/* * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * ***** END GPL LICENSE BLOCK ***** */ /** \file blender/gpu/intern/gpu_batch_utils.c * \ingroup gpu */ #include "MEM_guardedalloc.h" #include "BLI_utildefines.h" #include "BLI_rect.h" #include "BLI_math.h" #include "BLI_polyfill_2d.h" #include "BLI_sort_utils.h" #include "GPU_batch.h" #include "GPU_batch_utils.h" /* own include */ #include "gpu_shader_private.h" /* -------------------------------------------------------------------- */ /** \name Polygon Creation (2D) * \{ */ /** * Creates triangles from a byte-array of polygons. * * See 'make_shape_2d_from_blend.py' utility to create data to pass to this function. * * \param polys_flat: Pairs of X, Y coordinates (repeating to signify closing the polygon). * \param polys_flat_len: Length of the array (must be an even number). * \param rect: Optional region to map the byte 0..255 coords to. When not set use -1..1. */ Gwn_Batch *GPU_batch_tris_from_poly_2d_encoded( const uchar *polys_flat, uint polys_flat_len, const rctf *rect) { const uchar (*polys)[2] = (const void *)polys_flat; const uint polys_len = polys_flat_len / 2; BLI_assert(polys_flat_len == polys_len * 2); /* Over alloc in both cases */ float (*verts)[2] = MEM_mallocN(sizeof(*verts) * polys_len, __func__); float (*verts_step)[2] = verts; uint (*tris)[3] = MEM_mallocN(sizeof(*tris) * polys_len, __func__); uint (*tris_step)[3] = tris; const float range_uchar[2] = { (rect ? (rect->xmax - rect->xmin) : 2.0f) / 255.0f, (rect ? (rect->ymax - rect->ymin) : 2.0f) / 255.0f, }; const float min_uchar[2] = { (rect ? rect->xmin : -1.0f), (rect ? rect->ymin : -1.0f), }; uint i_poly = 0; uint i_vert = 0; while (i_poly != polys_len) { for (uint j = 0; j < 2; j++) { verts[i_vert][j] = min_uchar[j] + ((float)polys[i_poly][j] * range_uchar[j]); } i_vert++; i_poly++; if (polys[i_poly - 1][0] == polys[i_poly][0] && polys[i_poly - 1][1] == polys[i_poly][1]) { const uint verts_step_len = (&verts[i_vert]) - verts_step; BLI_assert(verts_step_len >= 3); const uint tris_len = (verts_step_len - 2); BLI_polyfill_calc(verts_step, verts_step_len, -1, tris_step); /* offset indices */ if (verts_step != verts) { uint *t = tris_step[0]; const uint offset = (verts_step - verts); uint tot = tris_len * 3; while (tot--) { *t += offset; t++; } BLI_assert(t == tris_step[tris_len]); } verts_step += verts_step_len; tris_step += tris_len; i_poly++; /* ignore the duplicate point */ } } /* We have vertices and tris, make a batch from this. */ static Gwn_VertFormat format = {0}; static struct { uint pos; } attr_id; if (format.attr_len == 0) { attr_id.pos = GWN_vertformat_attr_add(&format, "pos", GWN_COMP_F32, 2, GWN_FETCH_FLOAT); } const uint verts_len = (verts_step - verts); const uint tris_len = (tris_step - tris); Gwn_VertBuf *vbo = GWN_vertbuf_create_with_format(&format); GWN_vertbuf_data_alloc(vbo, verts_len); Gwn_VertBufRaw pos_step; GWN_vertbuf_attr_get_raw_data(vbo, attr_id.pos, &pos_step); for (uint i = 0; i < verts_len; i++) { copy_v2_v2(GWN_vertbuf_raw_step(&pos_step), verts[i]); } Gwn_IndexBufBuilder