/* * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * The Original Code is Copyright (C) 2005 Blender Foundation. * All rights reserved. */ /** \file * \ingroup gpu * * Utility functions for dealing with OpenGL texture & material context, * mipmap generation and light objects. * * These are some obscure rendering functions shared between the game engine (not anymore) * and the blender, in this module to avoid duplication * and abstract them away from the rest a bit. */ #include #include "BLI_blenlib.h" #include "BLI_linklist.h" #include "BLI_math.h" #include "BLI_threads.h" #include "BLI_utildefines.h" #include "DNA_light_types.h" #include "DNA_material_types.h" #include "DNA_mesh_types.h" #include "DNA_meshdata_types.h" #include "DNA_modifier_types.h" #include "DNA_node_types.h" #include "DNA_object_types.h" #include "DNA_scene_types.h" #include "DNA_smoke_types.h" #include "DNA_view3d_types.h" #include "DNA_particle_types.h" #include "MEM_guardedalloc.h" #include "IMB_colormanagement.h" #include "IMB_imbuf.h" #include "IMB_imbuf_types.h" #include "BKE_colorband.h" #include "BKE_global.h" #include "BKE_image.h" #include "BKE_main.h" #include "BKE_material.h" #include "BKE_movieclip.h" #include "BKE_node.h" #include "BKE_scene.h" #include "GPU_draw.h" #include "GPU_extensions.h" #include "GPU_glew.h" #include "GPU_texture.h" #include "PIL_time.h" #ifdef WITH_SMOKE # include "smoke_API.h" #endif static void gpu_free_image_immediate(Image *ima); //* Checking powers of two for images since OpenGL ES requires it */ #ifdef WITH_DDS static bool is_power_of_2_resolution(int w, int h) { return is_power_of_2_i(w) && is_power_of_2_i(h); } #endif static bool is_over_resolution_limit(GLenum textarget, int w, int h) { int size = (textarget == GL_TEXTURE_2D) ? GPU_max_texture_size() : GPU_max_cube_map_size(); int reslimit = (U.glreslimit != 0) ? min_ii(U.glreslimit, size) : size; return (w > reslimit || h > reslimit); } static int smaller_power_of_2_limit(int num) { int reslimit = (U.glreslimit != 0) ? min_ii(U.glreslimit, GPU_max_texture_size()) : GPU_max_texture_size(); /* take texture clamping into account */ if (num > reslimit) { return reslimit; } return power_of_2_min_i(num); } /* Current OpenGL state caching for GPU_set_tpage */ static struct GPUTextureState { /* also controls min/mag filtering */ bool domipmap; /* only use when 'domipmap' is set */ bool linearmipmap; /* store this so that new images created while texture painting won't be set to mipmapped */ bool texpaint; float anisotropic; } GTS = {1, 0, 0, 1.0f}; /* Mipmap settings */ void GPU_set_mipmap(Main *bmain, bool mipmap) { if (GTS.domipmap != mipmap) { GPU_free_images(bmain); GTS.domipmap = mipmap; } } void GPU_set_linear_mipmap(bool linear) { if (GTS.linearmipmap != linear) { GTS.linearmipmap = linear; } } bool GPU_get_mipmap(void) { return GTS.domipmap && !GTS.texpaint; } bool GPU_get_linear_mipmap(void) { return GTS.linearmipmap; } static GLenum gpu_get_mipmap_filter(bool mag) { /* linearmipmap is off by default *when mipmapping is off, * use unfiltered display */ if (mag) { if (GTS.domipmap) { return GL_LINEAR; } else { return GL_NEAREST; } } else { if (GTS.domipmap) { if (GTS.linearmipmap) { return GL_LINEAR_MIPMAP_LINEAR; } else { return GL_LINEAR_MIPMAP_NEAREST; } } else { return GL_NEAREST; } } } /* Anisotropic filtering settings */ void GPU_set_anisotropic(Main *bmain, float value) { if (GTS.anisotropic != value) { GPU_free_images(bmain); /* Clamp value to the maximum value the graphics card supports */ const float max = GPU_max_texture_anisotropy(); if (value > max) { value = max; } GTS.anisotropic = value; } } float GPU_get_anisotropic(void) { return GTS.anisotropic; } /* Set OpenGL state for an MTFace */ static GPUTexture **gpu_get_image_gputexture(Image *ima, GLenum textarget) { if (textarget == GL_TEXTURE_2D) { return &ima->gputexture[TEXTARGET_TEXTURE_2D]; } else if (textarget == GL_TEXTURE_CUBE_MAP) { return &ima->gputexture[TEXTARGET_TEXTURE_CUBE_MAP]; } return NULL; } static uint gpu_texture_create_from_ibuf(Image *ima, ImBuf *ibuf, int textarget) { uint bindcode = 0; const bool mipmap = GPU_get_mipmap(); #ifdef WITH_DDS if (ibuf->ftype == IMB_FTYPE_DDS) { /* DDS is loaded directly in compressed form. */ GPU_create_gl_tex_compressed(&bindcode, textarget, ima, ibuf); return bindcode; } #endif /* Regular uncompressed texture. */ float *rect_float = ibuf->rect_float; uchar *rect = (uchar *)ibuf->rect; bool compress_as_srgb = false; if (rect_float == NULL) { /* Byte image is in original colorspace from the file. If the file is sRGB * scene linear, or non-color data no conversion is needed. Otherwise we * compress as scene linear + sRGB transfer function to avoid precision loss * in common cases. * * We must also convert to premultiplied for correct texture interpolation * and consistency with float images. */ if (!IMB_colormanagement_space_is_data(ibuf->rect_colorspace)) { compress_as_srgb = !IMB_colormanagement_space_is_scene_linear(ibuf->rect_colorspace); rect = MEM_mallocN(sizeof(uchar) * 4 * ibuf->x * ibuf->y, __func__); if (rect == NULL) { return bindcode; } /* Texture storage of images is defined by the alpha mode of the image. The * downside of this is that there can be artifacts near alpha edges. However, * this allows us to use sRGB texture formats and preserves color values in * zero alpha areas, and appears generally closer to what game engines that we * want to be compatible with do. */ const bool store_premultiplied = ima ? (ima->alpha_mode == IMA_ALPHA_PREMUL) : true; IMB_colormanagement_imbuf_to_byte_texture( rect, 0, 0, ibuf->x, ibuf->y, ibuf, compress_as_srgb, store_premultiplied); } } else { /* Float image is already in scene linear colorspace or non-color data by * convention, no colorspace conversion needed. But we do require 4 channels * currently. */ const bool store_premultiplied = ima ? (ima->alpha_mode != IMA_ALPHA_STRAIGHT) : false; if (ibuf->channels != 4 || !store_premultiplied) { rect_float = MEM_mallocN(sizeof(float) * 4 * ibuf->x * ibuf->y, __func__); if (rect_float == NULL) { return bindcode; } IMB_colormanagement_imbuf_to_float_texture( rect_float, 0, 0, ibuf->x, ibuf->y, ibuf, store_premultiplied); } } /* Create OpenGL texture. */ GPU_create_gl_tex(&bindcode, (uint *)rect, rect_float, ibuf->x, ibuf->y, textarget, mipmap, compress_as_srgb, ima); /* Free buffers if needed. */ if (rect && rect != (uchar *)ibuf->rect) { MEM_freeN(rect); } if (rect_float && rect_float != ibuf->rect_float) { MEM_freeN(rect_float); } return bindcode; } static GPUTexture **gpu_get_movieclip_gputexture(MovieClip *clip, MovieClipUser *cuser, GLenum textarget) { MovieClip_RuntimeGPUTexture *tex; for (tex = clip->runtime.gputextures.first; tex; tex = tex->next) { if (memcmp(&tex->user, cuser, sizeof(MovieClipUser)) == 0) { break; } } if (tex == NULL) { tex = MEM_mallocN(sizeof(MovieClip_RuntimeGPUTexture), __func__); for (int i = 0; i < TEXTARGET_COUNT; i++) { tex->gputexture[i] = NULL; } memcpy(&tex->user, cuser, sizeof(MovieClipUser)); BLI_addtail(&clip->runtime.gputextures, tex); } if (textarget == GL_TEXTURE_2D) { return &tex->gputexture[TEXTARGET_TEXTURE_2D]; } else if (textarget == GL_TEXTURE_CUBE_MAP) { return &tex->gputexture[TEXTARGET_TEXTURE_CUBE_MAP]; } return NULL; } static void gpu_texture_update_scaled( uchar *rect, float *rect_float, int full_w, int full_h, int x, int y, int w, int h) { /* Partial update with scaling. */ int limit_w = smaller_power_of_2_limit(full_w); int limit_h = smaller_power_of_2_limit(full_h); float xratio = limit_w / (float)full_w; float yratio = limit_h / (float)full_h; /* Find sub coordinates in scaled image. Take ceiling because we will be * losing 1 pixel due to rounding errors in x,y. */ int sub_x = x * xratio; int sub_y = y * yratio; int sub_w = (int)ceil(xratio * w); int sub_h = (int)ceil(yratio * h); /* ...but take back if we are over the limit! */ if (sub_w + sub_x > limit_w) { sub_w--; } if (sub_h + sub_y > limit_h) { sub_h--; } /* Scale pixels. */ ImBuf *ibuf = IMB_allocFromBuffer((uint *)rect, rect_float, w, h, 4); IMB_scaleImBuf(ibuf, sub_w, sub_h); if (ibuf->rect_float) { glTexSubImage2D( GL_TEXTURE_2D, 0, sub_x, sub_y, sub_w, sub_h, GL_RGBA, GL_FLOAT, ibuf->rect_float); } else { glTexSubImage2D( GL_TEXTURE_2D, 0, sub_x, sub_y, sub_w, sub_h, GL_RGBA, GL_UNSIGNED_BYTE, ibuf->rect); } IMB_freeImBuf(ibuf); } static void gpu_texture_update_unscaled( uchar *rect, float *rect_float, int x, int y, int w, int h, GLint tex_stride, GLint tex_offset) { /* Partial update without scaling. Stride and offset are used to copy only a * subset of a possible larger buffer than what we are updating. */ GLint row_length; glGetIntegerv(GL_UNPACK_ROW_LENGTH, &row_length); glPixelStorei(GL_UNPACK_ROW_LENGTH, tex_stride); if (rect_float == NULL) { glTexSubImage2D(GL_TEXTURE_2D, 0, x, y, w, h, GL_RGBA, GL_UNSIGNED_BYTE, rect + tex_offset); } else { glTexSubImage2D(GL_TEXTURE_2D, 0, x, y, w, h, GL_RGBA, GL_FLOAT, rect_float + tex_offset); } glPixelStorei(GL_UNPACK_ROW_LENGTH, row_length); } static void gpu_texture_update_from_ibuf(Image *ima, ImBuf *ibuf, int x, int y, int w, int h) { /* Partial update of texture for texture painting. This is often much * quicker than fully updating the texture for high resolution images. * Assumes the OpenGL texture is bound to 0. */ const bool scaled = is_over_resolution_limit(GL_TEXTURE_2D, ibuf->x, ibuf->y); if (scaled) { /* Extra padding to account for bleed from neighboring pixels. */ const int padding = 4; const int xmax = min_ii(x + w + padding, ibuf->x); const int ymax = min_ii(y + h + padding, ibuf->y); x = max_ii(x - padding, 0); y = max_ii(y - padding, 0); w = xmax - x; h = ymax - y; } /* Get texture data pointers. */ float *rect_float = ibuf->rect_float; uchar *rect = (uchar *)ibuf->rect; GLint tex_stride = ibuf->x; GLint tex_offset = ibuf->channels * (y * ibuf->x + x); if (rect_float == NULL) { /* Byte pixels. */ if (!IMB_colormanagement_space_is_data(ibuf->rect_colorspace)) { const