/* * ***** BEGIN GPL LICENSE BLOCK ***** * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2005 Blender Foundation. * All rights reserved. * * The Original Code is: all of this file. * * Contributor(s): Brecht Van Lommel. * * ***** END GPL LICENSE BLOCK ***** */ /** \file blender/gpu/intern/gpu_draw.c * \ingroup gpu * * Utility functions for dealing with OpenGL texture & material context, * mipmap generation and light objects. * * These are some obscure rendering functions shared between the * game engine and the blender, in this module to avoid duplication * and abstract them away from the rest a bit. */ #include #include "BLI_blenlib.h" #include "BLI_hash.h" #include "BLI_linklist.h" #include "BLI_math.h" #include "BLI_threads.h" #include "BLI_utildefines.h" #include "DNA_lamp_types.h" #include "DNA_material_types.h" #include "DNA_mesh_types.h" #include "DNA_meshdata_types.h" #include "DNA_modifier_types.h" #include "DNA_node_types.h" #include "DNA_object_types.h" #include "DNA_scene_types.h" #include "DNA_smoke_types.h" #include "DNA_view3d_types.h" #include "DNA_particle_types.h" #include "MEM_guardedalloc.h" #include "IMB_imbuf.h" #include "IMB_imbuf_types.h" #include "BKE_bmfont.h" #include "BKE_global.h" #include "BKE_image.h" #include "BKE_main.h" #include "BKE_material.h" #include "BKE_node.h" #include "BKE_scene.h" #include "BKE_DerivedMesh.h" #ifdef WITH_GAMEENGINE # include "BKE_object.h" #endif #include "GPU_basic_shader.h" #include "GPU_buffers.h" #include "GPU_draw.h" #include "GPU_extensions.h" #include "GPU_material.h" #include "GPU_matrix.h" #include "GPU_shader.h" #include "GPU_texture.h" #include "PIL_time.h" #ifdef WITH_SMOKE # include "smoke_API.h" #endif #ifdef WITH_OPENSUBDIV # include "BKE_subsurf.h" # include "BKE_editmesh.h" # include "gpu_codegen.h" #endif extern Material defmaterial; /* from material.c */ /* Text Rendering */ static void gpu_mcol(unsigned int ucol) { /* mcol order is swapped */ const char *cp = (char *)&ucol; glColor3ub(cp[3], cp[2], cp[1]); } void GPU_render_text( int mode, const char *textstr, int textlen, unsigned int *col, const float *v_quad[4], const float *uv_quad[4], int glattrib) { /* XXX, 2.8 removes texface */ #if 0 Image *ima = mtexpoly->tpage; #else Image *ima = NULL; #endif if ((mode & GEMAT_TEXT) && (textlen > 0) && ima) { const float *v1 = v_quad[0]; const float *v2 = v_quad[1]; const float *v3 = v_quad[2]; const float *v4 = v_quad[3]; const size_t textlen_st = textlen; float centerx, centery, sizex, sizey, transx, transy, movex, movey, advance; /* multiline */ float line_start = 0.0f, line_height; if (v4) line_height = max_ffff(v1[1], v2[1], v3[1], v4[2]) - min_ffff(v1[1], v2[1], v3[1], v4[2]); else line_height = max_fff(v1[1], v2[1], v3[1]) - min_fff(v1[1], v2[1], v3[1]); line_height *= 1.2f; /* could be an option? */ /* end multiline */ /* color has been set */ if (!col) glColor3f(1.0f, 1.0f, 1.0f); gpuPushMatrix(); /* get the tab width */ ImBuf *first_ibuf = BKE_image_get_first_ibuf(ima); matrixGlyph(first_ibuf, ' ', ¢erx, ¢ery, &sizex, &sizey, &transx, &transy, &movex, &movey, &advance); float advance_tab = advance * 4; /* tab width could also be an option */ for (size_t index = 0; index < textlen_st; ) { unsigned int character; float uv[4][2]; /* lets calculate offset stuff */ character = BLI_str_utf8_as_unicode_and_size_safe(textstr + index, &index); if (character == '\n') { gpuTranslate2f(line_start, -line_height); line_start = 0.0f; continue; } else if (character == '\t') { gpuTranslate2f(advance_tab, 0.0f); line_start -= advance_tab; /* so we can go back to the start of the line */ continue; } else if (character > USHRT_MAX) { /* not much we can do here bmfonts take ushort */ character = '?'; } /* space starts at offset 1 */ /* character = character - ' ' + 1; */ matrixGlyph(first_ibuf, character, & centerx, ¢ery, &sizex, &sizey, &transx, &transy, &movex, &movey, &advance); uv[0][0] = (uv_quad[0][0] - centerx) * sizex + transx; uv[0][1] = (uv_quad[0][1] - centery) * sizey + transy; uv[1][0] = (uv_quad[1][0] - centerx) * sizex + transx; uv[1][1] = (uv_quad[1][1] - centery) * sizey + transy; uv[2][0] = (uv_quad[2][0] - centerx) * sizex + transx; uv[2][1] = (uv_quad[2][1] - centery) * sizey + transy; glBegin(GL_POLYGON); if (glattrib >= 0) glVertexAttrib2fv(glattrib, uv[0]); else glTexCoord2fv(uv[0]); if (col) gpu_mcol(col[0]); glVertex3f(sizex * v1[0] + movex, sizey * v1[1] + movey, v1[2]); if (glattrib >= 0) glVertexAttrib2fv(glattrib, uv[1]); else glTexCoord2fv(uv[1]); if (col) gpu_mcol(col[1]); glVertex3f(sizex * v2[0] + movex, sizey * v2[1] + movey, v2[2]); if (glattrib >= 0) glVertexAttrib2fv(glattrib, uv[2]); else glTexCoord2fv(uv[2]); if (col) gpu_mcol(col[2]); glVertex3f(sizex * v3[0] + movex, sizey * v3[1] + movey, v3[2]); if (v4) { uv[3][0] = (uv_quad[3][0] - centerx) * sizex + transx; uv[3][1] = (uv_quad[3][1] - centery) * sizey + transy; if (glattrib >= 0) glVertexAttrib2fv(glattrib, uv[3]); else glTexCoord2fv(uv[3]); if (col) gpu_mcol(col[3]); glVertex3f(sizex * v4[0] + movex, sizey * v4[1] + movey, v4[2]); } glEnd(); gpuTranslate2f(advance, 0.0f); line_start -= advance; /* so we can go back to the start of the line */ } gpuPopMatrix(); BKE_image_release_ibuf(ima, first_ibuf, NULL); } } /* Checking powers of two for images since OpenGL ES requires it */ #ifdef WITH_DDS static bool is_power_of_2_resolution(int w, int h) { return is_power_of_2_i(w) && is_power_of_2_i(h); } #endif static bool is_over_resolution_limit(GLenum textarget, int w, int h) { int size = (textarget == GL_TEXTURE_2D) ? GPU_max_texture_size() : GPU_max_cube_map_size(); int reslimit = (U.glreslimit != 0) ? min_ii(U.glreslimit, size) : size; return (w > reslimit || h > reslimit); } static int smaller_power_of_2_limit(int num) { int reslimit = (U.glreslimit != 0) ? min_ii(U.glreslimit, GPU_max_texture_size()) : GPU_max_texture_size(); /* take texture clamping into account */ if (num > reslimit) return reslimit; return power_of_2_min_i(num); } /* Current OpenGL state caching for GPU_set_tpage */ static struct GPUTextureState { int curtile, tile; int curtilemode, tilemode; int curtileXRep, tileXRep; int curtileYRep, tileYRep; Image *ima, *curima; /* also controls min/mag filtering */ bool domipmap; /* only use when 'domipmap' is set */ bool linearmipmap; /* store this so that new images created while texture painting won't be set to mipmapped */ bool texpaint; int alphablend; float anisotropic; int gpu_mipmap; } GTS = {0, 0, 0, 0, 0, 0, 0, 0, NULL, NULL, 1, 0, 0, -1, 1.0f, 0}; /* Mipmap settings */ void GPU_set_gpu_mipmapping(int gpu_mipmap) { int old_value = GTS.gpu_mipmap; /* only actually enable if it's supported */ GTS.gpu_mipmap = gpu_mipmap; if (old_value != GTS.gpu_mipmap) { GPU_free_images(); } } void GPU_set_mipmap(bool mipmap) { if (GTS.domipmap != mipmap) { GPU_free_images(); GTS.domipmap = mipmap; } } void GPU_set_linear_mipmap(bool linear) { if (GTS.linearmipmap != linear) { GTS.linearmipmap = linear; } } bool GPU_get_mipmap(void) { return GTS.domipmap && !GTS.texpaint; } bool GPU_get_linear_mipmap(void) { return GTS.linearmipmap; } static GLenum gpu_get_mipmap_filter(bool mag) { /* linearmipmap is off by default *when mipmapping is off, * use unfiltered display */ if (mag) { if (GTS.domipmap) return GL_LINEAR; else return GL_NEAREST; } else { if (GTS.domipmap) { if (GTS.linearmipmap) { return GL_LINEAR_MIPMAP_LINEAR; } else { return GL_LINEAR_MIPMAP_NEAREST; } } else { return GL_NEAREST; } } } /* Anisotropic filtering settings */ void GPU_set_anisotropic(float value) { if (GTS.anisotropic != value) { GPU_free_images(); /* Clamp value to the maximum value the graphics card supports */ const float max = GPU_max_texture_anisotropy(); if (value > max) value = max; GTS.anisotropic = value; } } float GPU_get_anisotropic(void) { return