/* * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /** \file * \ingroup gpu * * GPU immediate mode drawing utilities */ #include #include #include "BLI_math.h" #include "BLI_utildefines.h" #include "GPU_immediate.h" #include "GPU_immediate_util.h" #include "UI_resources.h" static const float cube_coords[8][3] = { {-1, -1, -1}, {-1, -1, +1}, {-1, +1, -1}, {-1, +1, +1}, {+1, -1, -1}, {+1, -1, +1}, {+1, +1, -1}, {+1, +1, +1}, }; static const int cube_quad_index[6][4] = { {0, 1, 3, 2}, {0, 2, 6, 4}, {0, 4, 5, 1}, {1, 5, 7, 3}, {2, 3, 7, 6}, {4, 6, 7, 5}, }; static const int cube_line_index[12][2] = { {0, 1}, {0, 2}, {0, 4}, {1, 3}, {1, 5}, {2, 3}, {2, 6}, {3, 7}, {4, 5}, {4, 6}, {5, 7}, {6, 7}, }; void immRectf(uint pos, float x1, float y1, float x2, float y2) { immBegin(GPU_PRIM_TRI_FAN, 4); immVertex2f(pos, x1, y1); immVertex2f(pos, x2, y1); immVertex2f(pos, x2, y2); immVertex2f(pos, x1, y2); immEnd(); } void immRecti(uint pos, int x1, int y1, int x2, int y2) { immBegin(GPU_PRIM_TRI_FAN, 4); immVertex2i(pos, x1, y1); immVertex2i(pos, x2, y1); immVertex2i(pos, x2, y2); immVertex2i(pos, x1, y2); immEnd(); } void immRectf_fast(uint pos, float x1, float y1, float x2, float y2) { immVertex2f(pos, x1, y1); immVertex2f(pos, x2, y1); immVertex2f(pos, x2, y2); immVertex2f(pos, x1, y1); immVertex2f(pos, x2, y2); immVertex2f(pos, x1, y2); } void immRectf_fast_with_color( uint pos, uint col, float x1, float y1, float x2, float y2, const float color[4]) { immAttr4fv(col, color); immVertex2f(pos, x1, y1); immAttr4fv(col, color); immVertex2f(pos, x2, y1); immAttr4fv(col, color); immVertex2f(pos, x2, y2); immAttr4fv(col, color); immVertex2f(pos, x1, y1); immAttr4fv(col, color); immVertex2f(pos, x2, y2); immAttr4fv(col, color); immVertex2f(pos, x1, y2); } void immRecti_fast_with_color( uint pos, uint col, int x1, int y1, int x2, int y2, const float color[4]) { immAttr4fv(col, color); immVertex2i(pos, x1, y1); immAttr4fv(col, color); immVertex2i(pos, x2, y1); immAttr4fv(col, color); immVertex2i(pos, x2, y2); immAttr4fv(col, color); immVertex2i(pos, x1, y1); immAttr4fv(col, color); immVertex2i(pos, x2, y2); immAttr4fv(col, color); immVertex2i(pos, x1, y2); } #if 0 /* more complete version in case we want that */ void immRecti_complete(int x1, int y1, int x2, int y2, const float color[4]) { GPUVertFormat *format = immVertexFormat(); uint pos = add_attr(format, "pos", GPU_COMP_I32, 2, GPU_FETCH_INT_TO_FLOAT); immBindBuiltinProgram(GPU_SHADER_2D_UNIFORM_COLOR); immUniformColor4fv(color); immRecti(pos, x1, y1, x2, y2); immUnbindProgram(); } #endif /** * Pack color into 3 bytes * * This define converts a numerical value to the equivalent 24-bit * color, while not being endian-sensitive. On little-endian, this * is the same as doing a 'naive' indexing, on big-endian, it is not! * * \note BGR format (i.e. 0xBBGGRR)... * * \param x: color. */ void imm_cpack(uint x) { immUniformColor3ub(((x)&0xFF), (((x) >> 8) & 0xFF), (((x) >> 16) & 0xFF)); } static void imm_draw_circle(GPUPrimType prim_type, const uint shdr_pos, float x, float y, float rad_x, float rad_y, int nsegments) { immBegin(prim_type, nsegments); for (int i = 0; i < nsegments; i++) { const float angle = (float)(2 * M_PI) * ((float)i / (float)nsegments); immVertex2f(shdr_pos, x + (rad_x * cosf(angle)), y + (rad_y * sinf(angle))); } immEnd(); } /** * Draw a circle outline with the given \a radius. * The circle is centered at \a x, \a y and drawn in the XY plane. * * \param shdr_pos: The vertex attribute number for position. * \param x: Horizontal center. * \param y: Vertical center. * \param rad: The circle's radius. * \param nsegments: The number of segments to use in drawing (more = smoother). */ void imm_draw_circle_wire_2d(uint shdr_pos, float x, float y, float rad, int nsegments) { imm_draw_circle(GPU_PRIM_LINE_LOOP, shdr_pos, x, y, rad, rad, nsegments); } /** * Draw a filled circle with the given \a radius. * The circle is centered at \a x, \a y and drawn in the XY plane. * * \param shdr_pos: The vertex attribute number for position. * \param x: Horizontal center. * \param y: Vertical center. * \param rad: The circle's radius. * \param nsegments: The number of segments to use in drawing (more = smoother). */ void imm_draw_circle_fill_2d(uint shdr_pos, float x, float y, float rad, int nsegments) { imm_draw_circle(GPU_PRIM_TRI_FAN, shdr_pos, x, y, rad, rad, nsegments); } void imm_draw_circle_wire_aspect_2d( uint shdr_pos, float x, float y, float rad_x, float rad_y, int nsegments) { imm_draw_circle(GPU_PRIM_LINE_LOOP, shdr_pos, x, y, rad_x, rad_y, nsegments); } void imm_draw_circle_fill_aspect_2d( uint shdr_pos, float x, float y, float rad_x, float rad_y, int nsegments) { imm_draw_circle(GPU_PRIM_TRI_FAN, shdr_pos, x, y, rad_x, rad_y, nsegments); } static void imm_draw_circle_partial(GPUPrimType prim_type, uint pos, float x, float y, float rad, int nsegments, float start, float sweep) { /* shift & reverse angle, increase 'nsegments' to match gluPartialDisk */ const float angle_start = -(DEG2RADF(start)) + (float)(M_PI / 2); const float angle_end = -(DEG2RADF(sweep) - angle_start); nsegments += 1; immBegin(prim_type, nsegments); for (int i = 0; i < nsegments; i++) { const float angle = interpf(angle_start, angle_end, ((float)i / (float)(nsegments - 1))); const float angle_sin = sinf(angle); const float angle_cos = cosf(angle); immVertex2f(pos, x + rad * angle_cos, y + rad * angle_sin); } immEnd(); } void imm_draw_circle_partial_wire_2d( uint pos, float x, float y, float rad, int nsegments, float start, float sweep) { imm_draw_circle_partial(GPU_PRIM_LINE_STRIP, pos, x, y, rad, nsegments, start, sweep); } static void imm_draw_disk_partial(GPUPrimType prim_type, uint pos, float x, float y, float rad_inner, float rad_outer, int nsegments, float start, float sweep) { /* to avoid artifacts */ const float max_angle = 3 * 360; CLAMP(sweep, -max_angle, max_angle); /* shift & reverse angle, increase 'nsegments' to match gluPartialDisk */ const float angle_start = -(DEG2RADF(start)) + (float)(M_PI / 2); const float angle_end = -(DEG2RADF(sweep) - angle_start); nsegments += 1; immBegin(prim_type, nsegments * 2); for (int i = 0; i < nsegments; i++) { const float angle = interpf(angle_start, angle_end, ((float)i / (float)(nsegments - 1))); const float angle_sin = sinf(angle); const float angle_cos = cosf(angle); immVertex2f(pos, x + rad_inner * angle_cos, y + rad_inner * angle_sin); immVertex2f(pos, x + rad_outer * angle_cos, y + rad_outer * angle_sin); } immEnd(); } /** * Draw a filled arc with the given inner and outer radius. * The circle is centered at \a x, \a y and drawn in the XY plane. * * \note Arguments are `gluPartialDisk` compatible. * * \param pos: The vertex attribute number for position. * \param x: Horizontal center. * \param y: Vertical center. * \param rad_inner: The inner circle's radius. * \param rad_outer: The outer circle's radius (can be zero). * \param nsegments: The number of segments to use in drawing (more = smoother). * \param start: Specifies the starting angle, in degrees, of the disk portion. * \param sweep: Specifies the sweep angle, in degrees, of the disk portion. */ void imm_draw_disk_partial_fill_2d(uint pos, float x, float y, float rad_inner, float rad_outer, int nsegments, float start, float sweep) { imm_draw_disk_partial( GPU_PRIM_TRI_STRIP, pos, x, y, rad_inner, rad_outer, nsegments, start, sweep); } static void imm_draw_circle_3D( GPUPrimType prim_type, uint pos, float x, float y, float rad, int nsegments) { immBegin(prim_type, nsegments); for (int i = 0; i < nsegments; i++) { float angle = (float)(2 * M_PI) * ((float)i / (float)nsegments); immVertex3f(pos, x + rad * cosf(angle), y + rad * sinf(angle), 0.0f); } immEnd(); } void imm_draw_circle_wire_3d(uint pos, float x, float y, float rad, int nsegments) { imm_draw_circle_3D(GPU_PRIM_LINE_LOOP, pos, x, y, rad, nsegments); } void imm_draw_circle_dashed_3d(uint pos, float x, float y, float rad, int nsegments) { imm_draw_circle_3D(GPU_PRIM_LINES, pos, x, y, rad, nsegments / 2); } void imm_draw_circle_fill_3d(uint pos, float x, float y, float rad, int nsegments) { imm_draw_circle_3D(GPU_PRIM_TRI_FAN, pos, x, y, rad, nsegments); } /** * Draw a lined box. * * \param pos: The vertex attribute number for position. * \param x1: left. * \param y1: bottom. * \param x2: right. * \param y2: top. */ void imm_draw_box_wire_2d(uint pos, float x1, float y1, float x2, float y2) { immBegin(GPU_PRIM_LINE_LOOP, 4); immVertex2f(pos, x1, y1); immVertex2f(pos, x1, y2); immVertex2f(pos, x2, y2); immVertex2f(pos, x2, y1); immEnd(); } void imm_draw_box_wire_3d(uint pos, float x1, float y1, float x2, float y2) { /* use this version when GPUVertFormat has a vec3 position */ immBegin(GPU_PRIM_LINE_LOOP, 4); immVertex3f(pos, x1, y1, 0.0f); immVertex3f(pos, x1, y2, 0.0f); immVertex3f(pos, x2, y2, 0.0f); immVertex3f(pos, x2, y1, 0.0f); immEnd(); } /** * Draw a standard checkerboard to indicate transparent backgrounds. */ void imm_draw_box_checker_2d_ex(float x1, float y1, float x2, float y2, const float color_primary[4], const float color_secondary[4], int checker_size) { uint pos = GPU_vertformat_attr_add(immVertexFormat(), "pos", GPU_COMP_F32, 2, GPU_FETCH_FLOAT); immBindBuiltinProgram(GPU_SHADER_2D_CHECKER); immUniform4fv("color1", color_primary); immUniform4fv("color2", color_secondary); immUniform1i("size", checker_size); immRectf(pos, x1, y1, x2, y2); immUnbindProgram(); } void imm_draw_box_checker_2d(float x1, float y1, float x2, float y2) { float checker_primary[4]; float