/* GTS - Library for the manipulation of triangulated surfaces * Copyright (C) 1999-2002 Ray Jones, Stéphane Popinet * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #include // for malloc and free #include "Curvature.h" #include #include #include "WEdge.h" #include "../system/FreestyleConfig.h" #include "../geometry/normal_cycle.h" #include #include static bool angle_obtuse (WVertex * v, WFace * f) { WOEdge * e; f->getOppositeEdge (v, e); Vec3r vec1(e->GetaVertex()->GetVertex()-v->GetVertex()); Vec3r vec2(e->GetbVertex()->GetVertex()-v->GetVertex()); return ((vec1 * vec2) < 0); } // FIXME // WVvertex is useless but kept for history reasons static bool triangle_obtuse (WVertex*, WFace * f) { bool b=false; for (int i=0; i<3; i++) b = b || ((f->getEdgeList()[i]->GetVec() * f->getEdgeList()[(i+1)%3]->GetVec()) < 0); return b; } static real cotan (WVertex * vo, WVertex * v1, WVertex * v2) { /* cf. Appendix B of [Meyer et al 2002] */ real udotv, denom; Vec3r u(v1->GetVertex()- vo->GetVertex()); Vec3r v(v2->GetVertex()- vo->GetVertex()); udotv = u * v; denom = sqrt(u.squareNorm() * v.squareNorm() - udotv * udotv); /* denom can be zero if u==v. Returning 0 is acceptable, based on * the callers of this function below. */ if (denom == 0.0) return (0.0); return (udotv / denom); } static real angle_from_cotan (WVertex * vo, WVertex * v1, WVertex * v2) { /* cf. Appendix B and the caption of Table 1 from [Meyer et al 2002] */ real udotv, denom; Vec3r u (v1->GetVertex()-vo->GetVertex()); Vec3r v(v2->GetVertex()-vo->GetVertex()); udotv = u * v; denom = sqrt(u.squareNorm() * v.squareNorm() - udotv * udotv); /* Note: I assume this is what they mean by using atan2 (). -Ray Jones */ /* tan = denom/udotv = y/x (see man page for atan2) */ return (fabs (atan2 (denom, udotv))); } /** * gts_vertex_mean_curvature_normal: * @v: a #WVertex. * @s: a #GtsSurface. * @Kh: the Mean Curvature Normal at @v. * * Computes the Discrete Mean Curvature Normal approximation at @v. * The mean curvature at @v is half the magnitude of the vector @Kh. * * Note: the normal computed is not unit length, and may point either * into or out of the surface, depending on the curvature at @v. It * is the responsibility of the caller of the function to use the mean * curvature normal appropriately. * * This approximation is from the paper: * Discrete Differential-Geometry Operators for Triangulated 2-Manifolds * Mark Meyer, Mathieu Desbrun, Peter Schroder, Alan H. Barr * VisMath '02, Berlin (Germany) * http://www-grail.usc.edu/pubs.html * * Returns: %TRUE if the operator could be evaluated, %FALSE if the * evaluation failed for some reason (@v is boundary or is the * endpoint of a non-manifold edge.) */ bool gts_vertex_mean_curvature_normal (WVertex * v, Vec3r &Kh) { real area = 0.0; if (!v) return false; /* this operator is not defined for boundary edges */ if (v->isBoundary()) return false; WVertex::incoming_edge_iterator itE; for (itE=v->incoming_edges_begin(); itE!=v->incoming_edges_end(); itE++) area+=(*itE)->GetaFace()->getArea(); Kh=Vec3r(0.0, 0.0, 0.0); for (itE=v->incoming_edges_begin(); itE!