GTS.anisotropic; } /* Set OpenGL state for an MTFace */ static void gpu_make_repbind(Image *ima) { ImBuf *ibuf = BKE_image_acquire_ibuf(ima, NULL, NULL); if (ibuf == NULL) return; if (ima->repbind) { glDeleteTextures(ima->totbind, (GLuint *)ima->repbind); MEM_freeN(ima->repbind); ima->repbind = NULL; ima->tpageflag &= ~IMA_MIPMAP_COMPLETE; } ima->totbind = ima->xrep * ima->yrep; if (ima->totbind > 1) { ima->repbind = MEM_callocN(sizeof(int) * ima->totbind, "repbind"); } BKE_image_release_ibuf(ima, ibuf, NULL); } static unsigned int *gpu_get_image_bindcode(Image *ima, GLenum textarget) { unsigned int *bind = 0; if (textarget == GL_TEXTURE_2D) bind = &ima->bindcode[TEXTARGET_TEXTURE_2D]; else if (textarget == GL_TEXTURE_CUBE_MAP) bind = &ima->bindcode[TEXTARGET_TEXTURE_CUBE_MAP]; return bind; } static void gpu_set_alpha_blend(GPUBlendMode alphablend) { if (alphablend == GPU_BLEND_SOLID) { glDisable(GL_BLEND); glDisable(GL_SAMPLE_ALPHA_TO_COVERAGE); glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA); } else if (alphablend == GPU_BLEND_ADD) { glEnable(GL_BLEND); glBlendFunc(GL_ONE, GL_ONE); glDisable(GL_SAMPLE_ALPHA_TO_COVERAGE); } else if (ELEM(alphablend, GPU_BLEND_ALPHA, GPU_BLEND_ALPHA_SORT)) { glEnable(GL_BLEND); glDisable(GL_SAMPLE_ALPHA_TO_COVERAGE); /* for OpenGL render we use the alpha channel, this makes alpha blend correct */ glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA); /* if U.glalphaclip == 1.0, some cards go bonkers... * turn off alpha test in this case */ } else if (alphablend == GPU_BLEND_CLIP) { glDisable(GL_BLEND); glDisable(GL_SAMPLE_ALPHA_TO_COVERAGE); } else if (alphablend == GPU_BLEND_ALPHA_TO_COVERAGE) { glEnable(GL_SAMPLE_ALPHA_TO_COVERAGE); } } typedef struct VerifyThreadData { ImBuf *ibuf; float *srgb_frect; } VerifyThreadData; static void gpu_verify_high_bit_srgb_buffer_slice(float *srgb_frect, ImBuf *ibuf, const int start_line, const int height) { size_t offset = ibuf->channels * start_line * ibuf->x; float *current_srgb_frect = srgb_frect + offset; float *current_rect_float = ibuf->rect_float + offset; IMB_buffer_float_from_float(current_srgb_frect, current_rect_float, ibuf->channels, IB_PROFILE_SRGB, IB_PROFILE_LINEAR_RGB, true, ibuf->x, height, ibuf->x, ibuf->x); IMB_buffer_float_unpremultiply(current_srgb_frect, ibuf->x, height); } static void verify_thread_do(void *data_v, int start_scanline, int num_scanlines) { VerifyThreadData *data = (VerifyThreadData *)data_v; gpu_verify_high_bit_srgb_buffer_slice(data->srgb_frect, data->ibuf, start_scanline, num_scanlines); } static void gpu_verify_high_bit_srgb_buffer(float *srgb_frect, ImBuf *ibuf) { if (ibuf->y < 64) { gpu_verify_high_bit_srgb_buffer_slice(srgb_frect, ibuf, 0, ibuf->y); } else { VerifyThreadData data; data.ibuf = ibuf; data.srgb_frect = srgb_frect; IMB_processor_apply_threaded_scanlines(ibuf->y, verify_thread_do, &data); } } int GPU_verify_image( Image *ima, ImageUser *iuser, int textarget, int tftile, bool compare, bool mipmap, bool is_data) { unsigned int *bind = NULL; int tpx = 0, tpy = 0; unsigned int *rect = NULL; float *frect = NULL; float *srgb_frect = NULL; /* flag to determine whether deep format is used */ bool use_high_bit_depth = false, do_color_management = false; /* initialize tile mode and number of repeats */ GTS.ima = ima; GTS.tilemode = (ima && (ima->tpageflag & (IMA_TILES | IMA_TWINANIM))); GTS.tileXRep = 0; GTS.tileYRep = 0; /* setting current tile according to frame */ if (ima && (ima->tpageflag & IMA_TWINANIM)) GTS.tile = ima->lastframe; else GTS.tile = tftile; GTS.tile = MAX2(0, GTS.tile); if (ima) { GTS.tileXRep = ima->xrep; GTS.tileYRep = ima->yrep; } /* if same image & tile, we're done */ if (compare && ima == GTS.curima && GTS.curtile == GTS.tile && GTS.tilemode == GTS.curtilemode && GTS.curtileXRep == GTS.tileXRep && GTS.curtileYRep == GTS.tileYRep) { return (ima != NULL); } /* check if we have a valid image */ if (ima == NULL || ima->ok == 0) return 0; /* check if we have a valid image buffer */ ImBuf *ibuf = BKE_image_acquire_ibuf(ima, iuser, NULL); if (ibuf == NULL) return 0; if (ibuf->rect_float) { if (U.use_16bit_textures) { /* use high precision textures. This is relatively harmless because OpenGL gives us * a high precision format only if it is available */ use_high_bit_depth = true; } else if (ibuf->rect == NULL) { IMB_rect_from_float(ibuf); } /* we may skip this in high precision, but if not, we need to have a valid buffer here */ else if (ibuf->userflags & IB_RECT_INVALID) { IMB_rect_from_float(ibuf); } /* TODO unneeded when float images are correctly treated as linear always */ if (!is_data) { do_color_management = true; } } /* currently, tpage refresh is used by ima sequences */ if (ima->tpageflag & IMA_TPAGE_REFRESH) { GPU_free_image(ima); ima->tpageflag &= ~IMA_TPAGE_REFRESH; } if (GTS.tilemode) { /* tiled mode */ if (ima->repbind == NULL) gpu_make_repbind(ima); if (GTS.tile >= ima->totbind) GTS.tile = 0; /* this happens when you change repeat buttons */ if (ima->repbind && textarget == GL_TEXTURE_2D) bind = &ima->repbind[GTS.tile]; else bind = gpu_get_image_bindcode(ima, textarget); if (*bind == 0) { short texwindx = ibuf->x / ima->xrep; short texwindy = ibuf->y / ima->yrep; if (GTS.tile >= ima->xrep * ima->yrep) GTS.tile = ima->xrep * ima->yrep - 1; short texwinsy = GTS.tile / ima->xrep; short texwinsx = GTS.tile - texwinsy * ima->xrep; texwinsx *= texwindx; texwinsy *= texwindy; tpx = texwindx; tpy = texwindy; if (use_high_bit_depth) { if (do_color_management) { srgb_frect = MEM_mallocN(ibuf->x * ibuf->y * sizeof(float) * 4, "floar_buf_col_cor"); gpu_verify_high_bit_srgb_buffer(srgb_frect, ibuf); frect = srgb_frect + (4 * (texwinsy * ibuf->x + texwinsx)); } else { frect = ibuf->rect_float + (ibuf->channels * (texwinsy * ibuf->x + texwinsx)); } } else { rect = ibuf->rect + texwinsy * ibuf->x + texwinsx; } } } else { /* regular image mode */ bind = gpu_get_image_bindcode(ima, textarget); if (*bind == 0) { tpx = ibuf->x; tpy = ibuf->y; rect = ibuf->rect; if (use_high_bit_depth) { if (do_color_management) { frect = srgb_frect = MEM_mallocN(ibuf->x * ibuf->y * sizeof(*srgb_frect) * 4, "floar_buf_col_cor"); gpu_verify_high_bit_srgb_buffer(srgb_frect, ibuf); } else frect = ibuf->rect_float; } } } if (*bind != 0) { /* enable opengl drawing with textures */ glBindTexture(textarget, *bind); BKE_image_release_ibuf(ima, ibuf, NULL); return *bind; } const int rectw = tpx; const int recth = tpy; unsigned *tilerect = NULL; float *ftilerect = NULL; /* for tiles, copy only part of image into buffer */ if (GTS.tilemode) { if (use_high_bit_depth) { ftilerect = MEM_mallocN(rectw * recth * sizeof(*ftilerect), "tilerect"); for (int y = 0; y < recth; y++) { const float *frectrow = &frect[y * ibuf->x]; float *ftilerectrow = &ftilerect[y * rectw]; memcpy(ftilerectrow, frectrow, tpx * sizeof(*frectrow)); } frect = ftilerect; } else { tilerect = MEM_mallocN(rectw * recth * sizeof(*tilerect), "tilerect"); for (int y = 0; y < recth; y++) { const unsigned *rectrow = &rect[y * ibuf->x]; unsigned *tilerectrow = &tilerect[y * rectw]; memcpy(tilerectrow, rectrow, tpx * sizeof(*rectrow)); } rect = tilerect; } } #ifdef WITH_DDS if (ibuf->ftype == IMB_FTYPE_DDS) GPU_create_gl_tex_compressed(bind, rect, rectw, recth, textarget, mipmap, ima, ibuf); else #endif GPU_create_gl_tex(bind, rect, frect, rectw, recth, textarget, mipmap, use_high_bit_depth, ima); /* mark as non-color data texture */ if (*bind) { if (is_data) ima->tpageflag |= IMA_GLBIND_IS_DATA; else ima->tpageflag &= ~IMA_GLBIND_IS_DATA; } /* clean up */ if (tilerect) MEM_freeN(tilerect); if (ftilerect) MEM_freeN(ftilerect); if (srgb_frect) MEM_freeN(srgb_frect); BKE_image_release_ibuf(ima, ibuf, NULL); return *bind; } static void **gpu_gen_cube_map(unsigned int *rect, float *frect, int rectw, int