checker_secondary[4]; UI_GetThemeColor4fv(TH_TRANSPARENT_CHECKER_PRIMARY, checker_primary); UI_GetThemeColor4fv(TH_TRANSPARENT_CHECKER_SECONDARY, checker_secondary); int checker_size = UI_GetThemeValue(TH_TRANSPARENT_CHECKER_SIZE); imm_draw_box_checker_2d_ex(x1, y1, x2, y2, checker_primary, checker_secondary, checker_size); } void imm_draw_cube_fill_3d(uint pos, const float center[3], const float aspect[3]) { float coords[ARRAY_SIZE(cube_coords)][3]; for (int i = 0; i < ARRAY_SIZE(cube_coords); i++) { madd_v3_v3v3v3(coords[i], center, cube_coords[i], aspect); } immBegin(GPU_PRIM_TRIS, ARRAY_SIZE(cube_quad_index) * 3 * 2); for (int i = 0; i < ARRAY_SIZE(cube_quad_index); i++) { immVertex3fv(pos, coords[cube_quad_index[i][0]]); immVertex3fv(pos, coords[cube_quad_index[i][1]]); immVertex3fv(pos, coords[cube_quad_index[i][2]]); immVertex3fv(pos, coords[cube_quad_index[i][0]]); immVertex3fv(pos, coords[cube_quad_index[i][2]]); immVertex3fv(pos, coords[cube_quad_index[i][3]]); } immEnd(); } void imm_draw_cube_wire_3d(uint pos, const float center[3], const float aspect[3]) { float coords[ARRAY_SIZE(cube_coords)][3]; for (int i = 0; i < ARRAY_SIZE(cube_coords); i++) { madd_v3_v3v3v3(coords[i], center, cube_coords[i], aspect); } immBegin(GPU_PRIM_LINES, ARRAY_SIZE(cube_line_index) * 2); for (int i = 0; i < ARRAY_SIZE(cube_line_index); i++) { immVertex3fv(pos, coords[cube_line_index[i][0]]); immVertex3fv(pos, coords[cube_line_index[i][1]]); } immEnd(); } void imm_draw_cube_corners_3d(uint pos, const float center[3], const float aspect[3], const float factor) { float coords[ARRAY_SIZE(cube_coords)][3]; for (int i = 0; i < ARRAY_SIZE(cube_coords); i++) { madd_v3_v3v3v3(coords[i], center, cube_coords[i], aspect); } immBegin(GPU_PRIM_LINES, ARRAY_SIZE(cube_line_index) * 4); for (int i = 0; i < ARRAY_SIZE(cube_line_index); i++) { float vec[3], co[3]; sub_v3_v3v3(vec, coords[cube_line_index[i][1]], coords[cube_line_index[i][0]]); mul_v3_fl(vec, factor); copy_v3_v3(co, coords[cube_line_index[i][0]]); immVertex3fv(pos, co); add_v3_v3(co, vec); immVertex3fv(pos, co); copy_v3_v3(co, coords[cube_line_index[i][1]]); immVertex3fv(pos, co); sub_v3_v3(co, vec); immVertex3fv(pos, co); } immEnd(); } /** * Draw a cylinder. Replacement for gluCylinder. * _warning_ : Slow, better use it only if you no other choices. * * \param pos: The vertex attribute number for position. * \param nor: The vertex attribute number for normal. * \param base: Specifies the radius of the cylinder at z = 0. * \param top: Specifies the radius of the cylinder at z = height. * \param height: Specifies the height of the cylinder. * \param slices: Specifies the number of subdivisions around the z axis. * \param stacks: Specifies the number of subdivisions along the z axis. */ void imm_draw_cylinder_fill_normal_3d( uint pos, uint nor, float base, float top, float height, int slices, int stacks) { immBegin(GPU_PRIM_TRIS, 6 * slices * stacks); for (int i = 0; i < slices; i++) { const float angle1 = (float)(2 * M_PI) * ((float)i / (float)slices); const float angle2 = (float)(2 * M_PI) * ((float)(i + 1) / (float)slices); const float cos1 = cosf(angle1); const float sin1 = sinf(angle1); const float cos2 = cosf(angle2); const float sin2 = sinf(angle2); for (int j = 0; j < stacks; j++) { float