/* * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2005 Blender Foundation. * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): Brecht Van Lommel. * * ***** END GPL LICENSE BLOCK ***** */ /** \file blender/gpu/intern/gpu_buffers.c * \ingroup gpu * * Mesh drawing using OpenGL VBO (Vertex Buffer Objects) */ #include #include #include #include "GPU_glew.h" #include "MEM_guardedalloc.h" #include "BLI_bitmap.h" #include "BLI_math.h" #include "BLI_utildefines.h" #include "BLI_ghash.h" #include "BLI_threads.h" #include "DNA_meshdata_types.h" #include "BKE_ccg.h" #include "BKE_DerivedMesh.h" #include "BKE_paint.h" #include "BKE_mesh.h" #include "BKE_pbvh.h" #include "GPU_buffers.h" #include "GPU_draw.h" #include "GPU_basic_shader.h" #include "bmesh.h" typedef enum { GPU_BUFFER_VERTEX_STATE = (1 << 0), GPU_BUFFER_NORMAL_STATE = (1 << 1), GPU_BUFFER_TEXCOORD_UNIT_0_STATE = (1 << 2), GPU_BUFFER_TEXCOORD_UNIT_2_STATE = (1 << 3), GPU_BUFFER_COLOR_STATE = (1 << 4), GPU_BUFFER_ELEMENT_STATE = (1 << 5), } GPUBufferState; typedef struct { GLenum gl_buffer_type; int num_components; /* number of data components for one vertex */ } GPUBufferTypeSettings; static size_t gpu_buffer_size_from_type(DerivedMesh *dm, GPUBufferType type); const GPUBufferTypeSettings gpu_buffer_type_settings[] = { /* vertex */ {GL_ARRAY_BUFFER, 3}, /* normal */ {GL_ARRAY_BUFFER, 4}, /* we copy 3 shorts per normal but we add a fourth for alignment */ /* mcol */ {GL_ARRAY_BUFFER, 3}, /* uv */ {GL_ARRAY_BUFFER, 2}, /* uv for texpaint */ {GL_ARRAY_BUFFER, 4}, /* edge */ {GL_ELEMENT_ARRAY_BUFFER, 2}, /* uv edge */ {GL_ELEMENT_ARRAY_BUFFER, 4}, /* triangles, 1 point since we are allocating from tottriangle points, which account for all points */ {GL_ELEMENT_ARRAY_BUFFER, 1}, }; #define MAX_GPU_ATTRIB_DATA 32 #define BUFFER_OFFSET(n) ((GLubyte *)NULL + (n)) static GPUBufferState GLStates = 0; static GPUAttrib attribData[MAX_GPU_ATTRIB_DATA] = { { -1, 0, 0 } }; static ThreadMutex buffer_mutex = BLI_MUTEX_INITIALIZER; /* multires global buffer, can be used for many grids having the same grid size */ typedef struct GridCommonGPUBuffer { GPUBuffer *mres_buffer; int mres_prev_gridsize; GLenum mres_prev_index_type; unsigned mres_prev_totquad; } GridCommonGPUBuffer; void GPU_buffer_material_finalize(GPUDrawObject *gdo, GPUBufferMaterial *matinfo, int totmat) { int i, curmat, curelement; /* count the number of materials used by this DerivedMesh */ for (i = 0; i < totmat; i++) { if (matinfo[i].totelements > 0) gdo->totmaterial++; } /* allocate an array of materials used by this DerivedMesh */ gdo->materials = MEM_mallocN(sizeof(GPUBufferMaterial) * gdo->totmaterial, "GPUDrawObject.materials"); /* initialize the materials array */ for (i = 0, curmat = 0, curelement = 0; i < totmat; i++) { if (matinfo[i].totelements > 0) { gdo->materials[curmat] = matinfo[i]; gdo->materials[curmat].start = curelement; gdo->materials[curmat].mat_nr = i; gdo->materials[curmat].polys = MEM_mallocN(sizeof(int) * matinfo[i].totpolys, "GPUBufferMaterial.polys"); curelement += matinfo[i].totelements; curmat++; } } MEM_freeN(matinfo); } /* stores recently-deleted buffers so that new buffers won't have to * be recreated as often * * only one instance of this pool is created, stored in * gpu_buffer_pool * * note that the number of buffers in the pool is usually limited to * MAX_FREE_GPU_BUFFERS, but this limit may be exceeded temporarily * when a GPUBuffer is released outside the main thread; due to OpenGL * restrictions it cannot be immediately released */ typedef struct GPUBufferPool { /* number of allocated buffers stored */ int totbuf; /* actual allocated length of the arrays */ int maxsize; GPUBuffer **buffers; } GPUBufferPool; #define MAX_FREE_GPU_BUFFERS 8 /* create a new GPUBufferPool */ static GPUBufferPool *gpu_buffer_pool_new(void) { GPUBufferPool *pool; pool = MEM_callocN(sizeof(GPUBufferPool), "GPUBuffer_Pool"); pool->maxsize = MAX_FREE_GPU_BUFFERS; pool->buffers = MEM_mallocN(sizeof(*pool->buffers) * pool->maxsize, "GPUBufferPool.buffers"); return pool; } /* remove a GPUBuffer from the pool (does not free the GPUBuffer) */ static void gpu_buffer_pool_remove_index(GPUBufferPool *pool, int index) { int i; if (!pool || index < 0 || index >= pool->totbuf) return; /* shift entries down, overwriting the buffer at `index' */ for (i = index; i < pool->totbuf - 1; i++) pool->buffers[i] = pool->buffers[i + 1]; /* clear the last entry */ if (pool->totbuf > 0) pool->buffers[pool->totbuf - 1] = NULL; pool->totbuf--; } /* delete the last entry in the pool */ static void gpu_buffer_pool_delete_last(GPUBufferPool *pool) { GPUBuffer *last; if (pool->totbuf <= 0) return; /* get the last entry */ if (!(last = pool->buffers[pool->totbuf - 1])) return; /* delete the buffer's data */ glDeleteBuffers(1, &last->id); /* delete the buffer and remove from pool */ MEM_freeN(last); pool->totbuf--; pool->buffers[pool->totbuf] = NULL; } /* free a GPUBufferPool; also frees the data in the pool's * GPUBuffers */ static void gpu_buffer_pool_free(GPUBufferPool *pool) { if (!pool) return; while (pool->totbuf) gpu_buffer_pool_delete_last(pool); MEM_freeN(pool->buffers); MEM_freeN(pool); } static void gpu_buffer_pool_free_unused(GPUBufferPool *pool) { if (!pool) return; BLI_mutex_lock(&buffer_mutex); while (pool->totbuf) gpu_buffer_pool_delete_last(pool); BLI_mutex_unlock(&buffer_mutex); } static GPUBufferPool *gpu_buffer_pool = NULL; static GPUBufferPool *gpu_get_global_buffer_pool(void) { /* initialize the pool */ if (!gpu_buffer_pool) gpu_buffer_pool = gpu_buffer_pool_new(); return gpu_buffer_pool; } void GPU_global_buffer_pool_free(void) { gpu_buffer_pool_free(gpu_buffer_pool); gpu_buffer_pool = NULL; } void GPU_global_buffer_pool_free_unused(void) { gpu_buffer_pool_free_unused(gpu_buffer_pool); } /* get a GPUBuffer of at least `size' bytes; uses one from the buffer * pool if possible, otherwise creates a new one * * Thread-unsafe version for internal usage only. */ static GPUBuffer *gpu_buffer_alloc_intern(size_t size) { GPUBufferPool *pool; GPUBuffer *buf; int i, bestfit = -1; size_t bufsize; /* bad case, leads to leak of buf since buf->pointer will allocate * NULL, leading to return without cleanup. In any case better detect early * psy-fi */ if (size == 0) return NULL; pool = gpu_get_global_buffer_pool(); /* not sure if this buffer pool code has been profiled much, * seems to me that the graphics driver and system memory * management might do this stuff anyway. --nicholas */ /* check the global