elb; GWN_indexbuf_init(&elb, GWN_PRIM_TRIS, tris_len, verts_len); for (uint i = 0; i < tris_len; i++) { GWN_indexbuf_add_tri_verts(&elb, UNPACK3(tris[i])); } Gwn_IndexBuf *indexbuf = GWN_indexbuf_build(&elb); MEM_freeN(tris); MEM_freeN(verts); return GWN_batch_create_ex( GWN_PRIM_TRIS, vbo, indexbuf, GWN_BATCH_OWNS_VBO | GWN_BATCH_OWNS_INDEX); } Gwn_Batch *GPU_batch_wire_from_poly_2d_encoded( const uchar *polys_flat, uint polys_flat_len, const rctf *rect) { const uchar (*polys)[2] = (const void *)polys_flat; const uint polys_len = polys_flat_len / 2; BLI_assert(polys_flat_len == polys_len * 2); /* Over alloc */ /* Lines are pairs of (x, y) byte locations packed into an int32_t. */ int32_t *lines = MEM_mallocN(sizeof(*lines) * polys_len, __func__); int32_t *lines_step = lines; const float range_uchar[2] = { (rect ? (rect->xmax - rect->xmin) : 2.0f) / 255.0f, (rect ? (rect->ymax - rect->ymin) : 2.0f) / 255.0f, }; const float min_uchar[2] = { (rect ? rect->xmin : -1.0f), (rect ? rect->ymin : -1.0f), }; uint i_poly_prev = 0; uint i_poly = 0; while (i_poly != polys_len) { i_poly++; if (polys[i_poly - 1][0] == polys[i_poly][0] && polys[i_poly - 1][1] == polys[i_poly][1]) { const uchar (*polys_step)[2] = polys + i_poly_prev; const uint polys_step_len = i_poly - i_poly_prev; BLI_assert(polys_step_len >= 2); for (uint i_prev = polys_step_len - 1, i = 0; i < polys_step_len; i_prev = i++) { union { uint8_t as_u8[4]; uint16_t as_u16[2]; uint32_t as_u32; } data; data.as_u16[0] = *((const uint16_t *)polys_step[i_prev]); data.as_u16[1] = *((const uint16_t *)polys_step[i]); if (data.as_u16[0] > data.as_u16[1]) { SWAP(uint16_t, data.as_u16[0], data.as_u16[1]); } *lines_step = data.as_u32; lines_step++; } i_poly++; i_poly_prev = i_poly; /* ignore the duplicate point */ } } uint lines_len = lines_step - lines; /* Hide Lines (we could make optional) */ { qsort(lines, lines_len, sizeof(int32_t), BLI_sortutil_cmp_int); lines_step = lines; for (uint i_prev = 0, i = 1; i < lines_len; i_prev = i++) { if (lines[i] != lines[i_prev]) { *lines_step++ = lines[i_prev]; } else { i++; } } lines_len = lines_step - lines; } /* We have vertices and tris, make a batch from this. */ static Gwn_VertFormat format = {0}; static struct { uint pos; } attr_id; if (format.attr_len == 0) { attr_id.pos = GWN_vertformat_attr_add(&format, "pos", GWN_COMP_F32, 2, GWN_FETCH_FLOAT); } Gwn_VertBuf *vbo = GWN_vertbuf_create_with_format(&format); const uint vbo_len_capacity = lines_len * 2; GWN_vertbuf_data_alloc(vbo, vbo_len_capacity); Gwn_VertBufRaw pos_step; GWN_vertbuf_attr_get_raw_data(vbo, attr_id.pos, &pos_step); for (uint i = 0; i < lines_len; i++) { union { uint8_t as_u8_pair[2][2]; uint32_t as_u32; } data; data.as_u32 = lines[i]; for (uint k = 0; k < 2; k++) { float *pos_v2 = GWN_vertbuf_raw_step(&pos_step); for (uint j = 0; j < 2; j++) { pos_v2[j] = min_uchar[j] + ((float)data.as_u8_pair[k][j] * range_uchar[j]); } } } BLI_assert(vbo_len_capacity == GWN_vertbuf_raw_used(&pos_step)); MEM_freeN(lines); return GWN_batch_create_ex( GWN_PRIM_LINES, vbo, NULL, GWN_BATCH_OWNS_VBO); } /** \} */