recth, bool use_high_bit_depth) { size_t block_size = use_high_bit_depth ? sizeof(float) * 4 : sizeof(unsigned char) * 4; void **sides = NULL; int h = recth / 2; int w = rectw / 3; if ((use_high_bit_depth && frect == NULL) || (!use_high_bit_depth && rect == NULL) || w != h) return sides; /* PosX, NegX, PosY, NegY, PosZ, NegZ */ sides = MEM_mallocN(sizeof(void *) * 6, ""); for (int i = 0; i < 6; i++) sides[i] = MEM_mallocN(block_size * w * h, ""); /* divide image into six parts */ /* ______________________ * | | | | * | NegX | NegY | PosX | * |______|______|______| * | | | | * | NegZ | PosZ | PosY | * |______|______|______| */ if (use_high_bit_depth) { float (*frectb)[4] = (float(*)[4])frect; float (**fsides)[4] = (float(**)[4])sides; for (int y = 0; y < h; y++) { for (int x = 0; x < w; x++) { memcpy(&fsides[0][x * h + y], &frectb[(recth - y - 1) * rectw + 2 * w + x], block_size); memcpy(&fsides[1][x * h + y], &frectb[(y + h) * rectw + w - 1 - x], block_size); memcpy(&fsides[3][y * w + x], &frectb[(recth - y - 1) * rectw + 2 * w - 1 - x], block_size); memcpy(&fsides[5][y * w + x], &frectb[(h - y - 1) * rectw + w - 1 - x], block_size); } memcpy(&fsides[2][y * w], frectb[y * rectw + 2 * w], block_size * w); memcpy(&fsides[4][y * w], frectb[y * rectw + w], block_size * w); } } else { unsigned int **isides = (unsigned int **)sides; for (int y = 0; y < h; y++) { for (int x = 0; x < w; x++) { isides[0][x * h + y] = rect[(recth - y - 1) * rectw + 2 * w + x]; isides[1][x * h + y] = rect[(y + h) * rectw + w - 1 - x]; isides[3][y * w + x] = rect[(recth - y - 1) * rectw + 2 * w - 1 - x]; isides[5][y * w + x] = rect[(h - y - 1) * rectw + w - 1 - x]; } memcpy(&isides[2][y * w], &rect[y * rectw + 2 * w], block_size * w); memcpy(&isides[4][y * w], &rect[y * rectw + w], block_size * w); } } return sides; } static void gpu_del_cube_map(void **cube_map) { int i; if (cube_map == NULL) return; for (i = 0; i < 6; i++) MEM_freeN(cube_map[i]); MEM_freeN(cube_map); } /* Image *ima can be NULL */ void GPU_create_gl_tex( unsigned int *bind, unsigned int *rect, float *frect, int rectw, int recth, int textarget, bool mipmap, bool use_high_bit_depth, Image *ima) { ImBuf *ibuf = NULL; int tpx = rectw; int tpy = recth; /* create image */ glGenTextures(1, (GLuint *)bind); glBindTexture(textarget, *bind); if (textarget == GL_TEXTURE_2D) { if (use_high_bit_depth) { if (GLEW_ARB_texture_float) glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16F_ARB, rectw, recth, 0, GL_RGBA, GL_FLOAT, frect); else glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16, rectw, recth, 0, GL_RGBA, GL_FLOAT, frect); } else glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, rectw, recth, 0, GL_RGBA, GL_UNSIGNED_BYTE, rect); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gpu_get_mipmap_filter(1)); if (GPU_get_mipmap() && mipmap) { if (GTS.gpu_mipmap) { glGenerateMipmap(GL_TEXTURE_2D); } else { int i; if (!ibuf) { if (use_high_bit_depth) { ibuf = IMB_allocFromBuffer(NULL, frect, tpx, tpy); } else { ibuf = IMB_allocFromBuffer(rect, NULL, tpx, tpy); } } IMB_makemipmap(ibuf, true); for (i = 1; i < ibuf->miptot; i++) { ImBuf *mip = ibuf->mipmap[i - 1]; if (use_high_bit_depth) { if (GLEW_ARB_texture_float) glTexImage2D(GL_TEXTURE_2D, i, GL_RGBA16F_ARB, mip->x, mip->y, 0, GL_RGBA, GL_FLOAT, mip->rect_float); else glTexImage2D(GL_TEXTURE_2D, i, GL_RGBA16, mip->x, mip->y, 0, GL_RGBA, GL_FLOAT, mip->rect_float); } else { glTexImage2D(GL_TEXTURE_2D, i, GL_RGBA8, mip->x, mip->y, 0, GL_RGBA, GL_UNSIGNED_BYTE, mip->rect); } } } glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gpu_get_mipmap_filter(0)); if (ima) ima->tpageflag |= IMA_MIPMAP_COMPLETE; } else { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); } } else if (textarget == GL_TEXTURE_CUBE_MAP) { int w = rectw / 3, h = recth / 2; if (h == w && is_power_of_2_i(h) && !is_over_resolution_limit(textarget, h, w)) { void **cube_map = gpu_gen_cube_map(rect, frect, rectw, recth, use_high_bit_depth); GLenum informat = use_high_bit_depth ? (GLEW_ARB_texture_float ? GL_RGBA16F_ARB : GL_RGBA16) : GL_RGBA8; GLenum type = use_high_bit_depth ? GL_FLOAT : GL_UNSIGNED_BYTE; if (cube_map) for (int i = 0; i < 6; i++) glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, informat, w, h, 0, GL_RGBA, type, cube_map[i]); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, gpu_get_mipmap_filter(1)); if (GPU_get_mipmap() && mipmap) { if (GTS.gpu_mipmap) { glGenerateMipmap(GL_TEXTURE_CUBE_MAP); } else { if (!ibuf) { if (use_high_bit_depth) { ibuf = IMB_allocFromBuffer(NULL, frect, tpx, tpy); } else { ibuf = IMB_allocFromBuffer(rect, NULL, tpx, tpy); } } IMB_makemipmap(ibuf, true); for (int i = 1; i < ibuf->miptot; i++) { ImBuf *mip = ibuf->mipmap[i - 1]; void **mip_cube_map = gpu_gen_cube_map( mip->rect, mip->rect_float, mip->x, mip->y, use_high_bit_depth); int mipw = mip->x / 3, miph = mip->y / 2; if (mip_cube_map) { for (int j = 0; j < 6; j++) { glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + j, i, informat, mipw, miph, 0, GL_RGBA, type, mip_cube_map[j]); } } gpu_del_cube_map(mip_cube_map); } } glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, gpu_get_mipmap_filter(0)); if (ima) ima->tpageflag |= IMA_MIPMAP_COMPLETE; } else { glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR); } glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE); gpu_del_cube_map(cube_map); } else { printf("Incorrect envmap size\n"); } } if (GLEW_EXT_texture_filter_anisotropic) glTexParameterf(textarget, GL_TEXTURE_MAX_ANISOTROPY_EXT, GPU_get_anisotropic()); if (ibuf) IMB_freeImBuf(ibuf); } /** * GPU_upload_dxt_texture() assumes that the texture is already bound and ready to go. * This is so the viewport and the BGE can share some code. * Returns false if the provided ImBuf doesn't have a supported DXT compression format */ bool GPU_upload_dxt_texture(ImBuf *ibuf) { #ifdef WITH_DDS GLint format = 0; int blocksize, height, width, i, size, offset = 0; width = ibuf->x; height = ibuf->y; if (GLEW_EXT_texture_compression_s3tc) { if (ibuf->dds_data.fourcc == FOURCC_DXT1) format = GL_COMPRESSED_RGBA_S3TC_DXT1_EXT; else if (ibuf->dds_data.fourcc == FOURCC_DXT3) format = GL_COMPRESSED_RGBA_S3TC_DXT3_EXT; else if (ibuf->dds_data.fourcc == FOURCC_DXT5) format = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT; } if (format == 0) { fprintf(stderr, "Unable to find a suitable DXT compression, falling back to uncompressed\n"); return false; } if (!is_power_of_2_resolution(width, height)) { fprintf(stderr, "Unable to load non-power-of-two DXT image resolution, falling back to uncompressed\n"); return false; } glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gpu_get_mipmap_filter(0)); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gpu_get_mipmap_filter(1)); if (GLEW_EXT_texture_filter_anisotropic) glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, GPU_get_anisotropic()); blocksize = (ibuf->dds_data.fourcc == FOURCC_DXT1) ? 