vec3 tint_from_color(vec3 color) { float lum = dot(color, vec3(0.3, 0.6, 0.1)); /* luminance approx. */ return (lum > 0.0) ? color / lum : vec3(1.0); /* normalize lum. to isolate hue+sat */ } float principled_sheen(float NV) { float f = 1.0 - NV; /* Empirical approximation (manual curve fitting). Can be refined. */ float sheen = f * f * f * 0.077 + f * 0.01 + 0.00026; return sheen; } void node_bsdf_principled(vec4 base_color, float subsurface, vec3 subsurface_radius, vec4 subsurface_color, float subsurface_ior, float subsurface_anisotropy, float metallic, float specular, float specular_tint, float roughness, float anisotropic, float anisotropic_rotation, float sheen, float sheen_tint, float clearcoat, float clearcoat_roughness, float ior, float transmission, float transmission_roughness, vec4 emission, float emission_strength, float alpha, vec3 N, vec3 CN, vec3 T, float weight, const float do_diffuse, const float do_clearcoat, const float do_refraction, const float do_multiscatter, float do_sss, out Closure result) { /* Match cycles. */ metallic = clamp(metallic, 0.0, 1.0); transmission = clamp(transmission, 0.0, 1.0) * (1.0 - metallic); float diffuse_weight = (1.0 - transmission) * (1.0 - metallic); float specular_weight = (1.0 - transmission); float clearcoat_weight = max(clearcoat, 0.0) * 0.25; transmission_roughness = 1.0 - (1.0 - roughness) * (1.0 - transmission_roughness); specular = max(0.0, specular); N = safe_normalize(N); CN = safe_normalize(CN); vec3 V = cameraVec(g_data.P); float NV = dot(N, V); float fresnel = (do_multiscatter != 0.0) ? btdf_lut(NV, roughness, ior).y : F_eta(ior, NV); float glass_reflection_weight = fresnel * transmission; float glass_transmission_weight = (1.0 - fresnel) * transmission; vec3 base_color_tint = tint_from_color(base_color.rgb); vec2 split_sum = brdf_lut(NV, roughness); ClosureTransparency transparency_data; transparency_data.weight = weight; transparency_data.transmittance = vec3(1.0 - alpha); transparency_data.holdout = 0.0; weight *= alpha; ClosureEmission emission_data; emission_data.weight = weight; emission_data.emission = emission.rgb * emission_strength; /* Diffuse. */ ClosureDiffuse diffuse_data; diffuse_data.weight = diffuse_weight * weight; diffuse_data.color = mix(base_color.rgb, subsurface_color.rgb, subsurface); /* Sheen Coarse approximation: We reuse the diffuse radiance and just scale it. */ vec3 sheen_color = mix(vec3(1.0), base_color_tint, sheen_tint); diffuse_data.color += sheen * sheen_color * principled_sheen(NV); diffuse_data.N = N; diffuse_data.sss_radius = subsurface_radius * subsurface; diffuse_data.sss_id = uint(do_sss); /* NOTE(@fclem): We need to blend the reflection color but also need to avoid applying the * weights so we compule the ratio. */ float reflection_weight = specular_weight + glass_reflection_weight; float reflection_weight_inv = safe_rcp(reflection_weight); specular_weight *= reflection_weight_inv; glass_reflection_weight *= reflection_weight_inv; /* Reflection. */ ClosureReflection reflection_data; reflection_data.weight = reflection_weight * weight; reflection_data.N = N; reflection_data.roughness = roughness; if (true) { vec3 dielectric_f0_color = mix(vec3(1.0), base_color_tint, specular_tint); vec3 metallic_f0_color = base_color.rgb; vec3 f0 = mix((0.08 * specular) * dielectric_f0_color, metallic_f0_color, metallic); /* Cycles does this blending using the microfacet fresnel factor. However, our fresnel * is already baked inside the split sum LUT. We approximate by changing the f90 color * directly in a non linear fashion. */ vec3 f90 = mix(f0, vec3(1.0), fast_sqrt(specular)); vec3 reflection_brdf = (do_multiscatter != 0.0) ? F_brdf_multi_scatter(f0, f90, split_sum) : F_brdf_single_scatter(f0, f90, split_sum); reflection_data.color = reflection_brdf * specular_weight; } if (true) { /* Poor approximation since we baked the LUT using a fixed IOR. */ vec3 f0 = mix(vec3(1.0), base_color.rgb, specular_tint); vec3 f90 = vec3(1.0); vec3 glass_brdf = (do_multiscatter != 0.0) ? F_brdf_multi_scatter(f0, f90, split_sum) : F_brdf_single_scatter(f0, f90, split_sum); /* Avoid 3 glossy evaluation. Use the same closure for glass reflection. */ reflection_data.color += glass_brdf * glass_reflection_weight; } ClosureReflection clearcoat_data; clearcoat_data.weight = clearcoat_weight * weight; clearcoat_data.N = CN; clearcoat_data.roughness = clearcoat_roughness; if (true) { float NV = dot(clearcoat_data.N, V); vec2 split_sum = brdf_lut(NV, clearcoat_data.roughness); vec3 brdf = F_brdf_single_scatter(vec3(0.04), vec3(1.0), split_sum); clearcoat_data.color = brdf; } /* Refraction. */ ClosureRefraction refraction_data; refraction_data.weight = glass_transmission_weight * weight; float btdf = (do_multiscatter != 0.0) ? 1.0 : btdf_lut(NV, roughness, ior).x; refraction_data.color = base_color.rgb * btdf; refraction_data.N = N; refraction_data.roughness = do_multiscatter != 0.0 ? roughness : max(roughness, transmission_roughness); refraction_data.ior = ior; if (do_diffuse == 0.0 && do_refraction == 0.0 && do_clearcoat != 0.0) { /* Metallic & Clearcoat case. */ result = closure_eval(reflection_data, clearcoat_data); } else if (do_diffuse == 0.0 && do_refraction == 0.0 && do_clearcoat == 0.0) { /* Metallic case. */ result = closure_eval(reflection_data); } else if (do_diffuse != 0.0 && do_refraction == 0.0 && do_clearcoat == 0.0) { /* Dielectric case. */ result = closure_eval(diffuse_data, reflection_data); } else if (do_diffuse == 0.0 && do_refraction != 0.0 && do_clearcoat == 0.0) { /* Glass case. */ result = closure_eval(reflection_data, refraction_data); } else { /* Un-optimized case. */ result = closure_eval(diffuse_data, reflection_data, clearcoat_data, refraction_data); } Closure emission_cl = closure_eval(emission_data); Closure transparency_cl = closure_eval(transparency_data); result = closure_add(result, emission_cl); result = closure_add(result, transparency_cl); }