fac1 = (float)j / (float)stacks; float fac2 = (float)(j + 1) / (float)stacks; float r1 = base * (1.0f - fac1) + top * fac1; float r2 = base * (1.0f - fac2) + top * fac2; float h1 = height * ((float)j / (float)stacks); float h2 = height * ((float)(j + 1) / (float)stacks); const float v1[3] = {r1 * cos2, r1 * sin2, h1}; const float v2[3] = {r2 * cos2, r2 * sin2, h2}; const float v3[3] = {r2 * cos1, r2 * sin1, h2}; const float v4[3] = {r1 * cos1, r1 * sin1, h1}; float n1[3], n2[3]; /* calc normals */ sub_v3_v3v3(n1, v2, v1); normalize_v3(n1); n1[0] = cos1; n1[1] = sin1; n1[2] = 1 - n1[2]; sub_v3_v3v3(n2, v3, v4); normalize_v3(n2); n2[0] = cos2; n2[1] = sin2; n2[2] = 1 - n2[2]; /* first tri */ immAttr3fv(nor, n2); immVertex3fv(pos, v1); immVertex3fv(pos, v2); immAttr3fv(nor, n1); immVertex3fv(pos, v3); /* second tri */ immVertex3fv(pos, v3); immVertex3fv(pos, v4); immAttr3fv(nor, n2); immVertex3fv(pos, v1); } } immEnd(); } void imm_draw_cylinder_wire_3d( uint pos, float base, float top, float height, int slices, int stacks) { immBegin(GPU_PRIM_LINES, 6 * slices * stacks); for (int i = 0; i < slices; i++) { const float angle1 = (float)(2 * M_PI) * ((float)i / (float)slices); const float angle2 = (float)(2 * M_PI) * ((float)(i + 1) / (float)slices); const float cos1 = cosf(angle1); const float sin1 = sinf(angle1); const float cos2 = cosf(angle2); const float sin2 = sinf(angle2); for (int j = 0; j < stacks; j++) { float fac1 = (float)j / (float)stacks; float fac2 = (float)(j + 1) / (float)stacks; float r1 = base * (1.0f - fac1) + top * fac1; float r2 = base * (1.0f - fac2) + top * fac2; float h1 = height * ((float)j / (float)stacks); float h2 = height * ((float)(j + 1) / (float)stacks); const float v1[3] = {r1 * cos2, r1 * sin2, h1}; const float v2[3] = {r2 * cos2, r2 * sin2, h2}; const float v3[3] = {r2 * cos1, r2 * sin1, h2}; const float v4[3] = {r1 * cos1, r1 * sin1, h1}; immVertex3fv(pos, v1); immVertex3fv(pos, v2); immVertex3fv(pos, v2); immVertex3fv(pos, v3); immVertex3fv(pos, v1); immVertex3fv(pos, v4); } } immEnd(); } void imm_draw_cylinder_fill_3d( uint pos, float base, float top, float height, int slices, int stacks) { immBegin(GPU_PRIM_TRIS, 6 * slices * stacks); for (int i = 0; i < slices; i++) { const float angle1 = (float)(2 * M_PI) * ((float)i / (float)slices); const float angle2 = (float)(2 * M_PI) * ((float)(i + 1) / (float)slices); const float cos1 = cosf(angle1); const float sin1 = sinf(angle1); const float cos2 = cosf(angle2); const float sin2 = sinf(angle2); for (int j = 0; j < stacks; j++) { float fac1 = (float)j / (float)stacks; float fac2 = (float)(j + 1) / (float)stacks; float r1 = base * (1.0f - fac1) + top * fac1; float r2 = base * (1.0f - fac2) + top * fac2; float h1 = height * ((float)j / (float)stacks); float h2 = height * ((float)(j + 1) / (float)stacks); const float v1[3] = {r1 * cos2, r1 * sin2, h1}; const float v2[3] = {r2 * cos2, r2 * sin2, h2}; const float v3[3] = {r2 * cos1, r2 * sin1, h2}; const float v4[3] = {r1 * cos1, r1 * sin1, h1}; /* first tri */ immVertex3fv(pos, v1); immVertex3fv(pos, v2); immVertex3fv(pos, v3); /* second tri */ immVertex3fv(pos, v3); immVertex3fv(pos, v4); immVertex3fv(pos, v1); } } immEnd(); }