bool compress_as_srgb = !IMB_colormanagement_space_is_scene_linear( ibuf->rect_colorspace); rect = MEM_mallocN(sizeof(uchar) * 4 * w * h, __func__); if (rect == NULL) { return; } tex_stride = w; tex_offset = 0; /* Convert to scene linear with sRGB compression, and premultiplied for * correct texture interpolation. */ const bool store_premultiplied = (ima->alpha_mode == IMA_ALPHA_PREMUL); IMB_colormanagement_imbuf_to_byte_texture( rect, x, y, w, h, ibuf, compress_as_srgb, store_premultiplied); } } else { /* Float pixels. */ const bool store_premultiplied = (ima->alpha_mode != IMA_ALPHA_STRAIGHT); if (ibuf->channels != 4 || scaled || !store_premultiplied) { rect_float = MEM_mallocN(sizeof(float) * 4 * w * h, __func__); if (rect_float == NULL) { return; } tex_stride = w; tex_offset = 0; IMB_colormanagement_imbuf_to_float_texture( rect_float, x, y, w, h, ibuf, store_premultiplied); } } if (scaled) { /* Slower update where we first have to scale the input pixels. */ gpu_texture_update_scaled(rect, rect_float, ibuf->x, ibuf->y, x, y, w, h); } else { /* Fast update at same resolution. */ gpu_texture_update_unscaled(rect, rect_float, x, y, w, h, tex_stride, tex_offset); } /* Free buffers if needed. */ if (rect && rect != (uchar *)ibuf->rect) { MEM_freeN(rect); } if (rect_float && rect_float != ibuf->rect_float) { MEM_freeN(rect_float); } } GPUTexture *GPU_texture_from_blender(Image *ima, ImageUser *iuser, int textarget) { if (ima == NULL) { return NULL; } /* currently, gpu refresh tagging is used by ima sequences */ if (ima->gpuflag & IMA_GPU_REFRESH) { gpu_free_image_immediate(ima); ima->gpuflag &= ~IMA_GPU_REFRESH; } /* Tag as in active use for garbage collector. */ BKE_image_tag_time(ima); /* Test if we already have a texture. */ GPUTexture **tex = gpu_get_image_gputexture(ima, textarget); if (*tex) { return *tex; } /* Check if we have a valid image. If not, we return a dummy * texture with zero bindcode so we don't keep trying. */ uint bindcode = 0; if (ima->ok == 0) { *tex = GPU_texture_from_bindcode(textarget, bindcode); return *tex; } /* check if we have a valid image buffer */ ImBuf *ibuf = BKE_image_acquire_ibuf(ima, iuser, NULL); if (ibuf == NULL) { *tex = GPU_texture_from_bindcode(textarget, bindcode); return *tex; } bindcode = gpu_texture_create_from_ibuf(ima, ibuf, textarget); BKE_image_release_ibuf(ima, ibuf, NULL); *tex = GPU_texture_from_bindcode(textarget, bindcode); GPU_texture_orig_size_set(*tex, ibuf->x, ibuf->y); return *tex; } GPUTexture *GPU_texture_from_movieclip(MovieClip *clip, MovieClipUser *cuser, int textarget) { if (clip == NULL) { return NULL; } GPUTexture **tex = gpu_get_movieclip_gputexture(clip, cuser, textarget); if (*tex) { return *tex; } /* check if we have a valid image buffer */ uint bindcode = 0; ImBuf *ibuf = BKE_movieclip_get_ibuf(clip, cuser); if (ibuf == NULL) { *tex = GPU_texture_from_bindcode(textarget, bindcode); return *tex; } bindcode = gpu_texture_create_from_ibuf(NULL, ibuf, textarget); IMB_freeImBuf(ibuf); *tex = GPU_texture_from_bindcode(textarget, bindcode); return *tex; } void GPU_free_texture_movieclip(struct MovieClip *clip) { /* number of gpu textures to keep around as cache * We don't want to keep too many GPU textures for * movie clips around, as they can be large.*/ const int MOVIECLIP_NUM_GPUTEXTURES = 1; while (BLI_listbase_count(&clip->runtime.gputextures) > MOVIECLIP_NUM_GPUTEXTURES) { MovieClip_RuntimeGPUTexture *tex = BLI_pophead(&clip->runtime.gputextures); for (int i = 0; i < TEXTARGET_COUNT; i++) { /* free glsl image binding */ if (tex->gputexture[i]) { GPU_texture_free(tex->gputexture[i]); tex->gputexture[i] = NULL; } } MEM_freeN(tex); } } static void **gpu_gen_cube_map(uint *rect, float *frect, int rectw, int recth) { size_t block_size = frect ? sizeof(float[4]) : sizeof(uchar[4]); void **sides = NULL; int h = recth / 2; int w = rectw / 3; if (w != h) { return sides; } /* PosX, NegX, PosY, NegY, PosZ, NegZ */ sides = MEM_mallocN(sizeof(void *) * 6, ""); for (int i = 0; i < 6; i++) { sides[i] = MEM_mallocN(block_size * w * h, ""); } /* divide image into six parts */ /* ______________________ * | | | | * | NegX | NegY | PosX | * |______|______|______| * | | | | * | NegZ | PosZ | PosY | * |______|______|______| */ if (frect) { float(*frectb)[4] = (float(*)[4])frect; float(**fsides)[4] = (float(**)[4])sides; for (int y = 0; y < h; y++) { for (int x = 0; x < w; x++) { memcpy(&fsides[0][x * h + y], &frectb[(recth - y - 1) * rectw + 2 * w + x], block_size); memcpy(&fsides[1][x * h + y], &frectb[(y + h) * rectw + w - 1 - x], block_size); memcpy( &fsides[3][y * w + x], &frectb[(recth - y - 1) * rectw + 2 * w - 1 - x], block_size); memcpy(&fsides[5][y * w + x], &frectb[(h - y - 1) * rectw + w - 1 - x], block_size); } memcpy(&fsides[2][y * w], frectb[y * rectw + 2 * w], block_size * w); memcpy(&fsides[4][y * w], frectb[y * rectw + w], block_size * w); } } else { uint **isides = (uint **)sides; for (int y = 0; y < h; y++) { for (int x = 0; x < w; x++) { isides[0][x * h + y] = rect[(recth - y - 1) * rectw + 2 * w + x]; isides[1][x * h + y] = rect[(y + h) * rectw + w - 1 - x]; isides[3][y * w + x] = rect[(recth - y - 1) * rectw + 2 * w - 1 - x]; isides[5][y * w + x] = rect[(h - y - 1) * rectw + w - 1 - x]; } memcpy(&isides[2][y * w], &rect[y * rectw + 2 * w], block_size * w); memcpy(&isides[4][y * w], &rect[y * rectw + w], block_size * w); } } return sides; } static void gpu_del_cube_map(void **cube_map) { int i; if (cube_map == NULL) { return; } for (i = 0; i < 6; i++) { MEM_freeN(cube_map[i]); } MEM_freeN(cube_map); } /* Image *ima can be NULL */ void GPU_create_gl_tex(uint *bind, uint *rect, float *frect, int rectw, int recth, int textarget, bool mipmap, bool use_srgb, Image *ima) { ImBuf *ibuf = NULL; if (textarget == GL_TEXTURE_2D && is_over_resolution_limit(textarget, rectw, recth)) { int tpx = rectw; int tpy = recth; rectw = smaller_power_of_2_limit(rectw); recth = smaller_power_of_2_limit(recth); if (frect) { ibuf = IMB_allocFromBuffer(NULL, frect, tpx, tpy, 4); IMB_scaleImBuf(ibuf, rectw, recth); frect = ibuf->rect_float; } else { ibuf = IMB_allocFromBuffer(rect, NULL, tpx, tpy, 4); IMB_scaleImBuf(ibuf, rectw, recth); rect = ibuf->rect; } } /* create image */ glGenTextures(1, (GLuint *)bind); glBindTexture(textarget, *bind); GLenum internal_format = (frect) ? GL_RGBA16F : (use_srgb) ? GL_SRGB8_ALPHA8 : GL_RGBA8; if (textarget == GL_TEXTURE_2D) { if (frect) { glTexImage2D(GL_TEXTURE_2D, 0, internal_format, rectw, recth, 0, GL_RGBA, GL_FLOAT, frect); } else { glTexImage2D( GL_TEXTURE_2D, 0, internal_format, rectw, recth, 0, GL_RGBA, GL_UNSIGNED_BYTE, rect); } glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gpu_get_mipmap_filter(1)); if (GPU_get_mipmap() && mipmap) { glGenerateMipmap(GL_TEXTURE_2D); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gpu_get_mipmap_filter(0)); if (ima) { ima->gpuflag |= IMA_GPU_MIPMAP_COMPLETE; } } else { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); } } else if (textarget == GL_TEXTURE_CUBE_MAP) { int w = rectw / 3, h = recth / 2; if (h == w && is_power_of_2_i(h) && !is_over_resolution_limit(textarget, h, w)) { void **cube_map = gpu_gen_cube_map(rect, frect, rectw, recth); GLenum type = frect ? GL_FLOAT : GL_UNSIGNED_BYTE; if (cube_map) { for (int i = 0; i < 6; i++) { glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, internal_format, w, h, 0, GL_RGBA, type, cube_map[i]); } } glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, gpu_get_mipmap_filter(1)); if (GPU_get_mipmap() && mipmap) { glGenerateMipmap(GL_TEXTURE_CUBE_MAP); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, gpu_get_mipmap_filter(0)); if (ima) { ima->gpuflag |= IMA_GPU_MIPMAP_COMPLETE; } } else { glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR); } glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE); gpu_del_cube_map(cube_map); } else { printf("Incorrect envmap size\n"); } } if (GLEW_EXT_texture_filter_anisotropic) { glTexParameterf(textarget, GL_TEXTURE_MAX_ANISOTROPY_EXT, GPU_get_anisotropic()); } glBindTexture(textarget, 0); if (ibuf) { IMB_freeImBuf(ibuf); } } /** * GPU_upload_dxt_texture() assumes that the texture is already bound and ready to go. * This is so the viewport and the BGE can share some code. * Returns false if the provided ImBuf doesn't have a supported DXT compression format */ bool GPU_upload_dxt_texture(ImBuf *ibuf, bool use_srgb) { #ifdef WITH_DDS GLint format = 0; int blocksize, height, width, i, size, offset = 0; width = ibuf->x; height = ibuf->y; if (GLEW_EXT_texture_compression_s3tc) { if (ibuf->dds_data.fourcc == FOURCC_DXT1) { format = (use_srgb) ? GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT : GL_COMPRESSED_RGBA_S3TC_DXT1_EXT; } else if (ibuf->dds_data.fourcc == FOURCC_DXT3) { format = (use_srgb) ? GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT : GL_COMPRESSED_RGBA_S3TC_DXT3_EXT; } else if (ibuf->dds_data.fourcc == FOURCC_DXT5) { format = (use_srgb) ? GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT : GL_COMPRESSED_RGBA_S3TC_DXT5_EXT; } } if (format == 0) { fprintf(stderr, "Unable to find a suitable DXT compression, falling back to uncompressed\n"); return false; } if (!is_power_of_2_resolution(width, height)) { fprintf( stderr, "Unable to load non-power-of-two DXT image resolution, falling back to uncompressed\n"); return false; } glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gpu_get_mipmap_filter(0)); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gpu_get_mipmap_filter(1)); if (GLEW_EXT_texture_filter_anisotropic) { glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, GPU_get_anisotropic()); } blocksize = (ibuf->dds_data.fourcc == FOURCC_DXT1) ? 