8 : 16; for (i = 0; i < ibuf->dds_data.nummipmaps && (width || height); ++i) { if (width == 0) width = 1; if (height == 0) height = 1; size = ((width + 3) / 4) * ((height + 3) / 4) * blocksize; glCompressedTexImage2D(GL_TEXTURE_2D, i, format, width, height, 0, size, ibuf->dds_data.data + offset); offset += size; width >>= 1; height >>= 1; } /* set number of mipmap levels we have, needed in case they don't go down to 1x1 */ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, i - 1); return true; #else (void)ibuf; return false; #endif } void GPU_create_gl_tex_compressed( unsigned int *bind, unsigned int *pix, int x, int y, int textarget, int mipmap, Image *ima, ImBuf *ibuf) { #ifndef WITH_DDS (void)ibuf; /* Fall back to uncompressed if DDS isn't enabled */ GPU_create_gl_tex(bind, pix, NULL, x, y, textarget, mipmap, 0, ima); #else glGenTextures(1, (GLuint *)bind); glBindTexture(textarget, *bind); if (textarget == GL_TEXTURE_2D && GPU_upload_dxt_texture(ibuf) == 0) { glDeleteTextures(1, (GLuint *)bind); GPU_create_gl_tex(bind, pix, NULL, x, y, textarget, mipmap, 0, ima); } #endif } /* these two functions are called on entering and exiting texture paint mode, * temporary disabling/enabling mipmapping on all images for quick texture * updates with glTexSubImage2D. images that didn't change don't have to be * re-uploaded to OpenGL */ void GPU_paint_set_mipmap(bool mipmap) { if (!GTS.domipmap) return; GTS.texpaint = !mipmap; if (mipmap) { for (Image *ima = G.main->image.first; ima; ima = ima->id.next) { if (BKE_image_has_bindcode(ima)) { if (ima->tpageflag & IMA_MIPMAP_COMPLETE) { if (ima->bindcode[TEXTARGET_TEXTURE_2D]) { glBindTexture(GL_TEXTURE_2D, ima->bindcode[TEXTARGET_TEXTURE_2D]); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gpu_get_mipmap_filter(0)); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gpu_get_mipmap_filter(1)); } if (ima->bindcode[TEXTARGET_TEXTURE_CUBE_MAP]) { glBindTexture(GL_TEXTURE_CUBE_MAP, ima->bindcode[TEXTARGET_TEXTURE_CUBE_MAP]); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, gpu_get_mipmap_filter(0)); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, gpu_get_mipmap_filter(1)); } } else GPU_free_image(ima); } else ima->tpageflag &= ~IMA_MIPMAP_COMPLETE; } } else { for (Image *ima = G.main->image.first; ima; ima = ima->id.next) { if (BKE_image_has_bindcode(ima)) { if (ima->bindcode[TEXTARGET_TEXTURE_2D]) { glBindTexture(GL_TEXTURE_2D, ima->bindcode[TEXTARGET_TEXTURE_2D]); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gpu_get_mipmap_filter(1)); } if (ima->bindcode[TEXTARGET_TEXTURE_CUBE_MAP]) { glBindTexture(GL_TEXTURE_CUBE_MAP, ima->bindcode[TEXTARGET_TEXTURE_CUBE_MAP]); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, gpu_get_mipmap_filter(1)); } } else ima->tpageflag &= ~IMA_MIPMAP_COMPLETE; } } } /* check if image has been downscaled and do scaled partial update */ static bool gpu_check_scaled_image(ImBuf *ibuf, Image *ima, float *frect, int x, int y, int w, int h) { if (is_over_resolution_limit(GL_TEXTURE_2D, ibuf->x, ibuf->y)) { int x_limit = smaller_power_of_2_limit(ibuf->x); int y_limit = smaller_power_of_2_limit(ibuf->y); float xratio = x_limit / (float)ibuf->x; float yratio = y_limit / (float)ibuf->y; /* find new width, height and x,y gpu texture coordinates */ /* take ceiling because we will be losing 1 pixel due to rounding errors in x,y... */ int rectw = (int)ceil(xratio * w); int recth = (int)ceil(yratio * h); x *= xratio; y *= yratio; /* ...but take back if we are over the limit! */ if (rectw + x > x_limit) rectw--; if (recth + y > y_limit) recth--; /* float rectangles are already continuous in memory so we can use IMB_scaleImBuf */ if (frect) { ImBuf *ibuf_scale = IMB_allocFromBuffer(NULL, frect, w, h); IMB_scaleImBuf(ibuf_scale, rectw, recth); glBindTexture(GL_TEXTURE_2D, ima->bindcode[TEXTARGET_TEXTURE_2D]); glTexSubImage2D(GL_TEXTURE_2D, 0, x, y, rectw, recth, GL_RGBA, GL_FLOAT, ibuf_scale->rect_float); IMB_freeImBuf(ibuf_scale); } /* byte images are not continuous in memory so do manual interpolation */ else { unsigned char *scalerect = MEM_mallocN(rectw * recth * sizeof(*scalerect) * 4, "scalerect"); unsigned int *p = (unsigned int *)scalerect; int i, j; float inv_xratio = 1.0f / xratio; float inv_yratio = 1.0f / yratio; for (i = 0; i < rectw; i++) { float u = (x + i) * inv_xratio; for (j = 0; j < recth; j++) { float v = (y + j) * inv_yratio; bilinear_interpolation_color_wrap(ibuf, (unsigned char *)(p + i + j * (rectw)), NULL, u, v); } } glBindTexture(GL_TEXTURE_2D, ima->bindcode[TEXTARGET_TEXTURE_2D]); glTexSubImage2D(GL_TEXTURE_2D, 0, x, y, rectw, recth, GL_RGBA, GL_UNSIGNED_BYTE, scalerect); MEM_freeN(scalerect); } if (GPU_get_mipmap()) { glGenerateMipmap(GL_TEXTURE_2D); } else { ima->tpageflag &= ~IMA_MIPMAP_COMPLETE; } return true; } return false; } void GPU_paint_update_image(Image *ima, ImageUser *iuser, int x, int y, int w, int h) { ImBuf *ibuf = BKE_image_acquire_ibuf(ima, iuser, NULL); if (ima->repbind || (!GTS.gpu_mipmap && GPU_get_mipmap()) || (ima->bindcode[TEXTARGET_TEXTURE_2D] == 0) || (ibuf == NULL) || (w == 0) || (h == 0)) { /* these cases require full reload still */ GPU_free_image(ima); } else { /* for the special case, we can do a partial update * which is much quicker for painting */ GLint row_length, skip_pixels, skip_rows; /* if color correction is needed, we must update the part that needs updating. */ if (ibuf->rect_float) { float *buffer = MEM_mallocN(w * h * sizeof(float) * 4, "temp_texpaint_float_buf"); bool is_data = (ima->tpageflag & IMA_GLBIND_IS_DATA) != 0; IMB_partial_rect_from_float(ibuf, buffer, x, y, w, h, is_data); if (gpu_check_scaled_image(ibuf, ima, buffer, x, y, w, h)) { MEM_freeN(buffer); BKE_image_release_ibuf(ima, ibuf, NULL); return; } glBindTexture(GL_TEXTURE_2D, ima->bindcode[TEXTARGET_TEXTURE_2D]); glTexSubImage2D(GL_TEXTURE_2D, 0, x, y, w, h, GL_RGBA, GL_FLOAT, buffer); MEM_freeN(buffer); /* we have already accounted for the case where GTS.gpu_mipmap is false * so we will be using GPU mipmap generation here */ if (GPU_get_mipmap()) { glGenerateMipmap(GL_TEXTURE_2D); } else { ima->tpageflag &= ~IMA_MIPMAP_COMPLETE; } BKE_image_release_ibuf(ima, ibuf, NULL); return; } if (gpu_check_scaled_image(ibuf, ima, NULL, x, y, w, h)) { BKE_image_release_ibuf(ima, ibuf, NULL); return; } glBindTexture(GL_TEXTURE_2D, ima->bindcode[TEXTARGET_TEXTURE_2D]); glGetIntegerv(GL_UNPACK_ROW_LENGTH, &row_length); glGetIntegerv(GL_UNPACK_SKIP_PIXELS, &skip_pixels); glGetIntegerv(GL_UNPACK_SKIP_ROWS, &skip_rows); glPixelStorei(GL_UNPACK_ROW_LENGTH, ibuf->x); glPixelStorei(GL_UNPACK_SKIP_PIXELS, x); glPixelStorei(GL_UNPACK_SKIP_ROWS, y); glTexSubImage2D(GL_TEXTURE_2D, 0, x, y, w, h, GL_RGBA, GL_UNSIGNED_BYTE, ibuf->rect); glPixelStorei(GL_UNPACK_ROW_LENGTH, row_length); glPixelStorei(GL_UNPACK_SKIP_PIXELS, skip_pixels); glPixelStorei(GL_UNPACK_SKIP_ROWS, skip_rows); /* see comment above as to why we are using gpu mipmap generation here */ if (GPU_get_mipmap()) { glGenerateMipmap(GL_TEXTURE_2D); } else { ima->tpageflag &= ~IMA_MIPMAP_COMPLETE; } } BKE_image_release_ibuf(ima, ibuf, NULL); } void GPU_update_images_framechange(void) { for (Image *ima = G.main->image.first; ima; ima = ima->id.next) { if (ima->tpageflag & IMA_TWINANIM) { if (ima->twend >= ima->xrep * ima->yrep) ima->twend = ima->xrep * ima->yrep - 1; /* check: is bindcode not in the array? free. (to do) */ ima->lastframe++; if (ima->lastframe > ima->twend) ima->lastframe = ima->twsta; } } } int GPU_update_image_time(Image *ima, double time) { if (!ima) return 0; if (ima->lastupdate < 0) ima->lastupdate = 0; if (ima->lastupdate > (float)time) ima->lastupdate = (float)time; int inc = 0; if (ima->tpageflag & IMA_TWINANIM) { if (ima->twend >= ima->xrep * ima->yrep) ima->twend = ima->xrep * ima->yrep - 1; /* check: is the bindcode not in the array? Then free. (still to do) */ float diff = (float)((float)time - ima->lastupdate); inc = (int)(diff * (float)ima->animspeed); ima->lastupdate += ((float)inc / (float)ima->animspeed); int newframe = ima->lastframe + inc; if (newframe > (int)ima->twend) { if (ima->twend - ima->twsta != 0) newframe = (int)ima->twsta - 1 + (newframe - ima->twend) % (ima->twend - ima->twsta); else newframe = ima->twsta; } ima->lastframe = newframe; } return inc; } void GPU_free_smoke(SmokeModifierData *smd) { if (smd->type & MOD_SMOKE_TYPE_DOMAIN && smd->domain) { if (smd->domain->tex) GPU_texture_free(smd->domain->tex); smd->domain->tex = NULL; if (smd->domain->tex_shadow) GPU_texture_free(smd->domain->tex_shadow); smd->domain->tex_shadow = NULL; if (smd->domain->tex_flame) GPU_texture_free(smd->domain->tex_flame); smd->domain->tex_flame = NULL; } } void