=v->incoming_edges_end(); itE++) { WOEdge * e = (*itE)->getPrevOnFace(); //if ((e->GetaVertex()==v) || (e->GetbVertex()==v)) cerr<< "BUG "; WVertex * v1 = e->GetaVertex(); WVertex * v2 = e->GetbVertex(); real temp; temp = cotan (v1, v, v2); Kh = Vec3r(Kh+temp*(v2->GetVertex()-v->GetVertex())); temp = cotan (v2, v, v1); Kh = Vec3r(Kh+temp*(v1->GetVertex()-v->GetVertex())); } if (area > 0.0) { Kh[0] /= 2*area; Kh[1] /= 2*area; Kh[2] /= 2*area; } else return false; return true; } /** * gts_vertex_gaussian_curvature: * @v: a #WVertex. * @s: a #GtsSurface. * @Kg: the Discrete Gaussian Curvature approximation at @v. * * Computes the Discrete Gaussian Curvature approximation at @v. * * This approximation is from the paper: * Discrete Differential-Geometry Operators for Triangulated 2-Manifolds * Mark Meyer, Mathieu Desbrun, Peter Schroder, Alan H. Barr * VisMath '02, Berlin (Germany) * http://www-grail.usc.edu/pubs.html * * Returns: %TRUE if the operator could be evaluated, %FALSE if the * evaluation failed for some reason (@v is boundary or is the * endpoint of a non-manifold edge.) */ bool gts_vertex_gaussian_curvature (WVertex * v, real * Kg) { real area = 0.0; real angle_sum = 0.0; if (!v) return false; if (!Kg) return false; /* this operator is not defined for boundary edges */ if (v->isBoundary()) {*Kg=0.0 ;return false;} WVertex::incoming_edge_iterator itE; for (itE=v->incoming_edges_begin(); itE!=v->incoming_edges_end(); itE++) area+=(*itE)->GetaFace()->getArea(); for (itE=v->incoming_edges_begin(); itE!=v->incoming_edges_end(); itE++) { WOEdge * e = (*itE)->getPrevOnFace(); WVertex * v1 = e->GetaVertex(); WVertex * v2 = e->GetbVertex(); angle_sum += angle_from_cotan (v, v1, v2); } *Kg = (2.0*M_PI - angle_sum)/area; return true; } /** * gts_vertex_principal_curvatures: * @Kh: mean curvature. * @Kg: Gaussian curvature. * @K1: first principal curvature. * @K2: second principal curvature. * * Computes the principal curvatures at a point given the mean and * Gaussian curvatures at that point. * * The mean curvature can be computed as one-half the magnitude of the * vector computed by gts_vertex_mean_curvature_normal(). * * The Gaussian curvature can be computed with * gts_vertex_gaussian_curvature(). */ void gts_vertex_principal_curvatures (real Kh, real Kg, real * K1, real * K2) { real temp = Kh*Kh - Kg; if (!K1) return; if (!K1) return; if (temp < 0.0) temp = 0.0; temp = sqrt (temp); *K1 = Kh + temp; *K2 = Kh - temp; } /* from Maple */ static void linsolve (real m11, real m12, real b1, real m21, real m22, real b2, real * x1, real * x2) { real temp; temp = 1.0 / (m21*m12 - m11*m22); *x1 = (m12*b2 - m22*b1)*temp; *x2 = (m11*b2 - m21*b1)*temp; } /* from Maple - largest eigenvector of [a b; b c] */ static void eigenvector (real a, real b, real c, Vec3r e) { if (b == 0.0) { e[0] = 0.0; } else { e[0] = -(c - a - sqrt (c*c - 2*a*c + a*a + 4*b*b))/(2*b); } e[1] = 1.0; e[2] = 0.0; } /** * gts_vertex_principal_directions: * @v: a #WVertex. * @s: a #GtsSurface. * @Kh: mean curvature normal (a #Vec3r). * @Kg: Gaussian curvature (a real). * @e1: first principal curvature direction (direction of largest curvature). * @e2: second principal curvature direction. * * Computes the principal curvature directions at a point given @Kh * and @Kg, the mean curvature normal and Gaussian curvatures at that * point, computed with