8 : 16; for (i = 0; i < ibuf->dds_data.nummipmaps && (width || height); i++) { if (width == 0) { width = 1; } if (height == 0) { height = 1; } size = ((width + 3) / 4) * ((height + 3) / 4) * blocksize; glCompressedTexImage2D( GL_TEXTURE_2D, i, format, width, height, 0, size, ibuf->dds_data.data + offset); offset += size; width >>= 1; height >>= 1; } /* set number of mipmap levels we have, needed in case they don't go down to 1x1 */ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, i - 1); return true; #else UNUSED_VARS(ibuf, use_srgb); return false; #endif } void GPU_create_gl_tex_compressed(unsigned int *bind, int textarget, Image *ima, ImBuf *ibuf) { /* For DDS we only support data, scene linear and sRGB. Converting to * different colorspace would break the compression. */ const bool use_srgb = !(IMB_colormanagement_space_is_data(ibuf->rect_colorspace) || IMB_colormanagement_space_is_scene_linear(ibuf->rect_colorspace)); const bool mipmap = GPU_get_mipmap(); #ifndef WITH_DDS (void)ibuf; /* Fall back to uncompressed if DDS isn't enabled */ GPU_create_gl_tex(bind, ibuf->rect, NULL, ibuf->x, ibuf->y, textarget, mipmap, use_srgb, ima); #else glGenTextures(1, (GLuint *)bind); glBindTexture(textarget, *bind); if (textarget == GL_TEXTURE_2D && GPU_upload_dxt_texture(ibuf, use_srgb) == 0) { glDeleteTextures(1, (GLuint *)bind); GPU_create_gl_tex(bind, ibuf->rect, NULL, ibuf->x, ibuf->y, textarget, mipmap, use_srgb, ima); } glBindTexture(textarget, 0); #endif } /* these two functions are called on entering and exiting texture paint mode, * temporary disabling/enabling mipmapping on all images for quick texture * updates with glTexSubImage2D. images that didn't change don't have to be * re-uploaded to OpenGL */ void GPU_paint_set_mipmap(Main *bmain, bool mipmap) { if (!GTS.domipmap) { return; } GTS.texpaint = !mipmap; if (mipmap) { for (Image *ima = bmain->images.first; ima; ima = ima->id.next) { if (BKE_image_has_opengl_texture(ima)) { if (ima->gpuflag & IMA_GPU_MIPMAP_COMPLETE) { if (ima->gputexture[TEXTARGET_TEXTURE_2D]) { GPU_texture_bind(ima->gputexture[TEXTARGET_TEXTURE_2D], 0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gpu_get_mipmap_filter(0)); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gpu_get_mipmap_filter(1)); GPU_texture_unbind(ima->gputexture[TEXTARGET_TEXTURE_2D]); } } else { GPU_free_image(ima); } } else { ima->gpuflag &= ~IMA_GPU_MIPMAP_COMPLETE; } } } else { for (Image *ima = bmain->images.first; ima; ima = ima->id.next) { if (BKE_image_has_opengl_texture(ima)) { if (ima->gputexture[TEXTARGET_TEXTURE_2D]) { GPU_texture_bind(ima->gputexture[TEXTARGET_TEXTURE_2D], 0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gpu_get_mipmap_filter(1)); GPU_texture_unbind(ima->gputexture[TEXTARGET_TEXTURE_2D]); } } else { ima->gpuflag &= ~IMA_GPU_MIPMAP_COMPLETE; } } } } void GPU_paint_update_image(Image *ima, ImageUser *iuser, int x, int y, int w, int h) { ImBuf *ibuf = BKE_image_acquire_ibuf(ima, iuser, NULL); if ((ima->gputexture[TEXTARGET_TEXTURE_2D] == NULL) || (ibuf == NULL) || (w == 0) || (h == 0)) { /* Full reload of texture. */ GPU_free_image(ima); } else { /* Partial update of texture. */ GPU_texture_bind(ima->gputexture[TEXTARGET_TEXTURE_2D], 0); gpu_texture_update_from_ibuf(ima, ibuf, x, y, w, h); if (GPU_get_mipmap()) { glGenerateMipmap(GL_TEXTURE_2D); } else { ima->gpuflag &= ~IMA_GPU_MIPMAP_COMPLETE; } GPU_texture_unbind(ima->gputexture[TEXTARGET_TEXTURE_2D]); } BKE_image_release_ibuf(ima, ibuf, NULL); } /* *************************** Transfer functions *************************** */ enum { TFUNC_FLAME_SPECTRUM = 0, TFUNC_COLOR_RAMP = 1, }; #define TFUNC_WIDTH 256 #ifdef WITH_SMOKE static void create_flame_spectrum_texture(float *data) { # define FIRE_THRESH 7 # define MAX_FIRE_ALPHA 0.06f # define FULL_ON_FIRE 100 float *spec_pixels = MEM_mallocN(TFUNC_WIDTH * 4 * 16 * 16 * sizeof(float), "spec_pixels"); blackbody_temperature_to_rgb_table(data, TFUNC_WIDTH, 1500, 3000); for (int i = 0; i < 16; i++) { for (int j = 0; j < 16; j++) { for (int k = 0; k < TFUNC_WIDTH; k++) { int index = (j * TFUNC_WIDTH * 16 + i * TFUNC_WIDTH + k) * 4; if (k >= FIRE_THRESH) { spec_pixels[index] = (data[k * 4]); spec_pixels[index + 1] = (data[k * 4 + 1]); spec_pixels[index + 2] = (data[k * 4 + 2]); spec_pixels[index + 3] = MAX_FIRE_ALPHA * ((k > FULL_ON_FIRE) ? 1.0f : (k - FIRE_THRESH) / ((float)FULL_ON_FIRE - FIRE_THRESH)); } else { zero_v4(&spec_pixels[index]); } } } } memcpy(data, spec_pixels, sizeof(float) * 4 * TFUNC_WIDTH); MEM_freeN(spec_pixels); # undef FIRE_THRESH # undef MAX_FIRE_ALPHA # undef FULL_ON_FIRE } static void create_color_ramp(const ColorBand *coba, float *data) { for (int i = 0; i < TFUNC_WIDTH; i++) { BKE_colorband_evaluate(coba, (float)i / TFUNC_WIDTH, &data[i * 4]); } } static GPUTexture *create_transfer_function(int type, const ColorBand *coba) { float *data = MEM_mallocN(sizeof(float) * 4 * TFUNC_WIDTH, __func__); switch (type) { case TFUNC_FLAME_SPECTRUM: create_flame_spectrum_texture(data); break; case TFUNC_COLOR_RAMP: create_color_ramp(coba, data); break; } GPUTexture *tex = GPU_texture_create_1d(TFUNC_WIDTH, GPU_RGBA8, data, NULL); MEM_freeN(data); return tex; } static void swizzle_texture_channel_rrrr(GPUTexture *tex) { GPU_texture_bind(tex, 0); glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_SWIZZLE_R, GL_RED); glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_SWIZZLE_G, GL_RED); glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_SWIZZLE_B, GL_RED); glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_SWIZZLE_A, GL_RED); GPU_texture_unbind(tex); } static GPUTexture *create_field_texture(SmokeDomainSettings *sds) { float *field = NULL; switch (sds->coba_field) { case FLUID_FIELD_DENSITY: field = smoke_get_density(sds->fluid); break; case FLUID_FIELD_HEAT: field = smoke_get_heat(sds->fluid); break; case FLUID_FIELD_FUEL: field = smoke_get_fuel(sds->fluid); break; case FLUID_FIELD_REACT: field = smoke_get_react(sds->fluid); break; case FLUID_FIELD_FLAME: field = smoke_get_flame(sds->fluid); break; case FLUID_FIELD_VELOCITY_X: field = smoke_get_velocity_x(sds->fluid); break; case FLUID_FIELD_VELOCITY_Y: field = smoke_get_velocity_y(sds->fluid); break; case FLUID_FIELD_VELOCITY_Z: field = smoke_get_velocity_z(sds->fluid); break; case FLUID_FIELD_COLOR_R: field = smoke_get_color_r(sds->fluid); break; case FLUID_FIELD_COLOR_G: field = smoke_get_color_g(sds->fluid); break; case FLUID_FIELD_COLOR_B: field = smoke_get_color_b(sds->fluid); break; case FLUID_FIELD_FORCE_X: field = smoke_get_force_x(sds->fluid); break; case FLUID_FIELD_FORCE_Y: field = smoke_get_force_y(sds->fluid); break; case FLUID_FIELD_FORCE_Z: field = smoke_get_force_z(sds->fluid); break; default: return NULL; } GPUTexture *tex = GPU_texture_create_nD( sds->res[0], sds->res[1], sds->res[2], 3, field, GPU_R8, GPU_DATA_FLOAT, 0, true, NULL); swizzle_texture_channel_rrrr(tex); return tex; } static GPUTexture *create_density_texture(SmokeDomainSettings *sds, int highres) { float *data = NULL, *source; int cell_count = (highres) ? smoke_turbulence_get_cells(sds->wt) : sds->total_cells; const bool has_color = (highres) ? smoke_turbulence_has_colors(sds->wt) : smoke_has_colors(sds->fluid); int *dim = (highres) ? sds->res_wt : sds->res; eGPUTextureFormat format = (has_color) ? GPU_RGBA8 : GPU_R8; if (has_color) { data = MEM_callocN(sizeof(float) * cell_count * 4, "smokeColorTexture"); } if (highres) { if (has_color) { smoke_turbulence_get_rgba(sds->wt, data, 0); } else { source = smoke_turbulence_get_density(sds->wt); } } else { if (has_color) { smoke_get_rgba(sds->fluid, data, 0); } else { source = smoke_get_density(sds->fluid); } } GPUTexture *tex = GPU_texture_create_nD(dim[0], dim[1], dim[2], 3, (has_color) ? data : source, format, GPU_DATA_FLOAT, 0, true, NULL); if (data) { MEM_freeN(data); } if (format == GPU_R8) { /* Swizzle the RGBA components to read the Red channel so * that the shader stay the same for colored and non color * density textures. */ swizzle_texture_channel_rrrr(tex); } return tex; } static GPUTexture *create_flame_texture(SmokeDomainSettings *sds, int highres) { float *source = NULL; const bool has_fuel = (highres) ? smoke_turbulence_has_fuel(sds->wt) : smoke_has_fuel(sds->fluid); int *dim = (highres) ? sds->res_wt : sds->res; if (!has_fuel) { return NULL; } if (highres) { source = smoke_turbulence_get_flame(sds->wt); } else { source = smoke_get_flame(sds->fluid); } GPUTexture *tex = GPU_texture_create_nD( dim[0], dim[1], dim[2], 3, source, GPU_R8, GPU_DATA_FLOAT, 0, true, NULL); swizzle_texture_channel_rrrr(tex); return tex; } #endif /* WITH_SMOKE */ void GPU_free_smoke(SmokeModifierData *smd) { if (smd->type & MOD_SMOKE_TYPE_DOMAIN && smd->domain) { if (smd->domain->tex) { GPU_texture_free(smd->domain->tex); } smd->domain->tex = NULL; if (smd->domain->tex_shadow) { GPU_texture_free(smd->domain->tex_shadow); } smd->domain->tex_shadow = NULL; if (smd->domain->tex_flame) { GPU_texture_free(smd->domain->tex_flame); } smd->domain->tex_flame = NULL; if (smd->domain->tex_flame_coba) { GPU_texture_free(smd->domain->tex_flame_coba); } smd->domain->tex_flame_coba = NULL; if (smd->domain->tex_coba) { GPU_texture_free(smd->domain->tex_coba); } smd->domain->tex_coba = NULL; if (smd->domain->tex_field) { GPU_texture_free(smd->domain->tex_field); } smd->domain->tex_field = NULL; } } void GPU_create_smoke_coba_field(SmokeModifierData *smd) { #ifdef WITH_SMOKE if (smd->type & MOD_SMOKE_TYPE_DOMAIN) { SmokeDomainSettings *sds = smd->domain; if (!sds->tex_field) { sds->tex_field = create_field_texture(sds); } if (!sds->tex_coba) { sds->tex_coba = create_transfer_function(TFUNC_COLOR_RAMP, sds->coba); } } #else // WITH_SMOKE smd->domain->tex_field = NULL; #endif // WITH_SMOKE } void GPU_create_smoke(SmokeModifierData *smd, int highres) { #ifdef WITH_SMOKE if (smd->type & MOD_SMOKE_TYPE_DOMAIN) { SmokeDomainSettings *sds = smd->domain; if (!sds->tex) { sds->tex = create_density_texture(sds, highres); } if (!sds->tex_flame) { sds->tex_flame = create_flame_texture(sds, highres); } if (!sds->tex_flame_coba && sds->tex_flame) { sds->tex_flame_coba = create_transfer_function(TFUNC_FLAME_SPECTRUM, NULL); } if (!sds->tex_shadow) { sds->tex_shadow = GPU_texture_create_nD(sds->res[0], sds->res[1], sds->res[2], 3, sds->shadow, GPU_R8, GPU_DATA_FLOAT, 0, true, NULL); } } #else // WITH_SMOKE (void)highres; smd->domain->tex = NULL; smd->domain->tex_flame = NULL; smd->domain->tex_flame_coba = NULL; smd->domain->tex_shadow = NULL; #endif // WITH_SMOKE } void GPU_create_smoke_velocity(SmokeModifierData *smd) { #ifdef WITH_SMOKE if (smd->type & MOD_SMOKE_TYPE_DOMAIN) { SmokeDomainSettings *sds = smd->domain; const float *vel_x = smoke_get_velocity_x(sds->fluid); const float *vel_y = smoke_get_velocity_y(sds->fluid); const float *vel_z = smoke_get_velocity_z(sds->fluid); if (ELEM(NULL, vel_x, vel_y, vel_z)) { return; } if (!sds->tex_velocity_x) { sds->tex_velocity_x = GPU_texture_create_3d( sds->res[0], sds->res[1], sds->res[2], GPU_R16F, vel_x, NULL); sds->tex_velocity_y = GPU_texture_create_3d( sds->res[0], sds->res[1], sds->res[2], GPU_R16F, vel_y, NULL); sds->tex_velocity_z = GPU_texture_create_3d( sds->res[0], sds->res[1], sds->res[2], GPU_R16F, vel_z, NULL); } } #else // WITH_SMOKE smd->domain->tex_velocity_x = NULL; smd->domain->tex_velocity_y = NULL; smd->domain->tex_velocity_z = NULL; #endif // WITH_SMOKE } /* TODO Unify with the other GPU_free_smoke. */ void GPU_free_smoke_velocity(SmokeModifierData *smd) { if (smd->type & MOD_SMOKE_TYPE_DOMAIN && smd->domain) { if (smd->domain->tex_velocity_x) { GPU_texture_free(smd->domain->tex_velocity_x); } if (smd->domain->tex_velocity_y) { GPU_texture_free(smd->domain->tex_velocity_y); } if (smd->domain->tex_velocity_z) { GPU_texture_free(smd->domain->tex_velocity_z); } smd->domain->tex_velocity_x = NULL; smd->domain->tex_velocity_y = NULL; smd->domain->tex_velocity_z = NULL; } } static LinkNode *image_free_queue = NULL; static ThreadMutex img_queue_mutex = BLI_MUTEX_INITIALIZER; static void gpu_queue_image_for_free(Image *ima) { BLI_mutex_lock(&img_queue_mutex); BLI_linklist_prepend(&image_free_queue, ima); BLI_mutex_unlock(&img_queue_mutex); } void GPU_free_unused_buffers(Main *bmain) { if (!BLI_thread_is_main()) { return; } BLI_mutex_lock(&img_queue_mutex); /* images */ for (LinkNode *node = image_free_queue; node; node = node->next) { Image *ima = node->link; /* check in case it was freed in the meantime */ if (bmain && BLI_findindex(&bmain->images, ima) != -1) { GPU_free_image(ima); } } BLI_linklist_free(image_free_queue, NULL); image_free_queue = NULL; BLI_mutex_unlock(&img_queue_mutex); } static void gpu_free_image_immediate(Image *ima) { for (int i = 0; i < TEXTARGET_COUNT; i++) { /* free glsl image binding */ if (ima->gputexture[i]) { GPU_texture_free(ima->gputexture[i]); ima->gputexture[i] = NULL; } } ima->gpuflag &= ~(IMA_GPU_MIPMAP_COMPLETE); } void GPU_free_image(Image *ima) { if (!BLI_thread_is_main()) { gpu_queue_image_for_free(ima); return; } gpu_free_image_immediate(ima); } void GPU_free_images(Main *bmain) { if (bmain) { for (Image *ima = bmain->images.first; ima; ima = ima->id.next) { GPU_free_image(ima); } } } /* same as above but only free animated images */ void GPU_free_images_anim(Main *bmain) { if (bmain) { for (Image *ima = bmain->images.first; ima; ima = ima->id.next) { if (BKE_image_is_animated(ima)) { GPU_free_image(ima); } } } } void GPU_free_images_old(Main *bmain) { static int lasttime = 0; int ctime = (int)PIL_check_seconds_timer(); /* * Run garbage collector once for every collecting period of time * if textimeout is 0, that's the option to NOT run the collector */ if (U.textimeout == 0 || ctime % U.texcollectrate || ctime == lasttime) { return; } /* of course not! */ if (G.is_rendering) { return; } lasttime = ctime; Image *ima = bmain->images.first; while (ima) { if ((ima->flag & IMA_NOCOLLECT) == 0 && ctime - ima->lastused > U.textimeout) { /* If it's in GL memory, deallocate and set time tag to current time * This gives textures a "second chance" to be used before dying. */ if (BKE_image_has_opengl_texture(ima)) { GPU_free_image(ima); ima->lastused = ctime; } /* Otherwise, just kill the buffers */ else { BKE_image_free_buffers(ima); } } ima = ima->id.next; } } static void gpu_disable_multisample(void) { #ifdef __linux__ /* changing multisample from the default (enabled) causes problems on some * systems (NVIDIA/Linux) when the pixel format doesn't have a multisample buffer */ bool toggle_ok = true; if (GPU_type_matches(GPU_DEVICE_NVIDIA, GPU_OS_UNIX, GPU_DRIVER_ANY)) { int samples = 0; glGetIntegerv(GL_SAMPLES, &samples); if (samples == 0) { toggle_ok = false; } } if (toggle_ok) { glDisable(GL_MULTISAMPLE); } #else glDisable(GL_MULTISAMPLE); #endif } /* Default OpenGL State * * This is called on startup, for opengl offscreen render. * Generally we should always return to this state when * temporarily modifying the state for drawing, though that are (undocumented) * exceptions that we should try to get rid of. */ void GPU_state_init(void) { GPU_program_point_size(false); glEnable(GL_TEXTURE_CUBE_MAP_SEAMLESS); glDepthFunc(GL_LEQUAL); glDisable(GL_BLEND); glDisable(GL_DEPTH_TEST); glDisable(GL_COLOR_LOGIC_OP); glDisable(GL_STENCIL_TEST); glDepthRange(0.0, 