GPU_create_smoke(SmokeModifierData *smd, int highres) { #ifdef WITH_SMOKE if (smd->type & MOD_SMOKE_TYPE_DOMAIN) { SmokeDomainSettings *sds = smd->domain; if (!sds->tex && !highres) { /* rgba texture for color + density */ if (smoke_has_colors(sds->fluid)) { float *data = MEM_callocN(sizeof(float) * sds->total_cells * 4, "smokeColorTexture"); smoke_get_rgba(sds->fluid, data, 0); sds->tex = GPU_texture_create_3D(sds->res[0], sds->res[1], sds->res[2], data, NULL); MEM_freeN(data); } /* density only */ else { sds->tex = GPU_texture_create_3D_custom(sds->res[0], sds->res[1], sds->res[2], 1, GPU_R8, smoke_get_density(sds->fluid), NULL); /* Swizzle the RGBA components to read the Red channel so * that the shader stay the same for colored and non color * density textures. */ GPU_texture_bind(sds->tex, 0); glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_SWIZZLE_R, GL_RED); glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_SWIZZLE_G, GL_RED); glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_SWIZZLE_B, GL_RED); glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_SWIZZLE_A, GL_RED); GPU_texture_unbind(sds->tex); } sds->tex_flame = (smoke_has_fuel(sds->fluid)) ? GPU_texture_create_3D_custom(sds->res[0], sds->res[1], sds->res[2], 1, GPU_R8, smoke_get_flame(sds->fluid), NULL) : NULL; } else if (!sds->tex && highres) { /* rgba texture for color + density */ if (smoke_turbulence_has_colors(sds->wt)) { float *data = MEM_callocN(sizeof(float) * smoke_turbulence_get_cells(sds->wt) * 4, "smokeColorTexture"); smoke_turbulence_get_rgba(sds->wt, data, 0); sds->tex = GPU_texture_create_3D(sds->res_wt[0], sds->res_wt[1], sds->res_wt[2], data, NULL); MEM_freeN(data); } /* density only */ else { sds->tex = GPU_texture_create_3D_custom(sds->res_wt[0], sds->res_wt[1], sds->res_wt[2], 1, GPU_R8, smoke_turbulence_get_density(sds->wt), NULL); /* Swizzle the RGBA components to read the Red channel so * that the shader stay the same for colored and non color * density textures. */ GPU_texture_bind(sds->tex, 0); glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_SWIZZLE_R, GL_RED); glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_SWIZZLE_G, GL_RED); glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_SWIZZLE_B, GL_RED); glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_SWIZZLE_A, GL_RED); GPU_texture_unbind(sds->tex); } sds->tex_flame = (smoke_turbulence_has_fuel(sds->wt)) ? GPU_texture_create_3D_custom(sds->res_wt[0], sds->res_wt[1], sds->res_wt[2], 1, GPU_R8, smoke_turbulence_get_flame(sds->wt), NULL) : NULL; } sds->tex_shadow = GPU_texture_create_3D_custom(sds->res[0], sds->res[1], sds->res[2], 1, GPU_R8, sds->shadow, NULL); } #else // WITH_SMOKE (void)highres; smd->domain->tex = NULL; smd->domain->tex_flame = NULL; smd->domain->tex_shadow = NULL; #endif // WITH_SMOKE } static LinkNode *image_free_queue = NULL; static void gpu_queue_image_for_free(Image *ima) { BLI_thread_lock(LOCK_OPENGL); BLI_linklist_prepend(&image_free_queue, ima); BLI_thread_unlock(LOCK_OPENGL); } void GPU_free_unused_buffers(void) { if (!BLI_thread_is_main()) return; BLI_thread_lock(LOCK_OPENGL); /* images */ for (LinkNode *node = image_free_queue; node; node = node->next) { Image *ima = node->link; /* check in case it was freed in the meantime */ if (G.main && BLI_findindex(&G.main->image, ima) != -1) GPU_free_image(ima); } BLI_linklist_free(image_free_queue, NULL); image_free_queue = NULL; /* vbo buffers */ GPU_global_buffer_pool_free_unused(); BLI_thread_unlock(LOCK_OPENGL); } void GPU_free_image(Image *ima) { if (!BLI_thread_is_main()) { gpu_queue_image_for_free(ima); return; } for (int i = 0; i < TEXTARGET_COUNT; i++) { /* free regular image binding */ if (ima->bindcode[i]) { glDeleteTextures(1, (GLuint *)&ima->bindcode[i]); ima->bindcode[i] = 0; } /* free glsl image binding */ if (ima->gputexture[i]) { GPU_texture_free(ima->gputexture[i]); ima->gputexture[i] = NULL; } } /* free repeated image binding */ if (ima->repbind) { glDeleteTextures(ima->totbind, (GLuint *)ima->repbind); MEM_freeN(ima->repbind); ima->repbind = NULL; } ima->tpageflag &= ~(IMA_MIPMAP_COMPLETE | IMA_GLBIND_IS_DATA); } void GPU_free_images(void) { if (G.main) for (Image *ima = G.main->image.first; ima; ima = ima->id.next) GPU_free_image(ima); } /* same as above but only free animated images */ void GPU_free_images_anim(void) { if (G.main) for (Image *ima = G.main->image.first; ima; ima = ima->id.next) if (BKE_image_is_animated(ima)) GPU_free_image(ima); } void GPU_free_images_old(void) { static int lasttime = 0; int ctime = (int)PIL_check_seconds_timer(); /* * Run garbage collector once for every collecting period of time * if textimeout is 0, that's the option to NOT run the collector */ if (U.textimeout == 0 || ctime % U.texcollectrate || ctime == lasttime) return; /* of course not! */ if (G.is_rendering) return; lasttime = ctime; Image *ima = G.main->image.first; while (ima) { if ((ima->flag & IMA_NOCOLLECT) == 0 && ctime - ima->lastused > U.textimeout) { /* If it's in GL memory, deallocate and set time tag to current time * This gives textures a "second chance" to be used before dying. */ if (BKE_image_has_bindcode(ima) || ima->repbind) { GPU_free_image(ima); ima->lastused = ctime; } /* Otherwise, just kill the buffers */ else { BKE_image_free_buffers(ima); } } ima = ima->id.next; } } /* OpenGL Materials */ #define FIXEDMAT 8 /* OpenGL state caching for materials */ typedef struct GPUMaterialFixed { float diff[3]; float spec[3]; int hard; float alpha; } GPUMaterialFixed; static struct GPUMaterialState { GPUMaterialFixed (*matbuf); GPUMaterialFixed matbuf_fixed[FIXEDMAT]; int totmat; /* set when called inside GPU_begin_object_materials / GPU_end_object_materials * otherwise calling GPU_object_material_bind returns zero */ bool is_enabled; Material **gmatbuf; Material *gmatbuf_fixed[FIXEDMAT]; Material *gboundmat; Object *gob; eObjectMode gob_object_mode; DupliObject *dob; Scene *gscene; int glay; float (*gviewmat)[4]; float (*gviewinv)[4]; float (*gviewcamtexcofac); bool backface_culling; bool two_sided_lighting; GPUBlendMode *alphablend; GPUBlendMode alphablend_fixed[FIXEDMAT]; bool use_alpha_pass, is_alpha_pass; bool use_matcaps; int lastmatnr, lastretval; GPUBlendMode lastalphablend; bool is_opensubdiv; } GMS = {NULL}; /* fixed function material, alpha handed by caller */ static void gpu_material_to_fixed( GPUMaterialFixed *smat, const Material *bmat, const int gamma, const Object *ob, const int new_shading_nodes, const bool dimdown) { if (bmat->mode & MA_SHLESS) { copy_v3_v3(smat->diff, &bmat->r); if (gamma) linearrgb_to_srgb_v3_v3(smat->diff, smat->diff); zero_v3(smat->spec); smat->alpha = 1.0f; smat->hard = 0; } else if (new_shading_nodes) { copy_v3_v3(smat->diff, &bmat->r); copy_v3_v3(smat->spec, &bmat->specr); smat->alpha = 1.0f; smat->hard = CLAMPIS(bmat->har, 0, 128); if (dimdown) { mul_v3_fl(smat->diff, 0.8f); mul_v3_fl(smat->spec, 0.5f); } if (gamma) { linearrgb_to_srgb_v3_v3(smat->diff, smat->diff); linearrgb_to_srgb_v3_v3(smat->spec, smat->spec); } } else { mul_v3_v3fl(smat->diff, &bmat->r, bmat->ref + bmat->emit); if (bmat->shade_flag & MA_OBCOLOR) mul_v3_v3(smat->diff, ob->col); mul_v3_v3fl(smat->spec, &bmat->specr, bmat->spec); smat->hard = CLAMPIS(bmat->har, 1, 128); smat->alpha = 1.0f; if (gamma) { linearrgb_to_srgb_v3_v3(smat->diff, smat->diff); linearrgb_to_srgb_v3_v3(smat->spec, smat->spec); } } } static Material *gpu_active_node_material(Material *ma) { if (ma && ma->use_nodes && ma->nodetree) { bNode *node = nodeGetActiveID(ma->nodetree, ID_MA); if (node) return (Material *)node->id; else return NULL; } return ma; } void GPU_begin_dupli_object(DupliObject *dob) { GMS.dob = dob; } void GPU_end_dupli_object(void) { GMS.dob = NULL; } void GPU_begin_object_materials( View3D *v3d, RegionView3D *rv3d, Scene *scene, ViewLayer *view_layer, Object *ob, bool glsl, const eObjectMode object_mode, bool *do_alpha_after) { Material *ma; GPUMaterial *gpumat; GPUBlendMode alphablend; DupliObject *dob; int a; const bool gamma = BKE_scene_check_color_management_enabled(scene); const bool new_shading_nodes = BKE_scene_use_new_shading_nodes(scene); const bool use_matcap = (v3d->flag2 & V3D_SHOW_SOLID_MATCAP) != 0; /* assumes v3d->defmaterial->preview is set */ bool use_opensubdiv = false; #ifdef WITH_OPENSUBDIV { DerivedMesh *derivedFinal = NULL; if (ob->type == OB_MESH) { Mesh *me = ob->data; BMEditMesh *em = me->edit_btmesh; if (em != NULL) { derivedFinal = em->derivedFinal; } else { derivedFinal = ob->derivedFinal; } } else { derivedFinal = ob->derivedFinal; } if (derivedFinal != NULL && derivedFinal->type == DM_TYPE_CCGDM) { CCGDerivedMesh *ccgdm = (CCGDerivedMesh *) derivedFinal; use_opensubdiv = ccgdm->useGpuBackend; } } #endif #ifdef WITH_GAMEENGINE if (rv3d->rflag & RV3D_IS_GAME_ENGINE) { ob = BKE_object_lod_matob_get(ob, view_layer, object_mode); } #else UNUSED_VARS(view_layer); #endif /* initialize state */ /* DupliObject must be restored */ dob = GMS.dob; memset(&GMS, 0, sizeof(GMS)); GMS.is_enabled = true; GMS.dob = dob; GMS.lastmatnr = -1; GMS.lastretval = -1; GMS.lastalphablend = GPU_BLEND_SOLID; GMS.use_matcaps = use_matcap; GMS.backface_culling = (v3d->flag2 & V3D_BACKFACE_CULLING) != 0; GMS.two_sided_lighting = false; if (ob && ob->type == OB_MESH) GMS.two_sided_lighting = (((Mesh *)ob->data)->flag & ME_TWOSIDED) != 0; GMS.gob = ob; GMS.gob_object_mode = object_mode; GMS.gscene = scene; GMS.is_opensubdiv = use_opensubdiv; GMS.totmat = use_matcap ? 1 : ob->totcol + 1; /* materials start from 1, default material is 0 */ GMS.glay = (v3d->localvd) ? v3d->localvd->lay : v3d->lay; /* keep lamps visible in local view */ GMS.gviewmat = rv3d->viewmat; GMS.gviewinv = rv3d->viewinv; GMS.gviewcamtexcofac = rv3d->viewcamtexcofac; /* alpha pass setup. there's various cases to handle here: * - object transparency on: only solid materials draw in the first pass, * and only transparent in the second 'alpha' pass. * - object transparency off: for glsl we draw both in a single pass, and * for solid we don't use transparency at all. */ GMS.use_alpha_pass = (do_alpha_after != NULL); GMS.is_alpha_pass = (v3d->transp != false); if (GMS.use_alpha_pass) *do_alpha_after = false; if (GMS.totmat > FIXEDMAT) { GMS.matbuf = MEM_callocN(sizeof(GPUMaterialFixed) * GMS.totmat, "GMS.matbuf"); GMS.gmatbuf = MEM_callocN(sizeof(*GMS.gmatbuf) * GMS.totmat, "GMS.matbuf"); GMS.alphablend = MEM_callocN(sizeof(*GMS.alphablend) * GMS.totmat, "GMS.matbuf"); } else { GMS.matbuf = GMS.matbuf_fixed; GMS.gmatbuf = GMS.gmatbuf_fixed; GMS.alphablend = GMS.alphablend_fixed; } /* viewport material, setup in space_view3d, defaults to matcap using ma->preview now */ if (use_matcap) { GMS.gmatbuf[0] = v3d->defmaterial; GPU_material_matcap(scene, v3d->defmaterial, use_opensubdiv); /* do material 1 too, for displists! */ memcpy(&GMS.matbuf[1], &GMS.matbuf[0], sizeof(GPUMaterialFixed)); GMS.alphablend[0] = GPU_BLEND_SOLID; } else { /* no materials assigned? */ if (ob->totcol == 0) { gpu_material_to_fixed(&GMS.matbuf[0], &defmaterial, 0, ob, new_shading_nodes, true); /* do material 1 too, for displists! */ memcpy(&GMS.matbuf[1], &GMS.matbuf[0], sizeof(GPUMaterialFixed)); if (glsl) { GMS.gmatbuf[0] = &defmaterial; GPU_material_from_blender(GMS.gscene, &defmaterial, GMS.is_opensubdiv); } GMS.alphablend[0] = GPU_BLEND_SOLID; } /* setup materials */ for (a = 1; a <= ob->totcol; a++) { /* find a suitable material */ ma = give_current_material(ob, a); if (!glsl && !new_shading_nodes) ma = gpu_active_node_material(ma); if (ma == NULL) ma = &defmaterial; /* create glsl material if requested */ gpumat = glsl ? GPU_material_from_blender(GMS.gscene, ma, GMS.is_opensubdiv) : NULL; if (gpumat) { /* do glsl only if creating it succeed, else fallback */ GMS.gmatbuf[a] = ma; alphablend = GPU_material_alpha_blend(gpumat, ob->col); } else { /* fixed function opengl materials */ gpu_material_to_fixed(&GMS.matbuf[a], ma, gamma, ob, new_shading_nodes, false); if (GMS.use_alpha_pass && ((ma->mode & MA_TRANSP) || (new_shading_nodes && ma->alpha != 1.0f))) { GMS.matbuf[a].alpha = ma->alpha; alphablend = (ma->alpha == 1.0f) ? GPU_BLEND_SOLID: GPU_BLEND_ALPHA; } else { GMS.matbuf[a].alpha = 1.0f; alphablend = GPU_BLEND_SOLID; } } /* setting 'do_alpha_after = true' indicates this object needs to be * drawn in a second alpha pass for improved blending */ if (do_alpha_after && !GMS.is_alpha_pass) if (ELEM(alphablend, GPU_BLEND_ALPHA, GPU_BLEND_ADD, GPU_BLEND_ALPHA_SORT)) *do_alpha_after = true; GMS.alphablend[a] = alphablend; } } /* let's start with a clean state */ GPU_object_material_unbind(); } static int gpu_get_particle_info(GPUParticleInfo *pi) { DupliObject *dob = GMS.dob; if (dob->particle_system) { int ind; if (dob->persistent_id[0] < dob->particle_system->totpart) ind = dob->persistent_id[0]; else { ind = dob->particle_system->child[dob->persistent_id[0] - dob->particle_system->totpart].parent; } if (ind >= 0) { ParticleData *p = &dob->particle_system->particles[ind]; pi->scalprops[0] = ind; pi->scalprops[1] = GMS.gscene->r.cfra - p->time; pi->scalprops[2] = p->lifetime; pi->scalprops[3] = p->size; copy_v3_v3(pi->location, p->state.co); pi->location[3] = BLI_hash_int_01(ind); copy_v3_v3(pi->velocity, p->state.vel); copy_v3_v3(pi->angular_velocity, p->state.ave); return 1; } else return 0; } else return 0; } static void GPU_get_object_info(float oi[3], Material *mat) { Object *ob = GMS.gob; oi[0] = ob->index; oi[1] = mat->index; unsigned int random; if (GMS.dob) { random = GMS.dob->random_id; } else { random = BLI_hash_int_2d(BLI_hash_string(GMS.gob->id.name + 2), 0); } oi[2] = random * (1.0f / (float)0xFFFFFFFF); } int GPU_object_material_bind(int nr, void *attribs) { GPUVertexAttribs *gattribs = attribs; /* no GPU_begin_object_materials, use default material */ if (!GMS.matbuf) { memset(&GMS, 0, sizeof(GMS)); float diffuse[3], specular[3]; mul_v3_v3fl(diffuse, &defmaterial.r, defmaterial.ref + defmaterial.emit); mul_v3_v3fl(specular, &defmaterial.specr, defmaterial.spec); GPU_basic_shader_colors(diffuse, specular, 35, 1.0f); if (GMS.two_sided_lighting) GPU_basic_shader_bind(GPU_SHADER_LIGHTING | GPU_SHADER_TWO_SIDED); else GPU_basic_shader_bind(GPU_SHADER_LIGHTING); return 0; } /* prevent index to use un-initialized array items */ if (nr >= GMS.totmat) nr = 0; if (gattribs) memset(gattribs, 0, sizeof(*gattribs)); /* keep current material */ if (nr == GMS.lastmatnr) return GMS.lastretval; /* unbind glsl material */ if (GMS.gboundmat) { if (GMS.is_alpha_pass) glDepthMask(0); GPU_material_unbind(GPU_material_from_blender(GMS.gscene, GMS.gboundmat, GMS.is_opensubdiv)); GMS.gboundmat = NULL; } /* draw materials with alpha in alpha pass */ GMS.lastmatnr = nr; GMS.lastretval = 1; if (GMS.use_alpha_pass) { GMS.lastretval = ELEM(GMS.alphablend[nr], GPU_BLEND_SOLID, GPU_BLEND_CLIP); if (GMS.is_alpha_pass) GMS.lastretval = !GMS.lastretval; } else GMS.lastretval = !GMS.is_alpha_pass; if (GMS.lastretval) { /* for alpha pass, use alpha blend */ GPUBlendMode alphablend = GMS.alphablend[nr]; if (gattribs && GMS.gmatbuf[nr]) { /* bind glsl material and get attributes */ Material *mat = GMS.gmatbuf[nr]; GPUParticleInfo partile_info; float object_info[3] = {0}; float auto_bump_scale; GPUMaterial *gpumat = GPU_material_from_blender(GMS.gscene, mat, GMS.is_opensubdiv); GPU_material_vertex_attributes(gpumat, gattribs); if (GMS.dob) { gpu_get_particle_info(&partile_info); } if ((GPU_get_material_builtins(gpumat) & GPU_OBJECT_INFO) != 0) { GPU_get_object_info(object_info, mat); } GPU_material_bind( gpumat, GMS.gob->lay, GMS.glay, 1.0, !