buffer pool for a recently-deleted buffer * that is at least as big as the request, but not more than * twice as big */ for (i = 0; i < pool->totbuf; i++) { bufsize = pool->buffers[i]->size; /* check for an exact size match */ if (bufsize == size) { bestfit = i; break; } /* smaller buffers won't fit data and buffers at least * twice as big are a waste of memory */ else if (bufsize > size && size > (bufsize / 2)) { /* is it closer to the required size than the * last appropriate buffer found. try to save * memory */ if (bestfit == -1 || pool->buffers[bestfit]->size > bufsize) { bestfit = i; } } } /* if an acceptable buffer was found in the pool, remove it * from the pool and return it */ if (bestfit != -1) { buf = pool->buffers[bestfit]; gpu_buffer_pool_remove_index(pool, bestfit); return buf; } /* no acceptable buffer found in the pool, create a new one */ buf = MEM_callocN(sizeof(GPUBuffer), "GPUBuffer"); buf->size = size; glGenBuffers(1, &buf->id); glBindBuffer(GL_ARRAY_BUFFER, buf->id); glBufferData(GL_ARRAY_BUFFER, size, NULL, GL_STATIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, 0); return buf; } /* Same as above, but safe for threading. */ GPUBuffer *GPU_buffer_alloc(size_t size) { GPUBuffer *buffer; if (size == 0) { /* Early out, no lock needed in this case. */ return NULL; } BLI_mutex_lock(&buffer_mutex); buffer = gpu_buffer_alloc_intern(size); BLI_mutex_unlock(&buffer_mutex); return buffer; } /* release a GPUBuffer; does not free the actual buffer or its data, * but rather moves it to the pool of recently-freed buffers for * possible re-use * * Thread-unsafe version for internal usage only. */ static void gpu_buffer_free_intern(GPUBuffer *buffer) { GPUBufferPool *pool; int i; if (!buffer) return; pool = gpu_get_global_buffer_pool(); /* free the last used buffer in the queue if no more space, but only * if we are in the main thread. for e.g. rendering or baking it can * happen that we are in other thread and can't call OpenGL, in that * case cleanup will be done GPU_buffer_pool_free_unused */ if (BLI_thread_is_main()) { /* in main thread, safe to decrease size of pool back * down to MAX_FREE_GPU_BUFFERS */ while (pool->totbuf >= MAX_FREE_GPU_BUFFERS) gpu_buffer_pool_delete_last(pool); } else { /* outside of main thread, can't safely delete the * buffer, so increase pool size */ if (pool->maxsize == pool->totbuf) { pool->maxsize += MAX_FREE_GPU_BUFFERS; pool->buffers = MEM_reallocN(pool->buffers, sizeof(GPUBuffer *) * pool->maxsize); } } /* shift pool entries up by one */ for (i = pool->totbuf; i > 0; i--) pool->buffers[i] = pool->buffers[i - 1]; /* insert the buffer into the beginning of the pool */ pool->buffers[0] = buffer; pool->totbuf++; } /* Same as above, but safe for threading. */ void GPU_buffer_free(GPUBuffer *buffer) { if (!buffer) { /* Early output, no need to lock in this case, */ return; } BLI_mutex_lock(&buffer_mutex); gpu_buffer_free_intern(buffer); BLI_mutex_unlock(&buffer_mutex); } void GPU_drawobject_free(DerivedMesh *dm) { GPUDrawObject *gdo; int i; if (!dm || !(gdo = dm->drawObject)) return; for (i = 0; i < gdo->totmaterial; i++) { if (gdo->materials[i].polys) MEM_freeN(gdo->materials[i].polys); } MEM_freeN(gdo->materials); if (gdo->vert_points) MEM_freeN(gdo->vert_points); #ifdef USE_GPU_POINT_LINK MEM_freeN(gdo->vert_points_mem); #endif GPU_buffer_free(gdo->points); GPU_buffer_free(gdo->normals); GPU_buffer_free(gdo->uv); GPU_buffer_free(gdo->uv_tex); GPU_buffer_free(gdo->colors); GPU_buffer_free(gdo->edges); GPU_buffer_free(gdo->uvedges); GPU_buffer_free(gdo->triangles); MEM_freeN(gdo); dm->drawObject = NULL; } static GPUBuffer *gpu_try_realloc(GPUBufferPool *pool, GPUBuffer *buffer, size_t size) { /* try freeing an entry from the pool * and reallocating the buffer */ gpu_buffer_free_intern(buffer); buffer = NULL; while (pool->totbuf && !buffer) { gpu_buffer_pool_delete_last(pool); buffer = gpu_buffer_alloc_intern(size); } return buffer; } static GPUBuffer *gpu_buffer_setup(DerivedMesh *dm, GPUDrawObject *object, int type, void *user, GPUBuffer *buffer) { GPUBufferPool *pool; float *varray; int *mat_orig_to_new; int i; const GPUBufferTypeSettings *ts = &gpu_buffer_type_settings[type]; GLenum target = ts->gl_buffer_type; size_t size = gpu_buffer_size_from_type(dm, type); GLboolean uploaded; pool = gpu_get_global_buffer_pool(); BLI_mutex_lock(&buffer_mutex); /* alloc a GPUBuffer; fall back to legacy mode on failure */ if (!buffer) { if (!(buffer = gpu_buffer_alloc_intern(size))) { BLI_mutex_unlock(&buffer_mutex); return NULL; } } mat_orig_to_new = MEM_mallocN(sizeof(*mat_orig_to_new) * dm->totmat, "GPU_buffer_setup.mat_orig_to_new"); for (i = 0; i < object->totmaterial; i++) { /* map from original material index to new * GPUBufferMaterial index */ mat_orig_to_new[object->materials[i].mat_nr] = i; } /* bind the buffer and discard previous data, * avoids stalling gpu */ glBindBuffer(target, buffer->id); glBufferData(target, buffer->size, NULL, GL_STATIC_DRAW); /* attempt to map the buffer */ if (!(varray = glMapBuffer(target, GL_WRITE_ONLY))) { buffer = gpu_try_realloc(pool, buffer, size); /* allocation still failed; unfortunately we need to exit */ if (!(buffer && (varray = glMapBuffer(target, GL_WRITE_ONLY)))) { if (buffer) gpu_buffer_free_intern(buffer); BLI_mutex_unlock(&buffer_mutex); return NULL; } } uploaded = GL_FALSE; /* attempt to upload the data to the VBO */ while (uploaded == GL_FALSE) { dm->copy_gpu_data(dm, type, varray, mat_orig_to_new, user); /* glUnmapBuffer returns GL_FALSE if * the data store is corrupted; retry * in that case */ uploaded = glUnmapBuffer(target); } glBindBuffer(target, 0); MEM_freeN(mat_orig_to_new); BLI_mutex_unlock(&buffer_mutex); return buffer; } /* get the GPUDrawObject buffer associated with a type */ static GPUBuffer **gpu_drawobject_buffer_from_type(GPUDrawObject *gdo, GPUBufferType type) { switch (type) { case GPU_BUFFER_VERTEX: return &gdo->points; case GPU_BUFFER_NORMAL: return &gdo->normals; case GPU_BUFFER_COLOR: return &gdo->colors; case GPU_BUFFER_UV: return &gdo->uv; case GPU_BUFFER_UV_TEXPAINT: return &gdo->uv_tex; case GPU_BUFFER_EDGE: return &gdo->edges; case GPU_BUFFER_UVEDGE: return &gdo->uvedges; case GPU_BUFFER_TRIANGLES: return &gdo->triangles; default: return NULL; } } /* get the amount of space to allocate for a buffer of a particular type */ static size_t gpu_buffer_size_from_type(DerivedMesh *dm, GPUBufferType type) { const int components = gpu_buffer_type_settings[type].num_components; switch (type) { case GPU_BUFFER_VERTEX: return sizeof(float) * components * (dm->drawObject->tot_loop_verts + dm->drawObject->tot_loose_point); case GPU_BUFFER_NORMAL: return sizeof(short) * components * dm->drawObject->tot_loop_verts; case GPU_BUFFER_COLOR: return sizeof(char) * components * dm->drawObject->tot_loop_verts; case GPU_BUFFER_UV: return sizeof(float) * components * dm->drawObject->tot_loop_verts; case GPU_BUFFER_UV_TEXPAINT: return sizeof(float) * components * dm->drawObject->tot_loop_verts; case GPU_BUFFER_EDGE: return sizeof(int) * components * dm->drawObject->totedge; case GPU_BUFFER_UVEDGE: return sizeof(int) * components * dm->drawObject->tot_loop_verts; case GPU_BUFFER_TRIANGLES: return sizeof(int) * components * dm->drawObject->tot_triangle_point; default: return -1; } } /* call gpu_buffer_setup with settings for a particular type of buffer */ static GPUBuffer *gpu_buffer_setup_type(DerivedMesh *dm, GPUBufferType type, GPUBuffer *buf) { void *user_data = NULL; /* special handling for MCol and UV buffers */ if (type == GPU_BUFFER_COLOR) { if (!(user_data = DM_get_loop_data_layer(dm, dm->drawObject->colType))) return NULL; } else if (ELEM(type, GPU_BUFFER_UV, GPU_BUFFER_UV_TEXPAINT)) { if (!DM_get_loop_data_layer(dm, CD_MLOOPUV)) return NULL; } buf = gpu_buffer_setup(dm, dm->drawObject, type, user_data, buf); return buf; } /* get the buffer of `type', initializing the GPUDrawObject and * buffer if needed */ static GPUBuffer *gpu_buffer_setup_common(DerivedMesh *dm, GPUBufferType type, bool update) { GPUBuffer **buf; if (!dm->drawObject) dm->drawObject = dm->gpuObjectNew(dm); buf = gpu_drawobject_buffer_from_type(dm->drawObject, type); if (!(*buf)) *buf = gpu_buffer_setup_type(dm, type, NULL); else if (update) *buf = gpu_buffer_setup_type(dm, type, *buf); return *buf; } void GPU_vertex_setup(DerivedMesh *dm) { if (!gpu_buffer_setup_common(dm, GPU_BUFFER_VERTEX, false)) return; glEnableClientState(GL_VERTEX_ARRAY); glBindBuffer(GL_ARRAY_BUFFER, dm->drawObject->points->id); glVertexPointer(3, GL_FLOAT, 0, 0); GLStates |= GPU_BUFFER_VERTEX_STATE; } void GPU_normal_setup(DerivedMesh *dm) { if (!gpu_buffer_setup_common(dm, GPU_BUFFER_NORMAL, false)) return; glEnableClientState(GL_NORMAL_ARRAY); glBindBuffer(GL_ARRAY_BUFFER, dm->drawObject->normals->id); glNormalPointer(GL_SHORT, 4 * sizeof(short), 0); GLStates |= GPU_BUFFER_NORMAL_STATE; } void GPU_uv_setup(DerivedMesh *dm) { if (!gpu_buffer_setup_common(dm, GPU_BUFFER_UV, false)) return; glEnableClientState(GL_TEXTURE_COORD_ARRAY); glBindBuffer(GL_ARRAY_BUFFER, dm->drawObject->uv->id); glTexCoordPointer(2, GL_FLOAT, 0, 0); GLStates |= GPU_BUFFER_TEXCOORD_UNIT_0_STATE; } void GPU_texpaint_uv_setup(DerivedMesh *dm) { if (!gpu_buffer_setup_common(dm, GPU_BUFFER_UV_TEXPAINT, false)) return; glEnableClientState(GL_TEXTURE_COORD_ARRAY); glBindBuffer(GL_ARRAY_BUFFER, dm->drawObject->uv_tex->id); glTexCoordPointer(2, GL_FLOAT, 4 * sizeof(float), 0); glClientActiveTexture(GL_TEXTURE2); glEnableClientState(GL_TEXTURE_COORD_ARRAY); glTexCoordPointer(2, GL_FLOAT, 4 * sizeof(float), BUFFER_OFFSET(2 * sizeof(float))); glClientActiveTexture(GL_TEXTURE0); GLStates |= GPU_BUFFER_TEXCOORD_UNIT_0_STATE | GPU_BUFFER_TEXCOORD_UNIT_2_STATE; } void GPU_color_setup(DerivedMesh *dm, int colType) { bool update = false; if (!dm->drawObject) { /* XXX Not really nice, but we need a valid gpu draw object to set the colType... * Else we would have to add a new param to gpu_buffer_setup_common. */ dm->drawObject = dm->gpuObjectNew(dm); dm->dirty &= ~DM_DIRTY_MCOL_UPDATE_DRAW; dm->drawObject->colType = colType; } /* In paint mode, dm may stay the same during stroke, however we still want to update colors! * Also check in case we changed color type (i.e. which MCol cdlayer we use). */ else if ((dm->dirty & DM_DIRTY_MCOL_UPDATE_DRAW) || (colType != dm->drawObject->colType)) { update = true; dm->dirty &= ~DM_DIRTY_MCOL_UPDATE_DRAW; dm->drawObject->colType = colType; } if (!gpu_buffer_setup_common(dm, GPU_BUFFER_COLOR, update)) return; glEnableClientState(GL_COLOR_ARRAY); glBindBuffer(GL_ARRAY_BUFFER, dm->drawObject->colors->id); glColorPointer(3, GL_UNSIGNED_BYTE, 0, 0); GLStates |= GPU_BUFFER_COLOR_STATE; } void GPU_buffer_bind_as_color(GPUBuffer *buffer) { glEnableClientState(GL_COLOR_ARRAY); glBindBuffer(GL_ARRAY_BUFFER, buffer->id); glColorPointer(4, GL_UNSIGNED_BYTE, 0, 0); GLStates |= GPU_BUFFER_COLOR_STATE; } void GPU_edge_setup(DerivedMesh *dm) { if (!gpu_buffer_setup_common(dm, GPU_BUFFER_EDGE, false)) return; if (!gpu_buffer_setup_common(dm, GPU_BUFFER_VERTEX, false)) return; glEnableClientState(GL_VERTEX_ARRAY); glBindBuffer(GL_ARRAY_BUFFER, dm->drawObject->points->id); glVertexPointer(3, GL_FLOAT, 0, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, dm->drawObject->edges->id); GLStates |= (GPU_BUFFER_VERTEX_STATE | GPU_BUFFER_ELEMENT_STATE); } void GPU_uvedge_setup(DerivedMesh *dm) { if (!gpu_buffer_setup_common(dm, GPU_BUFFER_UVEDGE, false)) return; glEnableClientState(GL_VERTEX_ARRAY); glBindBuffer(GL_ARRAY_BUFFER, dm->drawObject->uvedges->id); glVertexPointer(2, GL_FLOAT, 0, 0); GLStates |= GPU_BUFFER_VERTEX_STATE; } void GPU_triangle_setup(struct DerivedMesh *dm) { if (!gpu_buffer_setup_common(dm, GPU_BUFFER_TRIANGLES, false)) return; glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, dm->drawObject->triangles->id); GLStates |= GPU_BUFFER_ELEMENT_STATE; } static int GPU_typesize(int type) { switch (type) { case GL_FLOAT: return sizeof(float); case GL_INT: return sizeof(int); case GL_UNSIGNED_INT: return sizeof(unsigned int); case GL_BYTE: return sizeof(char); case GL_UNSIGNED_BYTE: return sizeof(unsigned char); default: return 0; } } int GPU_attrib_element_size(GPUAttrib data[], int numdata) { int i, elementsize = 0; for (i = 0; i < numdata; i++) { int typesize = GPU_typesize(data[i].type); if (typesize != 0) elementsize += typesize * data[i].size; } return elementsize; } void GPU_interleaved_attrib_setup(GPUBuffer *buffer, GPUAttrib data[], int numdata, int element_size) { int i; int elementsize; size_t offset = 0; for (i = 0; i < MAX_GPU_ATTRIB_DATA; i++) { if (attribData[i].index != -1) { glDisableVertexAttribArray(attribData[i].index); } else break; } if (element_size == 0) elementsize = GPU_attrib_element_size(data, numdata); else elementsize = element_size; glBindBuffer(GL_ARRAY_BUFFER, buffer->id); for (i = 0; i < numdata; i++) { glEnableVertexAttribArray(data[i].index); int info = 0; if (data[i].type == GL_UNSIGNED_BYTE) { info |= GPU_ATTR_INFO_SRGB; } glUniform1i(data[i].info_index, info); glVertexAttribPointer(data[i].index, data[i].size, data[i].type, GL_TRUE, elementsize, BUFFER_OFFSET(offset)); offset += data[i].size * GPU_typesize(data[i].type); attribData[i].index = data[i].index; attribData[i].size = data[i].size; attribData[i].type = data[i].type; } attribData[numdata].index = -1; } void GPU_interleaved_attrib_unbind(void) { int i; for (i = 0; i < MAX_GPU_ATTRIB_DATA; i++) { if (attribData[i].index != -1) { glDisableVertexAttribArray(attribData[i].index); } else break; } attribData[0].index = -1; } void GPU_buffers_unbind(void) { int i; if (GLStates & GPU_BUFFER_VERTEX_STATE) glDisableClientState(GL_VERTEX_ARRAY); if (GLStates & GPU_BUFFER_NORMAL_STATE) glDisableClientState(GL_NORMAL_ARRAY); if (GLStates & GPU_BUFFER_TEXCOORD_UNIT_0_STATE) glDisableClientState(GL_TEXTURE_COORD_ARRAY); if (GLStates & GPU_BUFFER_TEXCOORD_UNIT_2_STATE) { glClientActiveTexture(GL_TEXTURE2); glDisableClientState(GL_TEXTURE_COORD_ARRAY); glClientActiveTexture(GL_TEXTURE0); } if (GLStates & GPU_BUFFER_COLOR_STATE) glDisableClientState(GL_COLOR_ARRAY); if (GLStates & GPU_BUFFER_ELEMENT_STATE) glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); GLStates &= ~(GPU_BUFFER_VERTEX_STATE | GPU_BUFFER_NORMAL_STATE | GPU_BUFFER_TEXCOORD_UNIT_0_STATE | GPU_BUFFER_TEXCOORD_UNIT_2_STATE | GPU_BUFFER_COLOR_STATE | GPU_BUFFER_ELEMENT_STATE); for (i = 0; i < MAX_GPU_ATTRIB_DATA; i++) { if (attribData[i].index != -1) { glDisableVertexAttribArray(attribData[i].index); } else break; } attribData[0].index = -1; glBindBuffer(GL_ARRAY_BUFFER, 0); } void GPU_color_switch(int mode) { if (mode) { if (!(GLStates & GPU_BUFFER_COLOR_STATE)) glEnableClientState(GL_COLOR_ARRAY); GLStates |= GPU_BUFFER_COLOR_STATE; } else { if (GLStates & GPU_BUFFER_COLOR_STATE) glDisableClientState(GL_COLOR_ARRAY); GLStates &= ~GPU_BUFFER_COLOR_STATE; } } static int gpu_binding_type_gl[] = { GL_ARRAY_BUFFER, GL_ELEMENT_ARRAY_BUFFER }; void *GPU_buffer_lock(GPUBuffer *buffer, GPUBindingType binding) { float *varray; int bindtypegl; if (!buffer) return 0; bindtypegl = gpu_binding_type_gl[binding]; glBindBuffer(bindtypegl, buffer->id); varray = glMapBuffer(bindtypegl, GL_WRITE_ONLY); return varray; } void *GPU_buffer_lock_stream(GPUBuffer *buffer, GPUBindingType binding) { float *varray; int bindtypegl; if (!buffer) return 0; bindtypegl = gpu_binding_type_gl[binding]; glBindBuffer(bindtypegl, buffer->id); /* discard previous data, avoid stalling gpu */ glBufferData(bindtypegl, buffer->size, 0, GL_STREAM_DRAW); varray = glMapBuffer(bindtypegl, GL_WRITE_ONLY); return varray; } void GPU_buffer_unlock(GPUBuffer *UNUSED(buffer), GPUBindingType binding) { int bindtypegl = gpu_binding_type_gl[binding]; /* note: this operation can fail, could return * an error code from this function? */ glUnmapBuffer(bindtypegl); glBindBuffer(bindtypegl, 0); } void GPU_buffer_bind(GPUBuffer *buffer, GPUBindingType binding) { int bindtypegl = gpu_binding_type_gl[binding]; glBindBuffer(bindtypegl, buffer->id); } void GPU_buffer_unbind(GPUBuffer *UNUSED(buffer), GPUBindingType binding) { int bindtypegl = gpu_binding_type_gl[binding]; glBindBuffer(bindtypegl, 0); } /* used for drawing edges */ void GPU_buffer_draw_elements(GPUBuffer *UNUSED(elements), unsigned int mode, int start, int count) { glDrawElements(mode, count, GL_UNSIGNED_INT, BUFFER_OFFSET(start * sizeof(unsigned int))); } /* XXX: the rest of the code in this file is used for optimized PBVH * drawing and doesn't interact at all with the buffer code above */ /* Convenience struct for building the VBO. */ typedef struct { float co[3]; short no[3]; /* inserting this to align the 'color' field to a four-byte * boundary; drastically increases viewport performance on my * drivers (Gallium/Radeon) --nicholasbishop */ char pad[2]; unsigned char color[3]; } VertexBufferFormat; struct GPU_PBVH_Buffers { /* opengl buffer handles */ GPUBuffer *vert_buf, *index_buf, *index_buf_fast; GLenum index_type; int *baseelemarray; void **baseindex; /* mesh pointers in case buffer allocation fails */ const MPoly *mpoly; const MLoop *mloop; const MLoopTri *looptri; const MVert *mvert; const int *face_indices; int face_indices_len; const float *vmask; /* grid pointers */ CCGKey gridkey; CCGElem **grids; const DMFlagMat *grid_flag_mats; BLI_bitmap * const *grid_hidden; const int *grid_indices; int totgrid; bool has_hidden; bool is_index_buf_global; /* Means index_buf uses global bvh's grid_common_gpu_buffer, **DO NOT** free it! */ bool use_bmesh; unsigned int tot_tri, tot_quad; /* The PBVH ensures that either all faces in the node are * smooth-shaded or all faces are flat-shaded */ bool smooth; bool show_diffuse_color; bool use_matcaps; float diffuse_color[4]; }; static float gpu_color_from_mask(float mask) { return 1.0f - mask * 0.75f; } static void gpu_color_from_mask_copy(float mask, const float diffuse_color[4], unsigned char out[3]) { float mask_color; mask_color = gpu_color_from_mask(mask) * 255.0f; out[0] = diffuse_color[0] * mask_color; out[1] = diffuse_color[1] * mask_color; out[2] = diffuse_color[2] * mask_color; } static void gpu_color_from_mask_quad_copy(const CCGKey *key, CCGElem *a, CCGElem *b, CCGElem *c, CCGElem *d, const float *diffuse_color, unsigned char out[3]) { float mask_color = gpu_color_from_mask((*CCG_elem_mask(key, a) + *CCG_elem_mask(key, b) + *CCG_elem_mask(key, c) + *CCG_elem_mask(key, d)) * 0.25f) * 255.0f; out[0] = diffuse_color[0] * mask_color; out[1] = diffuse_color[1] * mask_color; out[2] = diffuse_color[2] * mask_color; } void GPU_update_mesh_pbvh_buffers( GPU_PBVH_Buffers *buffers, const MVert *mvert, const int *vert_indices, int totvert, const float *vmask, const int (*face_vert_indices)[3], bool show_diffuse_color) { VertexBufferFormat *vert_data; int i, j; buffers->vmask = vmask; buffers->show_diffuse_color = show_diffuse_color; buffers->use_matcaps = GPU_material_use_matcaps_get(); { int totelem = (buffers->smooth ? totvert : (buffers->tot_tri * 3)); float diffuse_color[4] = {0.8f, 0.8f, 0.8f, 0.8f}; if (buffers->use_matcaps) diffuse_color[0] = diffuse_color[1] = diffuse_color[2] = 1.0; else if (show_diffuse_color) { const MLoopTri *lt = &buffers->looptri[buffers->face_indices[0]]; const MPoly *mp = &buffers->mpoly[lt->poly]; GPU_material_diffuse_get(mp->mat_nr + 1, diffuse_color); } copy_v4_v4(buffers->diffuse_color, diffuse_color); /* Build VBO */ if (buffers->vert_buf) GPU_buffer_free(buffers->vert_buf); buffers->vert_buf = GPU_buffer_alloc(sizeof(VertexBufferFormat) * totelem); vert_data = GPU_buffer_lock(buffers->vert_buf, GPU_BINDING_ARRAY); if (vert_data) { /* Vertex data is shared if smooth-shaded, but separate * copies are made for flat shading because normals * shouldn't be shared. */ if (buffers->smooth) { for (i = 0; i < totvert; ++i) { const MVert *v = &mvert[vert_indices[i]]; VertexBufferFormat *out = vert_data + i; copy_v3_v3(out->co, v->co); memcpy(out->no, v->no, sizeof(short) * 3); } #define UPDATE_VERTEX(face, vertex, index, diffuse_color) \ { \ VertexBufferFormat *out = vert_data + face_vert_indices[face][index]; \ if (vmask) \ gpu_color_from_mask_copy(vmask[vertex], diffuse_color, out->color); \ else \ rgb_float_to_uchar(out->color, diffuse_color); \ } (void)0 for (i = 0; i < buffers->face_indices_len; i++) { const MLoopTri *lt = &buffers->looptri[buffers->face_indices[i]]; const unsigned int vtri[3] = { buffers->mloop[lt->tri[0]].v, buffers->mloop[lt->tri[1]].v, buffers->mloop[lt->tri[2]].v, }; UPDATE_VERTEX(i, vtri[0], 0, diffuse_color); UPDATE_VERTEX(i, vtri[1], 1, diffuse_color); UPDATE_VERTEX(i, vtri[2], 2, diffuse_color); } #undef UPDATE_VERTEX } else { /* calculate normal for each polygon only once */ unsigned int mpoly_prev = UINT_MAX; short no[3]; for (i = 0; i < buffers->face_indices_len; ++i) { const MLoopTri *lt = &buffers->looptri[buffers->face_indices[i]]; const unsigned int vtri[3] = { buffers->mloop[lt->tri[0]].v, buffers->mloop[lt->tri[1]].v, buffers->mloop[lt->tri[2]].v, }; float fmask; if (paint_is_face_hidden(lt, mvert, buffers->mloop)) continue; /* Face normal and mask */ if (lt->poly != mpoly_prev) { const MPoly *mp = &buffers->mpoly[lt->poly]; float fno[3]; BKE_mesh_calc_poly_normal(mp, &buffers->mloop[mp->loopstart], mvert, fno); normal_float_to_short_v3(no, fno); mpoly_prev = lt->poly; } if (vmask) { fmask = (vmask[vtri[0]] + vmask[vtri[1]] + vmask[vtri[2]]) / 3.0f; } for (j = 0; j < 3; j++) { const MVert *v = &mvert[vtri[j]]; VertexBufferFormat *out = vert_data; copy_v3_v3(out->co, v->co); copy_v3_v3_short(out->no, no); if (vmask) gpu_color_from_mask_copy(fmask, diffuse_color, out->color); else rgb_float_to_uchar(out->color, diffuse_color); vert_data++; } } } GPU_buffer_unlock(buffers->vert_buf, GPU_BINDING_ARRAY); } else { GPU_buffer_free(buffers->vert_buf); buffers->vert_buf = NULL; } } buffers->mvert = mvert; } GPU_PBVH_Buffers *GPU_build_mesh_pbvh_buffers( const int (*face_vert_indices)[3], const MPoly *mpoly, const MLoop *mloop, const MLoopTri *looptri, const MVert *mvert, const int *face_indices, const int face_indices_len) { GPU_PBVH_Buffers *buffers; unsigned short *tri_data; int i, j, tottri; buffers = MEM_callocN(sizeof(GPU_PBVH_Buffers), "GPU_Buffers"); buffers->index_type = GL_UNSIGNED_SHORT; buffers->smooth = mpoly[looptri[face_indices[0]].poly].flag & ME_SMOOTH; buffers->show_diffuse_color = false; buffers->use_matcaps = false; /* Count the number of visible triangles */ for (i = 0, tottri = 0; i < face_indices_len; ++i) { const MLoopTri *lt = &looptri[face_indices[i]]; if (!paint_is_face_hidden(lt, mvert, mloop)) tottri++; } if (tottri == 0) { buffers->tot_tri = 0; buffers->mpoly = mpoly; buffers->mloop = mloop; buffers->looptri = looptri; buffers->face_indices = face_indices; buffers->face_indices_len = 0; return buffers; } /* An element index buffer is used for smooth shading, but flat * shading requires separate vertex normals so an index buffer is * can't be used there. */ if (buffers->smooth) { buffers->index_buf = GPU_buffer_alloc(sizeof(unsigned short) * tottri * 3); buffers->is_index_buf_global = false; } if (buffers->index_buf) { /* Fill the triangle buffer */ tri_data = GPU_buffer_lock(buffers->index_buf, GPU_BINDING_INDEX); if (tri_data) { for (i = 0; i < face_indices_len; ++i) { const MLoopTri *lt = &looptri[face_indices[i]]; /* Skip hidden faces */ if (paint_is_face_hidden(lt, mvert, mloop)) continue; for (j = 0; j < 3; ++j) { *tri_data = face_vert_indices[i][j]; tri_data++; } } GPU_buffer_unlock(buffers->index_buf, GPU_BINDING_INDEX); } else { if (!buffers->is_index_buf_global) { GPU_buffer_free(buffers->index_buf); } buffers->index_buf = NULL; buffers->is_index_buf_global = false; } } buffers->tot_tri = tottri; buffers->mpoly = mpoly; buffers->mloop = mloop; buffers->looptri = looptri; buffers->face_indices = face_indices; buffers->face_indices_len = face_indices_len; return buffers; } void GPU_update_grid_pbvh_buffers(GPU_PBVH_Buffers *buffers, CCGElem **grids, const DMFlagMat *grid_flag_mats, int *grid_indices, int totgrid, const CCGKey *key, bool show_diffuse_color) { VertexBufferFormat *vert_data; int i, j, k, x, y; buffers->show_diffuse_color = show_diffuse_color; buffers->use_matcaps = GPU_material_use_matcaps_get(); buffers->smooth = grid_flag_mats[grid_indices[0]].flag & ME_SMOOTH; /* Build VBO */ if (buffers->vert_buf) { const int has_mask = key->has_mask; float diffuse_color[4] = {0.8f, 0.8f, 0.8f, 1.0f}; if (buffers->use_matcaps) diffuse_color[0] = diffuse_color[1] = diffuse_color[2] = 1.0; else if (show_diffuse_color) { const DMFlagMat *flags = &grid_flag_mats[grid_indices[0]]; GPU_material_diffuse_get(flags->mat_nr + 1, diffuse_color); } copy_v4_v4(buffers->diffuse_color, diffuse_color); vert_data = GPU_buffer_lock_stream(buffers->vert_buf, GPU_BINDING_ARRAY); if (vert_data) { for (i = 0; i < totgrid; ++i) { VertexBufferFormat *vd = vert_data; CCGElem *grid = grids[grid_indices[i]]; for (y = 0; y < key->grid_size; y++) { for (x = 0; x < key->grid_size; x++) { CCGElem *elem = CCG_grid_elem(key, grid, x, y); copy_v3_v3(vd->co, CCG_elem_co(key, elem)); if (buffers->smooth) { normal_float_to_short_v3(vd->no, CCG_elem_no(key, elem)); if (has_mask) { gpu_color_from_mask_copy(*CCG_elem_mask(key, elem), diffuse_color, vd->color); } } vd++; } } if (!buffers->smooth) { /* for flat shading, recalc normals and set the last vertex of * each triangle in the index buffer to have the flat normal as * that is what opengl will use */ for (j = 0; j < key->grid_size - 1; j++) { for (k = 0; k < key->grid_size - 1; k++) { CCGElem *elems[4] = { CCG_grid_elem(key, grid, k, j + 1), CCG_grid_elem(key, grid, k + 1, j + 1), CCG_grid_elem(key, grid, k + 1, j), CCG_grid_elem(key, grid, k, j) }; float fno[3]; normal_quad_v3(fno, CCG_elem_co(key, elems[0]), CCG_elem_co(key, elems[1]), CCG_elem_co(key, elems[2]), CCG_elem_co(key, elems[3])); vd = vert_data + (j + 1) * key->grid_size + k; normal_float_to_short_v3(vd->no, fno); if (has_mask) { gpu_color_from_mask_quad_copy(key, elems[0], elems[1], elems[2], elems[3], diffuse_color, vd->color); } } } } vert_data += key->grid_area; } GPU_buffer_unlock(buffers->vert_buf, GPU_BINDING_ARRAY); } else { GPU_buffer_free(buffers->vert_buf); buffers->vert_buf = NULL; } } buffers->grids = grids; buffers->grid_indices = grid_indices; buffers->totgrid = totgrid; buffers->grid_flag_mats = grid_flag_mats; buffers->gridkey = *key; //printf("node updated %p\n", buffers); } /* Build the element array buffer of grid indices using either * unsigned shorts or unsigned ints. */ #define FILL_QUAD_BUFFER(type_, tot_quad_, buffer_) \ { \ type_ *tri_data; \ int offset = 0; \ int i, j, k; \ buffer_ = GPU_buffer_alloc(sizeof(type_) * (tot_quad_) * 6); \ \ /* Fill the buffer */ \ tri_data = GPU_buffer_lock(buffer_, GPU_BINDING_INDEX); \ if (tri_data) { \ for (i = 0; i < totgrid; ++i) { \ BLI_bitmap *gh = NULL; \ if (grid_hidden) \ gh = grid_hidden[(grid_indices)[i]]; \ \ for (j = 0; j < gridsize - 1; ++j) { \ for (k = 0; k < gridsize - 1; ++k) { \ /* Skip hidden grid face */ \ if (gh && \ paint_is_grid_face_hidden(gh, \ gridsize, k, j)) \ continue; \ \ *(tri_data++) = offset + j * gridsize + k + 1; \ *(tri_data++) = offset + j * gridsize + k; \ *(tri_data++) = offset + (j + 1) * gridsize + k; \ \ *(tri_data++) = offset + (j + 1) * gridsize + k + 1; \ *(tri_data++) = offset + j * gridsize + k + 1; \ *(tri_data++) = offset + (j + 1) * gridsize + k; \ } \ } \ \ offset += gridsize * gridsize; \ } \ GPU_buffer_unlock(buffer_, GPU_BINDING_INDEX); \ } \ else { \ GPU_buffer_free(buffer_); \ (buffer_) = NULL; \ } \ } (void)0 /* end FILL_QUAD_BUFFER */ static GPUBuffer *gpu_get_grid_buffer( int gridsize, GLenum *index_type, unsigned *totquad, GridCommonGPUBuffer **grid_common_gpu_buffer) { /* used in the FILL_QUAD_BUFFER macro */ BLI_bitmap * const *grid_hidden = NULL; const int *grid_indices = NULL; int totgrid = 1; GridCommonGPUBuffer *gridbuff = *grid_common_gpu_buffer; if (gridbuff == NULL) { *grid_common_gpu_buffer = gridbuff = MEM_mallocN(sizeof(GridCommonGPUBuffer), __func__); gridbuff->mres_buffer = NULL; gridbuff->mres_prev_gridsize = -1; gridbuff->mres_prev_index_type = 0; gridbuff->mres_prev_totquad = 0; } /* VBO is already built */ if (gridbuff->mres_buffer && gridbuff->mres_prev_gridsize == gridsize) { *index_type = gridbuff->mres_prev_index_type; *totquad = gridbuff->mres_prev_totquad; return gridbuff->mres_buffer; } /* we can't reuse old, delete the existing buffer */ else if (gridbuff->mres_buffer) { GPU_buffer_free(gridbuff->mres_buffer); } /* Build new VBO */ *totquad = (gridsize - 1) * (gridsize - 1); if (gridsize * gridsize < USHRT_MAX) { *index_type = GL_UNSIGNED_SHORT; FILL_QUAD_BUFFER(unsigned short, *totquad, gridbuff->mres_buffer); } else { *index_type = GL_UNSIGNED_INT; FILL_QUAD_BUFFER(unsigned int, *totquad, gridbuff->mres_buffer); } gridbuff->mres_prev_gridsize = gridsize; gridbuff->mres_prev_index_type = *index_type; gridbuff->mres_prev_totquad = *totquad; return gridbuff->mres_buffer; } #define FILL_FAST_BUFFER(type_) \ { \ type_ *buffer; \ buffers->index_buf_fast = GPU_buffer_alloc(sizeof(type_) * 6 * totgrid); \ buffer = GPU_buffer_lock(buffers->index_buf_fast, GPU_BINDING_INDEX); \ if (buffer) { \ int i; \ for (i = 0; i < totgrid; i++) { \ int currentquad = i * 6; \ buffer[currentquad] = i * gridsize * gridsize + gridsize - 1; \ buffer[currentquad + 1] = i * gridsize * gridsize; \ buffer[currentquad + 2] = (i + 1) * gridsize * gridsize - gridsize; \ buffer[currentquad + 3] = (i + 1) * gridsize * gridsize - 1; \ buffer[currentquad + 4] = i * gridsize * gridsize + gridsize - 1; \ buffer[currentquad + 5] = (i + 1) * gridsize * gridsize - gridsize; \ } \ GPU_buffer_unlock(buffers->index_buf_fast, GPU_BINDING_INDEX); \ } \ else { \ GPU_buffer_free(buffers->index_buf_fast); \ buffers->index_buf_fast = NULL; \ } \ } (void)0 GPU_PBVH_Buffers *GPU_build_grid_pbvh_buffers( int *grid_indices, int totgrid, BLI_bitmap **grid_hidden, int gridsize, const CCGKey *key, GridCommonGPUBuffer **grid_common_gpu_buffer) { GPU_PBVH_Buffers *buffers; int totquad; int fully_visible_totquad = (gridsize - 1) * (gridsize - 1) * totgrid; buffers = MEM_callocN(sizeof(GPU_PBVH_Buffers), "GPU_Buffers"); buffers->grid_hidden = grid_hidden; buffers->totgrid = totgrid; buffers->show_diffuse_color = false; buffers->use_matcaps = false; /* Count the number of quads */ totquad = BKE_pbvh_count_grid_quads(grid_hidden, grid_indices, totgrid, gridsize); /* totally hidden node, return here to avoid BufferData with zero below. */ if (totquad == 0) return buffers; /* create and fill indices of the fast buffer too */ if (totgrid * gridsize * gridsize < USHRT_MAX) { FILL_FAST_BUFFER(unsigned short); } else { FILL_FAST_BUFFER(unsigned int); } if (totquad == fully_visible_totquad) { buffers->index_buf = gpu_get_grid_buffer( gridsize, &buffers->index_type, &buffers->tot_quad, grid_common_gpu_buffer); buffers->has_hidden = false; buffers->is_index_buf_global = true; } else { buffers->tot_quad = totquad; if (totgrid * gridsize * gridsize < USHRT_MAX) { buffers->index_type = GL_UNSIGNED_SHORT; FILL_QUAD_BUFFER(unsigned short, totquad, buffers->index_buf); } else { buffers->index_type = GL_UNSIGNED_INT; FILL_QUAD_BUFFER(unsigned int, totquad, buffers->index_buf); } buffers->has_hidden = true; buffers->is_index_buf_global = false; } /* Build coord/normal VBO */ if (buffers->index_buf) buffers->vert_buf = GPU_buffer_alloc(sizeof(VertexBufferFormat) * totgrid * key->grid_area); if (GLEW_ARB_draw_elements_base_vertex /* 3.2 */) { int i; buffers->baseelemarray = MEM_mallocN(sizeof(int) * totgrid * 2, "GPU_PBVH_Buffers.baseelemarray"); buffers->baseindex = MEM_mallocN(sizeof(void *) * totgrid, "GPU_PBVH_Buffers.baseindex"); for (i = 0; i < totgrid; i++) { buffers->baseelemarray[i] = buffers->tot_quad * 6; buffers->baseelemarray[i + totgrid] = i * key->grid_area; buffers->baseindex[i] = NULL; } } return buffers; } #undef FILL_QUAD_BUFFER /* Output a BMVert into a VertexBufferFormat array * * The vertex is skipped if hidden, otherwise the output goes into * index '*v_index' in the 'vert_data' array and '*v_index' is * incremented. */ static void gpu_bmesh_vert_to_buffer_copy(BMVert *v, VertexBufferFormat *vert_data, int *v_index, const float fno[3], const float *fmask, const int cd_vert_mask_offset, const float diffuse_color[4]) { if (!BM_elem_flag_test(v, BM_ELEM_HIDDEN)) { VertexBufferFormat *vd = &vert_data[*v_index]; /* Set coord, normal, and mask */ copy_v3_v3(vd->co, v->co); normal_float_to_short_v3(vd->no, fno ? fno : v->no); gpu_color_from_mask_copy( fmask ? *fmask : BM_ELEM_CD_GET_FLOAT(v, cd_vert_mask_offset), diffuse_color, vd->color); /* Assign index for use in the triangle index buffer */ /* note: caller must set: bm->elem_index_dirty |= BM_VERT; */ BM_elem_index_set(v, (*v_index)); /* set_dirty! */ (*v_index)++; } } /* Return the total number of vertices that don't have BM_ELEM_HIDDEN set */ static int gpu_bmesh_vert_visible_count(GSet *bm_unique_verts, GSet *bm_other_verts) { GSetIterator gs_iter; int totvert = 0; GSET_ITER (gs_iter, bm_unique_verts) { BMVert *v = BLI_gsetIterator_getKey(&gs_iter); if (!BM_elem_flag_test(v, BM_ELEM_HIDDEN)) totvert++; } GSET_ITER (gs_iter, bm_other_verts) { BMVert *v = BLI_gsetIterator_getKey(&gs_iter); if (!BM_elem_flag_test(v, BM_ELEM_HIDDEN)) totvert++; } return totvert; } /* Return the total number of visible faces */ static int gpu_bmesh_face_visible_count(GSet *bm_faces) { GSetIterator gh_iter; int totface = 0; GSET_ITER (gh_iter, bm_faces) { BMFace *f = BLI_gsetIterator_getKey(&gh_iter); if (!BM_elem_flag_test(f, BM_ELEM_HIDDEN)) totface++; } return totface; } /* Creates a vertex buffer (coordinate, normal, color) and, if smooth * shading, an element index buffer. */ void GPU_update_bmesh_pbvh_buffers(GPU_PBVH_Buffers *buffers, BMesh *bm, GSet *bm_faces, GSet *bm_unique_verts, GSet *bm_other_verts, bool show_diffuse_color) { VertexBufferFormat *vert_data; void *tri_data; int tottri, totvert, maxvert = 0; float diffuse_color[4] = {0.8f, 0.8f, 0.8f, 1.0f}; /* TODO, make mask layer optional for bmesh buffer */ const int cd_vert_mask_offset = CustomData_get_offset(&bm->vdata, CD_PAINT_MASK); buffers->show_diffuse_color = show_diffuse_color; buffers->use_matcaps = GPU_material_use_matcaps_get(); /* Count visible triangles */ tottri = gpu_bmesh_face_visible_count(bm_faces); if (buffers->smooth) { /* Count visible vertices */ totvert = gpu_bmesh_vert_visible_count(bm_unique_verts, bm_other_verts); } else totvert = tottri * 3; if (!tottri) { buffers->tot_tri = 0; return; } if (buffers->use_matcaps) diffuse_color[0] = diffuse_color[1] = diffuse_color[2] = 1.0; else if (show_diffuse_color) { /* due to dynamic nature of dyntopo, only get first material */ GSetIterator gs_iter; BMFace *f; BLI_gsetIterator_init(&gs_iter, bm_faces); f = BLI_gsetIterator_getKey(&gs_iter); GPU_material_diffuse_get(f->mat_nr + 1, diffuse_color); } copy_v4_v4(buffers->diffuse_color, diffuse_color); /* Initialize vertex buffer */ if (buffers->vert_buf) GPU_buffer_free(buffers->vert_buf); buffers->vert_buf = GPU_buffer_alloc(sizeof(VertexBufferFormat) * totvert); /* Fill vertex buffer */ vert_data = GPU_buffer_lock(buffers->vert_buf, GPU_BINDING_ARRAY); if (vert_data) { int v_index = 0; if (buffers->smooth) { GSetIterator gs_iter; /* Vertices get an index assigned for use in the triangle * index buffer */ bm->elem_index_dirty |= BM_VERT; GSET_ITER (gs_iter, bm_unique_verts) { gpu_bmesh_vert_to_buffer_copy(BLI_gsetIterator_getKey(&gs_iter), vert_data, &v_index, NULL, NULL, cd_vert_mask_offset, diffuse_color); } GSET_ITER (gs_iter, bm_other_verts) { gpu_bmesh_vert_to_buffer_copy(BLI_gsetIterator_getKey(&gs_iter), vert_data, &v_index, NULL, NULL, cd_vert_mask_offset, diffuse_color); } maxvert = v_index; } else { GSetIterator gs_iter; GSET_ITER (gs_iter, bm_faces) { BMFace *f = BLI_gsetIterator_getKey(&gs_iter); BLI_assert(f->len == 3); if (!BM_elem_flag_test(f, BM_ELEM_HIDDEN)) { BMVert *v[3]; float fmask = 0; int i; #if 0 BM_iter_as_array(bm, BM_VERTS_OF_FACE, f, (void**)v, 3); #endif BM_face_as_array_vert_tri(f, v); /* Average mask value */ for (i = 0; i < 3; i++) { fmask += BM_ELEM_CD_GET_FLOAT(v[i], cd_vert_mask_offset); } fmask /= 3.0f; for (i = 0; i < 3; i++) { gpu_bmesh_vert_to_buffer_copy(v[i], vert_data, &v_index, f->no, &fmask, cd_vert_mask_offset, diffuse_color); } } } buffers->tot_tri = tottri; } GPU_buffer_unlock(buffers->vert_buf, GPU_BINDING_ARRAY); /* gpu_bmesh_vert_to_buffer_copy sets dirty index values */ bm->elem_index_dirty |= BM_VERT; } else { /* Memory map failed */ GPU_buffer_free(buffers->vert_buf); buffers->vert_buf = NULL; return; } if (buffers->smooth) { const int use_short = (maxvert < USHRT_MAX); /* Initialize triangle index buffer */ if (buffers->index_buf && !buffers->is_index_buf_global) GPU_buffer_free(buffers->index_buf); buffers->is_index_buf_global = false; buffers->index_buf = GPU_buffer_alloc((use_short ? sizeof(unsigned short) : sizeof(unsigned int)) * 3 * tottri); /* Fill triangle index buffer */ tri_data = GPU_buffer_lock(buffers->index_buf, GPU_BINDING_INDEX); if (tri_data) { GSetIterator gs_iter; GSET_ITER (gs_iter, bm_faces) { BMFace *f = BLI_gsetIterator_getKey(&gs_iter); if (!BM_elem_flag_test(f, BM_ELEM_HIDDEN)) { BMLoop *l_iter; BMLoop *l_first; l_iter = l_first = BM_FACE_FIRST_LOOP(f); do { BMVert *v = l_iter->v; if (use_short) { unsigned short *elem = tri_data; (*elem) = BM_elem_index_get(v); elem++; tri_data = elem; } else { unsigned int *elem = tri_data; (*elem) = BM_elem_index_get(v); elem++; tri_data = elem; } } while ((l_iter = l_iter->next) != l_first); } } GPU_buffer_unlock(buffers->index_buf, GPU_BINDING_INDEX); buffers->tot_tri = tottri; buffers->index_type = (use_short ? GL_UNSIGNED_SHORT : GL_UNSIGNED_INT); } else { /* Memory map failed */ if (!buffers->is_index_buf_global) { GPU_buffer_free(buffers->index_buf); } buffers->index_buf = NULL; buffers->is_index_buf_global = false; } } else if (buffers->index_buf) { if (!buffers->is_index_buf_global) { GPU_buffer_free(buffers->index_buf); } buffers->index_buf = NULL; buffers->is_index_buf_global = false; } } GPU_PBVH_Buffers *GPU_build_bmesh_pbvh_buffers(bool smooth_shading) { GPU_PBVH_Buffers *buffers; buffers = MEM_callocN(sizeof(GPU_PBVH_Buffers), "GPU_Buffers"); buffers->use_bmesh = true; buffers->smooth = smooth_shading; buffers->show_diffuse_color = false; buffers->use_matcaps = false; return buffers; } void GPU_draw_pbvh_buffers(GPU_PBVH_Buffers *buffers, DMSetMaterial setMaterial, bool wireframe, bool fast) { bool do_fast = fast && buffers->index_buf_fast; /* sets material from the first face, to solve properly face would need to * be sorted in buckets by materials */ if (setMaterial) { if (buffers->face_indices_len) { const MLoopTri *lt = &buffers->looptri[buffers->face_indices[0]]; const MPoly *mp = &buffers->mpoly[lt->poly]; if (!setMaterial(mp->mat_nr + 1, NULL)) return; } else if (buffers->totgrid) { const DMFlagMat *f = &buffers->grid_flag_mats[buffers->grid_indices[0]]; if (!setMaterial(f->mat_nr + 1, NULL)) return; } else { if (!setMaterial(1, NULL)) return; } } if (buffers->vert_buf) { char *base = NULL; char *index_base = NULL; /* weak inspection of bound options, should not be necessary ideally */ const int bound_options_old = GPU_basic_shader_bound_options(); int bound_options_new = 0; glEnableClientState(GL_VERTEX_ARRAY); if (!wireframe) { glEnableClientState(GL_NORMAL_ARRAY); glEnableClientState(GL_COLOR_ARRAY); bound_options_new |= GPU_SHADER_USE_COLOR; } GPU_buffer_bind(buffers->vert_buf, GPU_BINDING_ARRAY); if (do_fast) { GPU_buffer_bind(buffers->index_buf_fast, GPU_BINDING_INDEX); } else if (buffers->index_buf) { GPU_buffer_bind(buffers->index_buf, GPU_BINDING_INDEX); } if (wireframe) { glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); } else { if ((buffers->smooth == false) && (buffers->face_indices_len == 0)) { bound_options_new |= GPU_SHADER_FLAT_NORMAL; } } if (bound_options_new & ~bound_options_old) { GPU_basic_shader_bind(bound_options_old | bound_options_new); } if (buffers->tot_quad) { const char *offset = base; const bool drawall = !(buffers->has_hidden || do_fast); if (GLEW_ARB_draw_elements_base_vertex && drawall) { glVertexPointer(3, GL_FLOAT, sizeof(VertexBufferFormat), offset + offsetof(VertexBufferFormat, co)); if (!wireframe) { glNormalPointer(GL_SHORT, sizeof(VertexBufferFormat), offset + offsetof(VertexBufferFormat, no)); glColorPointer(3, GL_UNSIGNED_BYTE, sizeof(VertexBufferFormat), offset + offsetof(VertexBufferFormat, color)); } glMultiDrawElementsBaseVertex(GL_TRIANGLES, buffers->baseelemarray, buffers->index_type, (const void * const *)buffers->baseindex, buffers->totgrid, &buffers->baseelemarray[buffers->totgrid]); } else { int i, last = drawall ? buffers->totgrid : 1; /* we could optimize this to one draw call, but it would need more memory */ for (i = 0; i < last; i++) { glVertexPointer(3, GL_FLOAT, sizeof(VertexBufferFormat), offset + offsetof(VertexBufferFormat, co)); if (!wireframe) { glNormalPointer(GL_SHORT, sizeof(VertexBufferFormat), offset + offsetof(VertexBufferFormat, no)); glColorPointer(3, GL_UNSIGNED_BYTE, sizeof(VertexBufferFormat), offset + offsetof(VertexBufferFormat, color)); } if (do_fast) glDrawElements(GL_TRIANGLES, buffers->totgrid * 6, buffers->index_type, index_base); else glDrawElements(GL_TRIANGLES, buffers->tot_quad * 6, buffers->index_type, index_base); offset += buffers->gridkey.grid_area * sizeof(VertexBufferFormat); } } } else if (buffers->tot_tri) { int totelem = buffers->tot_tri * 3; glVertexPointer(3, GL_FLOAT, sizeof(VertexBufferFormat), (void *)(base + offsetof(VertexBufferFormat, co))); if (!wireframe) { glNormalPointer(GL_SHORT, sizeof(VertexBufferFormat), (void *)(base + offsetof(VertexBufferFormat, no))); glColorPointer(3, GL_UNSIGNED_BYTE, sizeof(VertexBufferFormat), (void *)(base + offsetof(VertexBufferFormat, color))); } if (buffers->index_buf) glDrawElements(GL_TRIANGLES, totelem, buffers->index_type, index_base); else glDrawArrays(GL_TRIANGLES, 0, totelem); } if (wireframe) glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); GPU_buffer_unbind(buffers->vert_buf, GPU_BINDING_ARRAY); if (buffers->index_buf || do_fast) GPU_buffer_unbind(do_fast ? buffers->index_buf_fast : buffers->index_buf, GPU_BINDING_INDEX); glDisableClientState(GL_VERTEX_ARRAY); if (!wireframe) { glDisableClientState(GL_NORMAL_ARRAY); glDisableClientState(GL_COLOR_ARRAY); } if (bound_options_new & ~bound_options_old) { GPU_basic_shader_bind(bound_options_old); } } } bool GPU_pbvh_buffers_diffuse_changed(GPU_PBVH_Buffers *buffers, GSet *bm_faces, bool show_diffuse_color) { float diffuse_color[4]; bool use_matcaps = GPU_material_use_matcaps_get(); if (buffers->show_diffuse_color != show_diffuse_color) return true; if (buffers->use_matcaps != use_matcaps) return true; if ((buffers->show_diffuse_color == false) || use_matcaps) return false; if (buffers->looptri) { const MLoopTri *lt = &buffers->looptri[buffers->face_indices[0]]; const MPoly *mp = &buffers->mpoly[lt->poly]; GPU_material_diffuse_get(mp->mat_nr + 1, diffuse_color); } else if (buffers->use_bmesh) { /* due to dynamic nature of dyntopo, only get first material */ if (BLI_gset_size(bm_faces) > 0) { GSetIterator gs_iter; BMFace *f; BLI_gsetIterator_init(&gs_iter, bm_faces); f = BLI_gsetIterator_getKey(&gs_iter); GPU_material_diffuse_get(f->mat_nr + 1, diffuse_color); } else { return false; } } else { const DMFlagMat *flags = &buffers->grid_flag_mats[buffers->grid_indices[0]]; GPU_material_diffuse_get(flags->mat_nr + 1, diffuse_color); } return !equals_v3v3(diffuse_color, buffers->diffuse_color); } void GPU_free_pbvh_buffers(GPU_PBVH_Buffers *buffers) { if (buffers) { if (buffers->vert_buf) GPU_buffer_free(buffers->vert_buf); if (buffers->index_buf && !buffers->is_index_buf_global) GPU_buffer_free(buffers->index_buf); if (buffers->index_buf_fast) GPU_buffer_free(buffers->index_buf_fast); if (buffers->baseelemarray) MEM_freeN(buffers->baseelemarray); if (buffers->baseindex) MEM_freeN(buffers->baseindex); MEM_freeN(buffers); } } void GPU_free_pbvh_buffer_multires(GridCommonGPUBuffer **grid_common_gpu_buffer) { GridCommonGPUBuffer *gridbuff = *grid_common_gpu_buffer; if (gridbuff) { if (gridbuff->mres_buffer) { BLI_mutex_lock(&buffer_mutex); gpu_buffer_free_intern(gridbuff->mres_buffer); BLI_mutex_unlock(&buffer_mutex); } MEM_freeN(gridbuff); *grid_common_gpu_buffer = NULL; } } /* debug function, draws the pbvh BB */ void GPU_draw_pbvh_BB(float min[3], float max[3], bool leaf) { const float quads[4][4][3] = { { {min[0], min[1], min[2]}, {max[0], min[1], min[2]}, {max[0], min[1], max[2]}, {min[0], min[1], max[2]} }, { {min[0], min[1], min[2]}, {min[0], max[1], min[2]}, {min[0], max[1], max[2]}, {min[0], min[1], max[2]} }, { {max[0], max[1], min[2]}, {max[0], min[1], min[2]}, {max[0], min[1], max[2]}, {max[0], max[1], max[2]} }, { {max[0], max[1], min[2]}, {min[0], max[1], min[2]}, {min[0], max[1], max[2]}, {max[0], max[1], max[2]} }, }; if (leaf) glColor4f(0.0, 1.0, 0.0, 0.5); else glColor4f(1.0, 0.0, 0.0, 0.5); glVertexPointer(3, GL_FLOAT, 0, &quads[0][0][0]); glDrawArrays(GL_QUADS, 0, 16); } void GPU_init_draw_pbvh_BB(void) { glPushAttrib(GL_ENABLE_BIT); glDisable(GL_CULL_FACE); glEnableClientState(GL_VERTEX_ARRAY); glDisableClientState(GL_COLOR_ARRAY); glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); glEnable(GL_BLEND); } void GPU_end_draw_pbvh_BB(void) { glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); glPopAttrib(); }