDistance = d; bestOccluderTarget = fe; } } } // If feature edge crosses the view proscenium if (!(*ve)->isInImage() && crossesProscenium(viewProscenium, fe)) { // Then the view edge will be included in the image (*ve)->setIsInImage(true); } fe = fe->nextEdge(); } while (fe != nullptr && fe != festart && !(bestOccluderTargetFound && (*ve)->isInImage())); // Either we have run out of FEdges, or we already have the one edge we need to determine // visibility Cull all remaining edges. while (!ELEM(fe, NULL, festart)) { fe->setIsInImage(false); fe = fe->nextEdge(); } // If bestOccluderTarget was not found inside the occluder proscenium, // we need to expand the occluder proscenium to include it. if ((*ve)->isInImage() && bestOccluderTarget != nullptr && !bestOccluderTargetFound) { // Expand occluder proscenium to enclose bestOccluderTarget Vec3r point = bestOccluderTarget->center2d(); if (point[0] < occluderProscenium[0]) { occluderProscenium[0] = point[0]; } else if (point[0] > occluderProscenium[1]) { occluderProscenium[1] = point[0]; } if (point[1] < occluderProscenium[2]) { occluderProscenium[2] = point[1]; } else if (point[1] > occluderProscenium[3]) { occluderProscenium[3] = point[1]; } // Use bestOccluderTarget for visibility determination bestOccluderTarget->setIsInImage(true); } } // We are done calculating the occluder proscenium. // Expand the occluder proscenium by an epsilon to avoid rounding errors. const real epsilon = 1.0e-6; occluderProscenium[0] -= epsilon; occluderProscenium[1] += epsilon; occluderProscenium[2] -= epsilon; occluderProscenium[3] += epsilon; // For "Normal" or "Fast" style visibility computation only: // For more detailed visibility calculation, make a second pass through the view map, marking all // feature edges with center points inside the final occluder proscenium. All of these feature // edges can be considered during visibility calculation. // So far we have only found one FEdge per ViewEdge. The "Normal" and "Fast" styles of visibility // computation want to consider many FEdges for each ViewEdge. Here we re-scan the view map to // find any usable FEdges that we skipped on the first pass, or that have become usable because // the occluder proscenium has been expanded since the edge was visited on the first pass. if (extensiveFEdgeSearch) { // For each view edge, for (ve = viewMap.ViewEdges().begin(), veend = viewMap.ViewEdges().end(); ve != veend; ve++) { if (!(*ve)->isInImage()) { continue; } // For each feature edge, FEdge *festart = (*ve)->fedgeA(); FEdge *fe = festart; do { // If not (already) visible and center point inside occluder proscenium, if (!fe->isInImage() && insideProscenium(occluderProscenium, fe->center2d())) { // Use the feature edge for visibility determination fe->setIsInImage(true); expandGridSpaceOccluderProscenium(fe); } fe = fe->nextEdge(); } while (!ELEM(fe, NULL, festart)); } } // Up until now, all calculations have been done in camera space. // However, the occluder source's iteration and the grid that consumes the occluders both work in // gridspace, so we need a version of the occluder proscenium in gridspace. Set the gridspace // occlude proscenium } void CulledOccluderSource::expandGridSpaceOccluderProscenium(FEdge *fe) { if (gridSpaceOccluderProsceniumInitialized) { GridHelpers::expandProscenium(gridSpaceOccluderProscenium, transform(fe->center3d())); } else { const Vec3r &point = transform(fe->center3d()); gridSpaceOccluderProscenium[0] = gridSpaceOccluderProscenium[1] = point[0]; gridSpaceOccluderProscenium[2] = gridSpaceOccluderProscenium[3] = point[1]; gridSpaceOccluderProsceniumInitialized = true; } } } /* namespace Freestyle */