(GMS.gob_object_mode & OB_MODE_TEXTURE_PAINT), GMS.gviewmat, GMS.gviewinv, GMS.gviewcamtexcofac); auto_bump_scale = GMS.gob->derivedFinal != NULL ? GMS.gob->derivedFinal->auto_bump_scale : 1.0f; GPU_material_bind_uniforms(gpumat, GMS.gob->obmat, GMS.gviewmat, GMS.gob->col, auto_bump_scale, &partile_info, object_info); GMS.gboundmat = mat; /* for glsl use alpha blend mode, unless it's set to solid and * we are already drawing in an alpha pass */ if (mat->game.alpha_blend != GPU_BLEND_SOLID) alphablend = mat->game.alpha_blend; if (GMS.is_alpha_pass) glDepthMask(1); if (GMS.backface_culling) { if (mat->game.flag) glEnable(GL_CULL_FACE); else glDisable(GL_CULL_FACE); } if (GMS.use_matcaps) glColor3f(1.0f, 1.0f, 1.0f); } else { /* or do fixed function opengl material */ GPU_basic_shader_colors( GMS.matbuf[nr].diff, GMS.matbuf[nr].spec, GMS.matbuf[nr].hard, GMS.matbuf[nr].alpha); if (GMS.two_sided_lighting) GPU_basic_shader_bind(GPU_SHADER_LIGHTING | GPU_SHADER_TWO_SIDED); else GPU_basic_shader_bind(GPU_SHADER_LIGHTING); } /* set (alpha) blending mode */ GPU_set_material_alpha_blend(alphablend); } return GMS.lastretval; } int GPU_object_material_visible(int nr, void *attribs) { GPUVertexAttribs *gattribs = attribs; int visible; if (!GMS.matbuf) return 0; if (gattribs) memset(gattribs, 0, sizeof(*gattribs)); if (nr >= GMS.totmat) nr = 0; if (GMS.use_alpha_pass) { visible = ELEM(GMS.alphablend[nr], GPU_BLEND_SOLID, GPU_BLEND_CLIP); if (GMS.is_alpha_pass) visible = !visible; } else visible = !GMS.is_alpha_pass; return visible; } void GPU_set_material_alpha_blend(int alphablend) { if (GMS.lastalphablend == alphablend) return; gpu_set_alpha_blend(alphablend); GMS.lastalphablend = alphablend; } int GPU_get_material_alpha_blend(void) { return GMS.lastalphablend; } void GPU_object_material_unbind(void) { GMS.lastmatnr = -1; GMS.lastretval = 1; if (GMS.gboundmat) { if (GMS.backface_culling) glDisable(GL_CULL_FACE); if (GMS.is_alpha_pass) glDepthMask(0); GPU_material_unbind(GPU_material_from_blender(GMS.gscene, GMS.gboundmat, GMS.is_opensubdiv)); GMS.gboundmat = NULL; } else GPU_basic_shader_bind(GPU_SHADER_USE_COLOR); GPU_set_material_alpha_blend(GPU_BLEND_SOLID); } void GPU_material_diffuse_get(int nr, float diff[4]) { /* prevent index to use un-initialized array items */ if (nr >= GMS.totmat) nr = 0; /* no GPU_begin_object_materials, use default material */ if (!GMS.matbuf) { mul_v3_v3fl(diff, &defmaterial.r, defmaterial.ref + defmaterial.emit); } else { copy_v3_v3(diff, GMS.matbuf[nr].diff); diff[3] = GMS.matbuf[nr].alpha; } } bool GPU_material_use_matcaps_get(void) { return GMS.use_matcaps; } bool GPU_object_materials_check(void) { return GMS.is_enabled; } void GPU_end_object_materials(void) { GPU_object_material_unbind(); GMS.is_enabled = false; if (GMS.matbuf && GMS.matbuf != GMS.matbuf_fixed) { MEM_freeN(GMS.matbuf); MEM_freeN(GMS.gmatbuf); MEM_freeN(GMS.alphablend); } GMS.matbuf = NULL; GMS.gmatbuf = NULL; GMS.alphablend = NULL; GMS.two_sided_lighting = false; } /* Lights */ int GPU_default_lights(void) { /* initialize */ if (U.light[0].flag == 0 && U.light[1].flag == 0 && U.light[2].flag == 0) { U.light[0].flag = 1; U.light[0].vec[0] = -0.3; U.light[0].vec[1] = 0.3; U.light[0].vec[2] = 0.9; U.light[0].col[0] = 0.8; U.light[0].col[1] = 0.8; U.light[0].col[2] = 0.8; U.light[0].spec[0] = 0.5; U.light[0].spec[1] = 0.5; U.light[0].spec[2] = 0.5; U.light[0].spec[3] = 1.0; U.light[1].flag = 0; U.light[1].vec[0] = 0.5; U.light[1].vec[1] = 0.5; U.light[1].vec[2] = 0.1; U.light[1].col[0] = 0.4; U.light[1].col[1] = 0.4; U.light[1].col[2] = 0.8; U.light[1].spec[0] = 0.3; U.light[1].spec[1] = 0.3; U.light[1].spec[2] = 0.5; U.light[1].spec[3] = 1.0; U.light[2].flag = 0; U.light[2].vec[0] = 0.3; U.light[2].vec[1] = -0.3; U.light[2].vec[2] = -0.2; U.light[2].col[0] = 0.8; U.light[2].col[1] = 0.5; U.light[2].col[2] = 0.4; U.light[2].spec[0] = 0.5; U.light[2].spec[1] = 0.4; U.light[2].spec[2] = 0.3; U.light[2].spec[3] = 1.0; } GPU_basic_shader_light_set_viewer(false); int count = 0; for (int a = 0; a < 8; a++) { if (a < 3 && U.light[a].flag) { GPULightData light = {0}; light.type = GPU_LIGHT_SUN; normalize_v3_v3(light.direction, U.light[a].vec); copy_v3_v3(light.diffuse, U.light[a].col); copy_v3_v3(light.specular, U.light[a].spec); GPU_basic_shader_light_set(a, &light); count++; } else GPU_basic_shader_light_set(a, NULL); } return count; } int GPU_scene_object_lights(ViewLayer *view_layer, float viewmat[4][4], int ortho) { /* disable all lights */ for (int count = 0; count < 8; count++) GPU_basic_shader_light_set(count, NULL); /* view direction for specular is not computed correct by default in * opengl, so we set the settings ourselves */ GPU_basic_shader_light_set_viewer(!ortho); int count = 0; for (Base *base = FIRSTBASE(view_layer); base; base = base->next) { if (base->object->type != OB_LAMP) continue; Lamp *la = base->object->data; /* setup lamp transform */ gpuPushMatrix(); gpuLoadMatrix(viewmat); /* setup light */ GPULightData light = {0}; mul_v3_v3fl(light.diffuse, &la->r, la->energy); mul_v3_v3fl(light.specular, &la->r, la->energy); if (la->type == LA_SUN) { /* directional sun light */ light.type = GPU_LIGHT_SUN; normalize_v3_v3(light.direction, base->object->obmat[2]); } else { /* other lamps with position attenuation */ copy_v3_v3(light.position, base->object->obmat[3]); light.constant_attenuation = 1.0f; light.linear_attenuation = la->att1 / la->dist; light.quadratic_attenuation = la->att2 / (la->dist * la->dist); if (la->type == LA_SPOT) { light.type = GPU_LIGHT_SPOT; negate_v3_v3(light.direction, base->object->obmat[2]); normalize_v3(light.direction); light.spot_cutoff = RAD2DEGF(la->spotsize * 0.5f); light.spot_exponent = 128.0f * la->spotblend; } else light.type = GPU_LIGHT_POINT; } GPU_basic_shader_light_set(count, &light); gpuPopMatrix(); count++; if (count == 8) break; } return count; } static void gpu_disable_multisample(void) { #ifdef __linux__ /* changing multisample from the default (enabled) causes problems on some * systems (NVIDIA/Linux) when the pixel format doesn't have a multisample buffer */ bool toggle_ok = true; if (GPU_type_matches(GPU_DEVICE_NVIDIA, GPU_OS_UNIX, GPU_DRIVER_ANY)) { int samples = 0; glGetIntegerv(GL_SAMPLES, &samples); if (samples == 0) toggle_ok = false; } if (toggle_ok) { glDisable(GL_MULTISAMPLE); } #else glDisable(GL_MULTISAMPLE); #endif } /* Default OpenGL State * * This is called on startup, for opengl offscreen render and to restore state * for the game engine. Generally we should always return to this state when * temporarily modifying the state for drawing, though that are (undocumented) * exceptions that we should try to get rid of. */ void GPU_state_init(void) { GPU_default_lights(); GPU_disable_program_point_size(); glEnable(GL_TEXTURE_CUBE_MAP_SEAMLESS); glDepthFunc(GL_LEQUAL); glDisable(GL_BLEND); glDisable(GL_DEPTH_TEST); glDisable(GL_COLOR_LOGIC_OP); glDisable(GL_STENCIL_TEST); glDepthRange(0.0, 1.0); glFrontFace(GL_CCW); glCullFace(GL_BACK); glDisable(GL_CULL_FACE); gpu_disable_multisample(); } void GPU_enable_program_point_size(void) { glEnable(GL_PROGRAM_POINT_SIZE); } void GPU_disable_program_point_size(void) { glDisable(GL_PROGRAM_POINT_SIZE); } #ifdef WITH_OPENSUBDIV /* Update face-varying variables offset which might be * different from mesh to mesh sharing the same material. */ void GPU_draw_update_fvar_offset(DerivedMesh *dm) { /* Sanity check to be sure we only do this for OpenSubdiv draw. */ BLI_assert(dm->type == DM_TYPE_CCGDM); BLI_assert(GMS.is_opensubdiv); for (int i = 0; i < GMS.totmat; ++i) { Material *material = GMS.gmatbuf[i]; GPUMaterial *gpu_material; if (material == NULL) { continue; } gpu_material = GPU_material_from_blender(GMS.gscene, material, GMS.is_opensubdiv); GPU_material_update_fvar_offset(gpu_material, dm); } } #endif /** \name Framebuffer color depth, for