gts_vertex_mean_curvature_normal() and * gts_vertex_gaussian_curvature(), respectively. * * Note that this computation is very approximate and tends to be * unstable. Smoothing of the surface or the principal directions may * be necessary to achieve reasonable results. */ void gts_vertex_principal_directions (WVertex * v, Vec3r Kh, real Kg, Vec3r &e1, Vec3r &e2) { Vec3r N; real normKh; Vec3r basis1, basis2, d, eig; real ve2, vdotN; real aterm_da, bterm_da, cterm_da, const_da; real aterm_db, bterm_db, cterm_db, const_db; real a, b, c; real K1, K2; real *weights, *kappas, *d1s, *d2s; int edge_count; real err_e1, err_e2; int e; WVertex::incoming_edge_iterator itE; /* compute unit normal */ normKh = Kh.norm(); if (normKh > 0.0) { Kh.normalize(); } else { /* This vertex is a point of zero mean curvature (flat or saddle * point). Compute a normal by averaging the adjacent triangles */ N[0] = N[1] = N[2] = 0.0; for (itE=v->incoming_edges_begin(); itE!=v->incoming_edges_end(); itE++) N=Vec3r(N+(*itE)->GetaFace()->GetNormal()); real normN = N.norm(); if (normN <= 0.0) return; N.normalize(); } /* construct a basis from N: */ /* set basis1 to any component not the largest of N */ basis1[0] = basis1[1] = basis1[2] = 0.0; if (fabs (N[0]) > fabs (N[1])) basis1[1] = 1.0; else basis1[0] = 1.0; /* make basis2 orthogonal to N */ basis2 = (N ^ basis1); basis2.normalize(); /* make basis1 orthogonal to N and basis2 */ basis1 = (N ^ basis2); basis1.normalize(); aterm_da = bterm_da = cterm_da = const_da = 0.0; aterm_db = bterm_db = cterm_db = const_db = 0.0; int nb_edges=v->GetEdges().size(); weights = (real *) malloc (sizeof (real)*nb_edges); kappas = (real*) malloc (sizeof (real)*nb_edges); d1s = (real*) malloc (sizeof (real)*nb_edges); d2s = (real*) malloc (sizeof (real)*nb_edges); edge_count = 0; for (itE=v->incoming_edges_begin(); itE!=v->incoming_edges_end(); itE++) { WOEdge * e; WFace * f1, * f2; real weight, kappa, d1, d2; Vec3r vec_edge; if (! *itE) continue; e = *itE; /* since this vertex passed the tests in * gts_vertex_mean_curvature_normal(), this should be true. */ //g_assert (gts_edge_face_number (e, s) == 2); /* identify the two triangles bordering e in s */ f1=e->GetaFace(); f2=e->GetbFace(); /* We are solving for the values of the curvature tensor * B = [ a b ; b c ]. * The computations here are from section 5 of [Meyer et al 2002]. * * The first step is to calculate the linear equations governing * the values of (a,b,c). These can be computed by setting the * derivatives of the error E to zero (section 5.3). * * Since a + c = norm(Kh), we only compute the linear equations * for dE/da and dE/db. (NB: [Meyer et al 2002] has the * equation a + b = norm(Kh), but I'm almost positive this is * incorrect.) * * Note that the w_ij (defined in section 5.2) are all scaled by * (1/8*A_mixed). We drop this uniform scale factor because the * solution of the linear equations doesn't rely on it. * * The terms of the linear equations are xterm_dy with x in * {a,b,c} and y in {a,b}. There are also const_dy terms that are * the constant factors in the equations. */ /* find the vector from v along edge e */ vec_edge=Vec3r(-1*e->GetVec()); ve2 = vec_edge.squareNorm(); vdotN = vec_edge * N; /* section 5.2 - There is a typo in the computation of kappa. The * edges should be x_j-x_i. */ kappa = 2.0 * vdotN / ve2; /* section 5.2 */ /* I don't like performing a minimization where some of the * weights can be negative (as can be the case if f1 or f2 are * obtuse). To ensure all-positive weights, we check for * obtuseness. */ weight = 0.0; if (! triangle_obtuse(v, f1)) { weight += ve2 * cotan (f1->GetNextOEdge(e->twin())->GetbVertex(), e->GetaVertex(), e->GetbVertex()) / 8.0; } else { if (angle_obtuse (v, f1)) { weight += ve2 * f1->getArea() / 4.0; } else { weight += ve2 * f1->getArea() / 8.0; } } if (! triangle_obtuse(v, f2)) { weight += ve2 * cotan (f2->GetNextOEdge(e)->GetbVertex(), e->GetaVertex(), e->GetbVertex()) / 8.0; } else { if (angle_obtuse (v, f2)) { weight += ve2 * f1->getArea() / 4.0; } else { weight += ve2 * f1->getArea() / 8.0; } } /* projection of edge perpendicular to N (section 5.3) */ d[0] = vec_edge[0] - vdotN * N[0]; d[1] = vec_edge[1] - vdotN * N[1]; d[2] = vec_edge[2] - vdotN * N[2]; d.normalize(); /* not explicit in the paper, but necessary. Move d to 2D basis. */ d1 = d * basis1; d2 = d * basis2; /* store off the curvature, direction of edge, and weights for later use */ weights[edge_count] = weight; kappas[edge_count] = kappa; d1s[edge_count] = d1; d2s[edge_count] = d2; edge_count++; /* Finally, update the linear equations */ aterm_da += weight * d1 * d1 * d1 * d1; bterm_da += weight * d1 * d1 * 2 * d1 * d2; cterm_da += weight * d1 * d1 * d2 * d2; const_da += weight * d1 * d1 * (- kappa); aterm_db += weight * d1 * d2 * d1 * d1; bterm_db += weight * d1 * d2 * 2 * d1 * d2; cterm_db += weight * d1 * d2 * d2 * d2; const_db += weight * d1 * d2 * (- kappa); } /* now use the identity (Section 5.3) a + c = |Kh| = 2 * kappa_h */ aterm_da -= cterm_da; const_da += cterm_da * normKh; aterm_db -= cterm_db; const_db += cterm_db * normKh; /* check for solvability of the linear system */ if (((aterm_da * bterm_db - aterm_db * bterm_da) != 0.0) && ((const_da != 0.0) || (const_db != 0.0))) { linsolve (aterm_da, bterm_da, -const_da, aterm_db, bterm_db, -const_db, &a, &b); c = normKh - a; eigenvector (a, b, c, eig); } else { /* region of v is planar */ eig[0] = 1.0; eig[1] = 0.0; } /* Although the eigenvectors of B are good estimates of the * principal directions, it seems that which one is attached to * which curvature direction is a bit arbitrary. This may be a bug * in my implementation, or just a side-effect of the inaccuracy of * B due to the discrete nature of the sampling. * * To overcome this behavior, we'll evaluate which assignment best * matches the given eigenvectors by comparing the curvature * estimates computed above and the curvatures calculated from the * discrete differential operators. */ gts_vertex_principal_curvatures (0.5 * normKh, Kg, &K1, &K2); err_e1 = err_e2 = 0.0; /* loop through the values previously saved */ for (e = 0; e < edge_count; e++) { real weight, kappa, d1, d2; real temp1, temp2; real delta; weight = weights[e]; kappa = kappas[e]; d1 = d1s[e]; d2 = d2s[e]; temp1 = fabs (eig[0] * d1 + eig[1] * d2); temp1 = temp1 * temp1; temp2 = fabs (eig[1] * d1 - eig[0] * d2); temp2 = temp2 * temp2; /* err_e1 is for K1 associated with e1 */ delta = K1 * temp1 + K2 * temp2 - kappa; err_e1 += weight * delta * delta; /* err_e2 is for K1 associated with e2 */ delta = K2 * temp1 + K1 * temp2 - kappa; err_e2 += weight * delta * delta; } free (weights); free (kappas); free (d1s); free (d2s); /* rotate eig by a right angle if that would decrease the error */ if (err_e2 < err_e1) { real temp = eig[0]; eig[0] = eig[1]; eig[1] = -temp; } e1[0] = eig[0] * basis1[0] + eig[1] * basis2[0]; e1[1] = eig[0] * basis1[1] + eig[1] * basis2[1]; e1[2] = eig[0] * basis1[2] + eig[1] * basis2[2]; e1.normalize(); /* make N,e1,e2 a right handed coordinate sytem */ e2 = N ^ e1; e2.normalize(); } namespace OGF { inline static real angle(WOEdge * h) { const Vec3r& n1 = h->GetbFace()->GetNormal(); const Vec3r& n2 = h->GetaFace()->GetNormal(); const Vec3r v = h->getVec3r(); real sine = (n1 ^ n2) * v / v.norm() ; if(sine >= 1.0) { return M_PI / 2.0 ; } if(sine <= -1.0) { return -M_PI / 2.0 ; } return ::asin(sine) ; } // precondition1: P is inside the sphere // precondition2: P,V points to the outside of // the sphere (i.e. OP.V > 0) static bool sphere_clip_vector( const Vec3r& O, real r, const Vec3r& P, Vec3r& V ) { Vec3r W = P - O ; real a = V.squareNorm() ; real b = 2.0 * V * W ; real c = W.squareNorm() - r*r ; real delta = b*b - 4*a*c ; if(delta < 0) { // Should not happen, but happens sometimes (numerical precision) return true ; } real t = - b + ::sqrt(delta) / (2.0 * a) ; if(t < 0.0) { // Should not happen, but happens sometimes (numerical precision) return true ; } if(t >= 1.0) { // Inside the sphere return false ; } V[0] = (t * V.x()) ; V[1] = (t * V.y()) ; V[2] = (t * V.z()) ; return true ; } // TODO: check optimizations: // use marking ? (measure *timings* ...) void compute_curvature_tensor( WVertex* start, real radius, NormalCycle& nc ) { // in case we have a non-manifold vertex, skip it... if(start->isBoundary()) return; std::set vertices ; const Vec3r& O = start->GetVertex() ; std::stack S ; S.push(start) ; vertices.insert(start) ; while(!S.empty()) { WVertex* v = S.top() ; S.pop() ; if(v->isBoundary()) continue; const Vec3r& P = v->GetVertex() ; WVertex::incoming_edge_iterator woeit = v->incoming_edges_begin(); WVertex::incoming_edge_iterator woeitend = v->incoming_edges_end(); for(;woeit!=woeitend; ++woeit){ WOEdge *h = *woeit; if((v == start) || h->GetVec() * (O - P) > 0.0) { Vec3r V(-1 * h->GetVec()); bool isect = sphere_clip_vector(O, radius, P, V) ; assert (h->GetOwner()->GetNumberOfOEdges() == 2); // Because otherwise v->isBoundary() would be true nc.accumulate_dihedral_angle(V, h->GetAngle()) ; if(!isect) { WVertex* w = h->GetaVertex() ; if(vertices.find(w) == vertices.end()) { vertices.insert(w) ; S.push(w) ; } } } } } } void compute_curvature_tensor_one_ring( WVertex* start, NormalCycle& nc ) { // in case we have a non-manifold vertex, skip it... if(start->isBoundary()) return; WVertex::incoming_edge_iterator woeit = start->incoming_edges_begin(); WVertex::incoming_edge_iterator woeitend = start->incoming_edges_end(); for(;woeit!=woeitend; ++woeit){ WOEdge *h = (*woeit)->twin(); nc.accumulate_dihedral_angle(h->GetVec(), h->GetAngle()) ; WOEdge *hprev = h->getPrevOnFace(); nc.accumulate_dihedral_angle(hprev->GetVec(), hprev->GetAngle()) ; } } }