1.0); glFrontFace(GL_CCW); glCullFace(GL_BACK); glDisable(GL_CULL_FACE); gpu_disable_multisample(); /* This is a bit dangerous since addons could change this. */ glEnable(GL_PRIMITIVE_RESTART); glPrimitiveRestartIndex((GLuint)0xFFFFFFFF); /* TODO: Should become default. But needs at least GL 4.3 */ if (GLEW_ARB_ES3_compatibility) { /* Takes predecence over GL_PRIMITIVE_RESTART */ glEnable(GL_PRIMITIVE_RESTART_FIXED_INDEX); } } /** \name Framebuffer color depth, for selection codes * \{ */ #define STATE_STACK_DEPTH 16 typedef struct { eGPUAttrMask mask; /* GL_ENABLE_BIT */ uint is_blend : 1; uint is_cull_face : 1; uint is_depth_test : 1; uint is_dither : 1; uint is_lighting : 1; uint is_line_smooth : 1; uint is_color_logic_op : 1; uint is_multisample : 1; uint is_polygon_offset_line : 1; uint is_polygon_offset_fill : 1; uint is_polygon_smooth : 1; uint is_sample_alpha_to_coverage : 1; uint is_scissor_test : 1; uint is_stencil_test : 1; bool is_clip_plane[6]; /* GL_DEPTH_BUFFER_BIT */ /* uint is_depth_test : 1; */ int depth_func; double depth_clear_value; bool depth_write_mask; /* GL_SCISSOR_BIT */ int scissor_box[4]; /* uint is_scissor_test : 1; */ /* GL_VIEWPORT_BIT */ int viewport[4]; double near_far[2]; } GPUAttrValues; typedef struct { GPUAttrValues attr_stack[STATE_STACK_DEPTH]; uint top; } GPUAttrStack; static GPUAttrStack state = { .top = 0, }; #define AttrStack state #define Attr state.attr_stack[state.top] /** * Replacement for glPush/PopAttributes * * We don't need to cover all the options of legacy OpenGL * but simply the ones used by Blender. */ void gpuPushAttr(eGPUAttrMask mask) { Attr.mask = mask; if ((mask & GPU_DEPTH_BUFFER_BIT) != 0) { Attr.is_depth_test = glIsEnabled(GL_DEPTH_TEST); glGetIntegerv(GL_DEPTH_FUNC, &Attr.depth_func); glGetDoublev(GL_DEPTH_CLEAR_VALUE, &Attr.depth_clear_value); glGetBooleanv(GL_DEPTH_WRITEMASK, (GLboolean *)&Attr.depth_write_mask); } if ((mask & GPU_ENABLE_BIT) != 0) { Attr.is_blend = glIsEnabled(GL_BLEND); for (int i = 0; i < 6; i++) { Attr.is_clip_plane[i] = glIsEnabled(GL_CLIP_PLANE0 + i); } Attr.is_cull_face = glIsEnabled(GL_CULL_FACE); Attr.is_depth_test = glIsEnabled(GL_DEPTH_TEST); Attr.is_dither = glIsEnabled(GL_DITHER); Attr.is_line_smooth = glIsEnabled(GL_LINE_SMOOTH); Attr.is_color_logic_op = glIsEnabled(GL_COLOR_LOGIC_OP); Attr.is_multisample = glIsEnabled(GL_MULTISAMPLE); Attr.is_polygon_offset_line = glIsEnabled(GL_POLYGON_OFFSET_LINE); Attr.is_polygon_offset_fill = glIsEnabled(GL_POLYGON_OFFSET_FILL); Attr.is_polygon_smooth = glIsEnabled(GL_POLYGON_SMOOTH); Attr.is_sample_alpha_to_coverage = glIsEnabled(GL_SAMPLE_ALPHA_TO_COVERAGE); Attr.is_scissor_test = glIsEnabled(GL_SCISSOR_TEST); Attr.is_stencil_test = glIsEnabled(GL_STENCIL_TEST); } if ((mask & GPU_SCISSOR_BIT) != 0) { Attr.is_scissor_test = glIsEnabled(GL_SCISSOR_TEST); glGetIntegerv(GL_SCISSOR_BOX, (GLint *)&Attr.scissor_box); } if ((mask & GPU_VIEWPORT_BIT) != 0) { glGetDoublev(GL_DEPTH_RANGE, (GLdouble *)&Attr.near_far); glGetIntegerv(GL_VIEWPORT, (GLint *)&Attr.viewport); } if ((mask & GPU_BLEND_BIT) != 0) { Attr.is_blend = glIsEnabled(GL_BLEND); } BLI_assert(AttrStack.top < STATE_STACK_DEPTH); AttrStack.top++; } static void restore_mask(GLenum cap, const bool value) { if (value) { glEnable(cap); } else { glDisable(cap); } } void gpuPopAttr(void) { BLI_assert(AttrStack.top > 0); AttrStack.top--; GLint mask = Attr.mask; if ((mask & GPU_DEPTH_BUFFER_BIT) != 0) { restore_mask(GL_DEPTH_TEST, Attr.is_depth_test); glDepthFunc(Attr.depth_func); glClearDepth(Attr.depth_clear_value); glDepthMask(Attr.depth_write_mask); } if ((mask & GPU_ENABLE_BIT) != 0) { restore_mask(GL_BLEND, Attr.is_blend); for (int i = 0; i < 6; i++) { restore_mask(GL_CLIP_PLANE0 + i, Attr.is_clip_plane[i]); } restore_mask(GL_CULL_FACE, Attr.is_cull_face); restore_mask(GL_DEPTH_TEST, Attr.is_depth_test); restore_mask(GL_DITHER, Attr.is_dither); restore_mask(GL_LINE_SMOOTH, Attr.is_line_smooth); restore_mask(GL_COLOR_LOGIC_OP, Attr.is_color_logic_op); restore_mask(GL_MULTISAMPLE, Attr.is_multisample); restore_mask(GL_POLYGON_OFFSET_LINE, Attr.is_polygon_offset_line); restore_mask(GL_POLYGON_OFFSET_FILL, Attr.is_polygon_offset_fill); restore_mask(GL_POLYGON_SMOOTH, Attr.is_polygon_smooth); restore_mask(GL_SAMPLE_ALPHA_TO_COVERAGE, Attr.is_sample_alpha_to_coverage); restore_mask(GL_SCISSOR_TEST, Attr.is_scissor_test); restore_mask(GL_STENCIL_TEST, Attr.is_stencil_test); } if ((mask & GPU_VIEWPORT_BIT) != 0) { glViewport(Attr.viewport[0], Attr.viewport[1], Attr.viewport[2], Attr.viewport[3]); glDepthRange(Attr.near_far[0], Attr.near_far[1]); } if ((mask & GPU_SCISSOR_BIT) != 0) { restore_mask(GL_SCISSOR_TEST, Attr.is_scissor_test); glScissor(Attr.scissor_box[0], Attr.scissor_box[1], Attr.scissor_box[2], Attr.scissor_box[3]); } if ((mask & GPU_BLEND_BIT) != 0) { restore_mask(GL_BLEND, Attr.is_blend); } } #undef Attr #undef AttrStack /** \} */