selection codes * \{ */ #ifdef __APPLE__ /* apple seems to round colors to below and up on some configs */ static unsigned int index_to_framebuffer(int index) { unsigned int i = index; switch (GPU_color_depth()) { case 12: i = ((i & 0xF00) << 12) + ((i & 0xF0) << 8) + ((i & 0xF) << 4); /* sometimes dithering subtracts! */ i |= 0x070707; break; case 15: case 16: i = ((i & 0x7C00) << 9) + ((i & 0x3E0) << 6) + ((i & 0x1F) << 3); i |= 0x030303; break; case 24: break; default: /* 18 bits... */ i = ((i & 0x3F000) << 6) + ((i & 0xFC0) << 4) + ((i & 0x3F) << 2); i |= 0x010101; break; } return i; } #else /* this is the old method as being in use for ages.... seems to work? colors are rounded to lower values */ static unsigned int index_to_framebuffer(int index) { unsigned int i = index; switch (GPU_color_depth()) { case 8: i = ((i & 48) << 18) + ((i & 12) << 12) + ((i & 3) << 6); i |= 0x3F3F3F; break; case 12: i = ((i & 0xF00) << 12) + ((i & 0xF0) << 8) + ((i & 0xF) << 4); /* sometimes dithering subtracts! */ i |= 0x0F0F0F; break; case 15: case 16: i = ((i & 0x7C00) << 9) + ((i & 0x3E0) << 6) + ((i & 0x1F) << 3); i |= 0x070707; break; case 24: break; default: /* 18 bits... */ i = ((i & 0x3F000) << 6) + ((i & 0xFC0) << 4) + ((i & 0x3F) << 2); i |= 0x030303; break; } return i; } #endif void GPU_select_index_set(int index) { const int col = index_to_framebuffer(index); glColor3ub(( (col) & 0xFF), (((col) >> 8) & 0xFF), (((col) >> 16) & 0xFF)); } void GPU_select_index_get(int index, int *r_col) { const int col = index_to_framebuffer(index); char *c_col = (char *)r_col; c_col[0] = (col & 0xFF); /* red */ c_col[1] = ((col >> 8) & 0xFF); /* green */ c_col[2] = ((col >> 16) & 0xFF); /* blue */ c_col[3] = 0xFF; /* alpha */ } #define INDEX_FROM_BUF_8(col) ((((col) & 0xC00000) >> 18) + (((col) & 0xC000) >> 12) + (((col) & 0xC0) >> 6)) #define INDEX_FROM_BUF_12(col) ((((col) & 0xF00000) >> 12) + (((col) & 0xF000) >> 8) + (((col) & 0xF0) >> 4)) #define INDEX_FROM_BUF_15_16(col) ((((col) & 0xF80000) >> 9) + (((col) & 0xF800) >> 6) + (((col) & 0xF8) >> 3)) #define INDEX_FROM_BUF_18(col) ((((col) & 0xFC0000) >> 6) + (((col) & 0xFC00) >> 4) + (((col) & 0xFC) >> 2)) #define INDEX_FROM_BUF_24(col) ((col) & 0xFFFFFF) int GPU_select_to_index(unsigned int col) { if (col == 0) { return 0; } switch (GPU_color_depth()) { case 8: return INDEX_FROM_BUF_8(col); case 12: return INDEX_FROM_BUF_12(col); case 15: case 16: return INDEX_FROM_BUF_15_16(col); case 24: return INDEX_FROM_BUF_24(col); default: return INDEX_FROM_BUF_18(col); } } void GPU_select_to_index_array(unsigned int *col, const unsigned int size) { #define INDEX_BUF_ARRAY(INDEX_FROM_BUF_BITS) \ for (i = size; i--; col++) { \ if ((c = *col)) { \ *col = INDEX_FROM_BUF_BITS(c); \ } \ } ((void)0) if (size > 0) { unsigned int i, c; switch (GPU_color_depth()) { case 8: INDEX_BUF_ARRAY(INDEX_FROM_BUF_8); break; case 12: INDEX_BUF_ARRAY(INDEX_FROM_BUF_12); break; case 15: case 16: INDEX_BUF_ARRAY(INDEX_FROM_BUF_15_16); break; case 24: INDEX_BUF_ARRAY(INDEX_FROM_BUF_24); break; default: INDEX_BUF_ARRAY(INDEX_FROM_BUF_18); break; } } #undef INDEX_BUF_ARRAY } #define STATE_STACK_DEPTH 16 typedef struct { eGPUAttribMask mask; /* GL_ENABLE_BIT */ unsigned int is_blend : 1; unsigned int is_cull_face : 1; unsigned int is_depth_test : 1; unsigned int is_dither : 1; unsigned int is_lighting : 1; unsigned int is_line_smooth : 1; unsigned int is_color_logic_op : 1; unsigned int is_multisample : 1; unsigned int is_polygon_offset_line : 1; unsigned int is_polygon_offset_fill : 1; unsigned int is_polygon_smooth : 1; unsigned int is_sample_alpha_to_coverage : 1; unsigned int is_scissor_test : 1; unsigned int is_stencil_test : 1; bool is_clip_plane[6]; /* GL_DEPTH_BUFFER_BIT */ /* unsigned int is_depth_test : 1; */ int depth_func; double depth_clear_value; bool depth_write_mask; /* GL_SCISSOR_BIT */ int scissor_box[4]; /* unsigned int is_scissor_test : 1; */ /* GL_VIEWPORT_BIT */ int viewport[4]; double near_far[2]; } GPUAttribValues; typedef struct { GPUAttribValues attrib_stack[STATE_STACK_DEPTH]; unsigned int top; } GPUAttribStack; static GPUAttribStack state = { .top = 0 }; #define AttribStack state #define Attrib state.attrib_stack[state.top] /** * Replacement for glPush/PopAttributes * * We don't need to cover all the options of legacy OpenGL * but simply the ones used by Blender. */ void gpuPushAttrib(eGPUAttribMask mask) { Attrib.mask = mask; if ((mask & GPU_DEPTH_BUFFER_BIT) != 0) { Attrib.is_depth_test = glIsEnabled(GL_DEPTH_TEST); glGetIntegerv(GL_DEPTH_FUNC, &Attrib.depth_func); glGetDoublev(GL_DEPTH_CLEAR_VALUE, &Attrib.depth_clear_value); glGetBooleanv(GL_DEPTH_WRITEMASK, (GLboolean *)&Attrib.depth_write_mask); } if ((mask & GPU_ENABLE_BIT) != 0) { Attrib.is_blend = glIsEnabled(GL_BLEND); for (int i = 0; i < 6; i++) { Attrib.is_clip_plane[i] = glIsEnabled(GL_CLIP_PLANE0 + i); } Attrib.is_cull_face = glIsEnabled(GL_CULL_FACE); Attrib.is_depth_test = glIsEnabled(GL_DEPTH_TEST); Attrib.is_dither = glIsEnabled(GL_DITHER); Attrib.is_line_smooth = glIsEnabled(GL_LINE_SMOOTH); Attrib.is_color_logic_op = glIsEnabled(GL_COLOR_LOGIC_OP); Attrib.is_multisample = glIsEnabled(GL_MULTISAMPLE); Attrib.is_polygon_offset_line = glIsEnabled(GL_POLYGON_OFFSET_LINE); Attrib.is_polygon_offset_fill = glIsEnabled(GL_POLYGON_OFFSET_FILL); Attrib.is_polygon_smooth = glIsEnabled(GL_POLYGON_SMOOTH); Attrib.is_sample_alpha_to_coverage = glIsEnabled(GL_SAMPLE_ALPHA_TO_COVERAGE); Attrib.is_scissor_test = glIsEnabled(GL_SCISSOR_TEST); Attrib.is_stencil_test = glIsEnabled(GL_STENCIL_TEST); } if ((mask & GPU_SCISSOR_BIT) != 0) { Attrib.is_scissor_test = glIsEnabled(GL_SCISSOR_TEST); glGetIntegerv(GL_SCISSOR_BOX, (GLint *)&Attrib.scissor_box); } if ((mask & GPU_VIEWPORT_BIT) != 0) { glGetDoublev(GL_DEPTH_RANGE, (GLdouble *)&Attrib.near_far); glGetIntegerv(GL_VIEWPORT, (GLint *)&Attrib.viewport); } if ((mask & GPU_BLEND_BIT) != 0) { Attrib.is_blend = glIsEnabled(GL_BLEND); } BLI_assert(AttribStack.top < STATE_STACK_DEPTH); AttribStack.top++; } static void restore_mask(GLenum cap, const bool value) { if (value) { glEnable(cap); } else { glDisable(cap); } } void gpuPopAttrib(void) { BLI_assert(AttribStack.top > 0); AttribStack.top--; GLint mask = Attrib.mask; if ((mask & GPU_DEPTH_BUFFER_BIT) != 0) { restore_mask(GL_DEPTH_TEST, Attrib.is_depth_test); glDepthFunc(Attrib.depth_func); glClearDepth(Attrib.depth_clear_value); glDepthMask(Attrib.depth_write_mask); } if ((mask & GPU_ENABLE_BIT) != 0) { restore_mask(GL_BLEND, Attrib.is_blend); for (int i = 0; i < 6; i++) { restore_mask(GL_CLIP_PLANE0 + i, Attrib.is_clip_plane[i]); } restore_mask(GL_CULL_FACE, Attrib.is_cull_face); restore_mask(GL_DEPTH_TEST, Attrib.is_depth_test); restore_mask(GL_DITHER, Attrib.is_dither); restore_mask(GL_LINE_SMOOTH, Attrib.is_line_smooth); restore_mask(GL_COLOR_LOGIC_OP, Attrib.is_color_logic_op); restore_mask(GL_MULTISAMPLE, Attrib.is_multisample); restore_mask(GL_POLYGON_OFFSET_LINE, Attrib.is_polygon_offset_line); restore_mask(GL_POLYGON_OFFSET_FILL, Attrib.is_polygon_offset_fill); restore_mask(GL_POLYGON_SMOOTH, Attrib.is_polygon_smooth); restore_mask(GL_SAMPLE_ALPHA_TO_COVERAGE, Attrib.is_sample_alpha_to_coverage); restore_mask(GL_SCISSOR_TEST, Attrib.is_scissor_test); restore_mask(GL_STENCIL_TEST, Attrib.is_stencil_test); } if ((mask & GPU_VIEWPORT_BIT) != 0) { glViewport(Attrib.viewport[0], Attrib.viewport[1], Attrib.viewport[2], Attrib.viewport[3]); glDepthRange(Attrib.near_far[0], Attrib.near_far[1]); } if ((mask & GPU_SCISSOR_BIT) != 0) { restore_mask(GL_SCISSOR_TEST, Attrib.is_scissor_test); glScissor(Attrib.scissor_box[0], Attrib.scissor_box[1], Attrib.scissor_box[2], Attrib.scissor_box[3]); } if ((mask & GPU_BLEND_BIT) != 0) { restore_mask(GL_BLEND, Attrib.is_blend); } } #undef Attrib #undef AttribStack /** \} */